首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Leaf and tumor extracts of the genetically tumor-conditioned amphiploid Nicotiana glauca X N. langsdorffii, as well as leaf extracts from the parent species and a nontumorous mutant of the amphiploid, were separated on acrylamide gel columns by the method of disc electrophoresis. Gels were stained for general proteins with amido black and specifically for esterases, peroxidases and leucine amino peptidase. The results show characteristic protein and enzyme patterns for leaves of each of the parental species and the amphiploid hybrids. The amphiploids show some bands which are comparable to bands of either one or both of the parental species, while other bands do not have their equivalents in the parental species. Leaf tissue of the tumorous and nontumorous amphiploids were found to differ by a few protein bands, at least two for esterases and at least one for peroxidases. Extracts from tumor tissue show very different patterns from those of the leaves of the same genotype.  相似文献   

2.
A combination of genomic in situ hybridization (GISH) and meiotic pairing analysis of wheat-Thinopyrum partial amphiploids was employed to identify the genomic constitution and relationships between partial amphiploids derived from wheat and wheatgrass crosses. On the basis of similarities in the meiotic behavior and GISH patterns, the alien chromosomes of two of eight partial amphiploids, TAF46 and 'Otrastayuskaya 38', were judged to originate from Th. intermedium, whereas Th. ponticum was one of the parents of the other six partial amphiploids; PWM706, PWM206, PWM209, PWMIII, OK7211542, and Ag-wheat hybrid. Each of these partial amphiploids was found to contain a synthetic alien genome composed of different combinations of St-, J-, or Js-genome chromosomes. For relatedness of partial amphiploid lines, meiotic analysis of F1 hybrids and GISH results were generally complementary, but the latter offered greater precision in identifying constituent genomes.  相似文献   

3.
Alloploidy, one of the most efficient evolutionary mechanisms in nature, has not been extensively exploited in plant breeding programmes. Many genomic combinations remain to be created by plant breeders, to be used directly as new crops or indirectly to widen the genetic basis of crops. The Triticeae tribe, to which wheat belongs, is among the botanical groups in which this strategy has been successfully explored. However, there remain valuable genomic combinations that have not been obtained at the diploid level. The Agropyron complex (wheat-grasses) has recently been the focus of attention for interspecific hybridization, but intergeneric hybrids or amphiploids with wheat have not been reported at the diploid level. Here we report synthesis of a tetraploid amphiploid between Triticum tauschii and Agropyron cristatum by crossing two tetraploid accessions. Using total genome in situ hybridization (GISH) staining on metaphase I pollen mother cells, data on allosyndetic and autosyndetic chromosome pairing have been obtained. These data support the view that the A. cristatum tetraploid parent used in the synthesis of the amphiploid has a segmental alloploidy nature.  相似文献   

4.
Smith , H. H., and D. V. Abashian . (Brookhaven Natl. Lab., Upton, N. Y.) Chromatographic investigations on the alkaloid content of Nicotiana species and interspecific combinations . Amer. Jour. Bot. 50(5): 435–447. Illus. 1963.—Alkaloid content was analyzed by paper-partition chromatography in the following Nicotianas: (1) 52 species representing all taxonomic sections and centers of geographical distribution; (2) 35 two-species combinations including 1 species of hybrid origin, 5 F1 interspecific hybrids, 24 amphiploids and 5 sesquiploids; (3) 14 three-species combinations including 6 hybrids between an amphiploid and a third species, and 4 different 3-species combinations with doubled chromosome number; (4) 2 four-species combinations. Most of the species contained predominantly 3 identified alkaloids: nicotine, nornicotine and anabasine. In addition, at least 6 other alkaloids, that are separable but which were not identified chemically, are characteristic of the genus and are present in varied but characteristic patterns in each species. In hybrid combinations the content with regard to the unidentified alkaloids was observed to be the same as both parents, the sum of the parental patterns, a new alkaloid appearing, or, most frequently, one or more of the parental alkaloids missing in the hybrid. Among the identified alkaloids, anabasine was most frequently dominant to the other 2 in hybrids, and nornicotine production was most frequently either dominant or partly dominant to nicotine production. No simple basis for the inheritance of alkaloidal contents was clearly evident, nor wore there clearly defined associations between phylogenetic position and the alkaloids observed. Studies on the 6 or more alkaloids, in addition to nicotine, nornicotine and anabasine, which are known to be characteristic of the genus, offer extensive materials for research on alkaloid biosynthesis.  相似文献   

5.
Seven enzymatic systems in F1 Aegilops kotschyi and Ae. biuncialis x Secale cereale hybrids, Aegilops kotschyi x S. cereale amphiploids and their parental species (Ae. kotschyi, Ae. biuncialis and S. cereale) were analysed by starch and polyacrylamide gel electrophoresis. Five of them (phosphoglucose isomerase, glutamic oxalacetic transaminase, esterase, acid phosphatase, and diaphorase) were polymorphic and two (malic dehydrogenase and superoxide dismutase) were monomorphic. Several isophorms of phosphoclucose isomerase, esterase, acid phosphatase, and diaphorase were detected in some hybrids and amphiploids, but absent in the parents. The role of regulators, translocations and recombination is discussed in relation to the origin of these new isophorms. Some parental isozymes were absent both in hybrids and amphiploids, probably as a result of the suppression of structural genes in new combinations of the three genomes.  相似文献   

6.
? Premise of the study: Most plants are polyploid and have more than two copies of the genome. The evolutionary success of polyploids is often attributed to their potential to harbor increased genetic variation, but it is poorly understood how polyploids can attain such variation. Because of their formation bottleneck, newly formed tetraploids start out with little variation. Tetraploids may attain genetic variation through a combination of new mutations, recurrent formation, and gene exchange with diploid ancestors or related tetraploid species. We explore the role of gene exchange and introgression in autotetraploid Rorippa amphibia, a species that harbors more genetic variation than its diploid ancestors. ? Methods: We crossed autotetraploid R. amphibia to diploid conspecifics and tetraploid R. sylvestris and backcrossed resulting F(1) hybrids. We used flow cytometry to determine the ploidy of all progeny. ? Key results: Tetraploids of R. amphibia and R. sylvestris were interfertile; F(1) hybrids were fertile and could backcross. Crosses between diploids and tetraploids yielded a small number of viable, often tetraploid progeny. This indicates that unreduced gametes can facilitate gene flow from diploids to tetraploids. We detected a frequency of unreduced gametes of around 2.7 per 1000, which was comparable between diploids and tetraploids. ? Conclusions: Introgression from tetraploid R. sylvestris provides a realistic source of variation in autotetraploid R. amphibia. Only in a scenario where other compatible partners are absent, for example immediately after tetraploidization, gene flow through unreduced gametes from diploids could be an important source of genetic variation for tetraploids.  相似文献   

7.
Reproductive behaviour and the pathways of gene flow among ploidy levels were studied experimentally inTaraxacum sect.Ruderalia. Diploid, triploid and tetraploid individuals were sampled from mixed diploid — polyploid natural populations. 136 experimental hybridizations between the plants of different ploidy levels were performed. Seeds resulting from these crosses, those obtained from isolated anthodia as well as from open pollinated anthodia (both from cultivated and wild plants) were subjected to the flow-cytometric seed screening (FCSS) to determine ploidy levels in the progeny and to infer breeding behaviour of maternal plants. Three possible pathways of the gene flow were studied: (A) fertilization of sexuals by pollen of apomicts, (B) BIII hybrid formation, (C) facultative apomixis. Diploid maternal plants when experimentally crossed with triploid pollen donors produced diploids and polyploid progeny, while when pollinated with a mixture of the pollen of diploids and triploids or insect pollinated, no polyploids were discovered. It seems that in the mixture with the pollen of diploids, the pollen of triploids is ineffective. Tetraploids produce hybrids much easier with diploid mothers and their role in wild populations requires further study. Triploid mothers, even those with subregular pollen did not show traces of facultative apomixis. BIII hybrids were present in the progeny of both triploids and tetraploids, in tetraploids in quite high percentages (up to 50% of the progeny in some crosses).  相似文献   

8.
It is estimated that 5 million years of evolution separate Arabidopsis thaliana from its close relative Arabidopsis lyrata. The two taxa differ by many characteristics, and together they exemplify the differentiation of angiosperms into self-fertilizing and cross-fertilizing species as well as annual and perennial species. Despite their disparate life histories, the two species can be crossed to produce viable and vigorous hybrids exhibiting heterotic effects. Although pollen sterile, the hybrids produce viable ovules and were used as female parent in backcrosses to both parental species. The resulting backcross plants exhibited transgressive variation for a number of interesting developmental and growth traits as well as negative nuclear/cytoplasmic interactions. Moreover, the genesis of a fertile amphidiploid neospecies, apparently by spontaneous somatic doubling in an interspecific hybrid, was observed in the laboratory. The mechanisms responsible for the generation of amphiploids and the subsequent evolution of amphiploid genomes can now be studied through direct observation using the large arsenal of molecular tools available for Arabidopsis.  相似文献   

9.
An artificial crossing program involving 8 annual form-series within Hypecoum sect. Hypecoum (Papaveraceae) was carried out. In most combinations between different species, hybrid inviability due to disparity between parental genomes seems to be the most important crossing barrier: chlorotic progeny was produced, or hybrids with low vitality, few and sterile flowers or dwarfishness occurred. The three form-series considered as different subspecies of H. procumbens seem rather to be separated by hybrid break-down mechanisms in advanced generations, expressed as malformation of organs, and often pronounced decrease in fertility. Crossings between populations within the same form-series usually yielded vigorous and highly fertile progeny. The breeding relationships within the group were found to be well correlated with discontinuities in morphological characteristics. The disparity between the genomes of the different form-series are probably mainly due to gene mutations and cryptic structural alterations and not to major structural polymorphisms.  相似文献   

10.
Summary The potential breeding value of 2n gametes from diploid alfalfa (2n = 2x = 16) was tested by comparing single cross alfalfa hybrids produced via 2n = 2x gametes from diploids versus n = 2x gametes from somatic-chromosome-doubled, tetraploid counterparts. Three diploid clones, designated 2x-(rprp), homozygous for the gene rp (conditions 2n gamete formation by a first division restitution mechanism) were colchicine-doubled to produce their tetraploid counterparts, designated 4x-(SCD). These six clones were crossed as males to the same cytoplasmic male sterile clone. Yield comparisons of progeny from the six clones demonstrated a significant yield increase of the hybrid progeny from 2n = 2x gametes from the diploids over the hybrid progeny from n = 2x gametes from the chromosome doubled tetraploid counterparts. The yield gain ranged from a 12% increase to a 32% increase. Theoretical comparisons indicated the 2n = 2x gametes from diploids would have 12.5 to 50% more heterozygous loci, on average, than the n = 2x gametes derived from somatic doubling. These results confirm the importance of heterozygosity on alfalfa yield, and the results demonstrate that 2n gametes formed by first division restitution offer a unique method for producing highly heterotic alfalfa hybrids.  相似文献   

11.
Two diploid taxa, Grindelia procera and G. camporum, and 3 tetraploid ones, G. camporum, G. hirsutula, and G. stricta, have been studied to ascertain their interrelationships. Meiosis in diploid parental strains was regular, the common chromosome configuration being 5 rod bivalents and 1 ring bivalent. The average chiasmata frequency per chromosome was 0.60. Pollen fertility was about 90% in all strains examined. Diploid interspecific hybrids had normal meiosis with an average chiasmata frequency of 0.56 per chromosome. No heterozygosity for inversions or interchanges was detected, and pollen fertility was above 85%. Meiosis in parental tetraploid strains was characterized by the presence of quadrivalents in addition to a complementary number of bivalents. The average chiasmata frequency per chromosome was 0.59 and pollen fertility was generally about 80%. Tetraploid interspecific hybrids also had quadrivalents, normal meiosis, and high pollen fertility. Close genetic relationships between the diploids and between the tetraploids are indicated, and geographical, ecological, and seasonal barriers to gene exchange exist. Attempts to obtain hybrids between diploids and tetraploids were successful in a few cases. The hybrids were tetraploid and had normal meiosis and fertility similar to parental and F1 tetraploids. Their origin was by the union of unreduced gametes of the diploid female parent and normal pollen from the tetraploid parent. On the basis of chromosome homology, normal meiosis, plus high fertility exhibited in the diploid, tetraploid, and diploid X tetraploid interspecific hybrids, these species of Grindelia are considered to be a part of an autopolyploid complex. Gene exchange between diploids and diploids, tetraploids and tetraploids, and diploids and tetraploids is possible. Tetraploid G. camporum may have originated by hybridization between G. procera and diploid G. camporum with subsequent doubling of chromosomes and selection for the combined characteristics of the diploids.  相似文献   

12.
The A genome of the tetraploid wheats (AABB, 2n = 28) shows 5-6 bivalents in crosses with Triticum boeoticum (2n = 14) and various Aegilops diploids (2n = 14). The B genome has never been similarly identified with any species, and is commonly thought to have been modified at the tetraploid level. Triticum boeoticum was presumably accepted as the A-genome donor because of its morphological similarity to the wild tetraploids and because it was formerly the only known wild diploid wheat. The B donor has been thought to be Ae. speltoides or another species of the Sitopsis section of Aegilops, but these diploids show pairing affinity with A rather than B. More recently, another diploid wheat, T. urartu, was found to be sympatric with T. boeoticum throughout the natural range of the tetraploids. The synthetic boeoticum-urartu amphiploid was virtually identical morphologically with the wild tetraploid wheats, whereas various boeoticum-Sitopsis amphiploids were markedly different. But the urartu genome, like those of T. boeoticum and Sitopsis, paired with A and not with B. However, cytological evidence also shows (1) that the genomes of any plausible parental combination pair with one another, (2) that the A and B genomes of the tetraploid wheats pair with one another in the absence of the gene Ph, and (3) that homoeologous chromosomes of the tetraploids have differentiated further, presumably as a result of diploidization. Consequently, chromosome pairing at Meiosis I can be expected to give ambiguous evidence regarding the identity of the tetraploid genomes with their parental prototypes. A hypothesis regarding the expected pairing affinities between tetraploid homoeologues that have differentiated from closely related parental chromosomes is advanced to explain the anomalous pairing behavior of the A and B genomes. Triticum boeoticum and T. urartu are inferred to be the parents of the tetraploid wheats.  相似文献   

13.
Sexual polyploidization has both a theoretical as well as an applied significance. Morphological screening for large pollen grains and shape of pollen produced by the individual, cytological investigation of hybrid progeny, and unbalanced separation of chromosomes at anaphase I in pollen mother cells were used to detect the gametes with somatic chromosome number in Fuchsia. The interspecific hybrids of F. fulgens (sect. Ellobium) × F. magellanica (sect. Quelusia), F. fulgens (sect. Ellobium) × F. splendens (sect. Ellobium), and F. triphylla (sect. Fuchsia) × F. splendens (sect. Ellobium) produced at the University of Auckland, New Zealand, showed both large and normal pollen grains in the same anther indicating the presence of unreduced gametes. Cytological investigation carried out on the hybrid progeny of F. fulgens (diploid, 2n=22, sect. Ellobium) × F. magellanica (tetraploid, 2n=44, sect. Quelusia) and F. triphylla (diploid, sect. Fuchsia) × F. arborescens (diploid, sect. Schufia) revealed unexpected chromosome numbers of 2n=44 and 2n=33, respectively. In general, the hybrids showed low fertility caused by genetically unbalanced gametes resulted from random disjunction of chromosomes at anaphase I. Studies on meiosis together with the presence of different shapes and sizes of pollen grains in Fuchsia proved indirectly that unreduced gametes are the products of first division meiotic nuclear restitution. These unreduced gametes were viable irrespective of pollen shape, their predominance in the hybrids, nuclear DNA amount and species phylogenetic position.  相似文献   

14.
The consequences of combining divergent genomes among populations of a diploid species often involve F1 hybrid vigor followed by hybrid breakdown in later recombinant generations. As many as 70% of plant species are thought to have polyploid origins; yet little is known about the genetic architecture of divergence in polyploids and how it may differ from diploid species. We investigated the genetic architecture of population divergence using controlled crosses among five populations of the autotetraploid herb, Campanulastrum americanum. Plants were reciprocally hybridized to produce F1, F2, and F1-backcross generations that were grown with parental types in a greenhouse and measured for performance. In contrast to diploid expectations, most F1 hybrids lacked heterosis and instead showed strong outbreeding depression for early life traits. Recombinant hybrid generations often showed a recovery of performance to levels approximating, or at times even exceeding, the parental values. This pattern was also evident for an index of cumulative fitness. Analyses of line means indicated nonadditive gene action, especially forms of digenic epistasis, often influenced hybrid performance. However, standard diploid genetic models were not adequate for describing the underlying genetic architecture in a number of cases. Differences between reciprocal hybrids indicated that cytoplasmic and/or cytonuclear interactions also contributed to divergence. An enhanced role of epistasis in population differentiation may be the norm in polyploids, which have more gene copies. This study, the first of its kind on a natural autotetraploid, suggests that gene duplication may cause polyploid populations to diverge in a fundamentally different way than diploids.  相似文献   

15.
Hordeum bulbosum L. is found in a diploid (2n = 14) and a tetraploid form (2n = 28). Of the 99 collections examined cytologically, 21 were diploid, 77 tetraploid and one triploid. The diploids were found in the western Mediterranean area to West Greece, tetraploids from West Greece eastwards to Afghanistan. Analysis of herbarium material and extensive cultivated material showed that the two cytotypes could not be distinguished morphologically. Intracytotype crosses were successful in the different provenance combinations, except in a few cases, where individual parental genotypes caused a low crossability. Intercytotype hybrids were rather difficult to obtain. In the light of the results a taxonomic subdivision of the species is not recommended. A problem in connection with the Linnaean type specimen is discussed.  相似文献   

16.
Amphiploids (2n = 6x = 42) of Ae. kotschyi and Ae. biuncialis with self-compatible S. cereale were produced from F1 sterile hybrids (2n = 3x = 21) through colchicine treatment and callus tissue regeneration. The amphiploids resembled the F1 plants in overall morphology, but were larger in all respects and self-fertile. The spikelets consisted mostly of 3 well-developed florets. Selfed seeds were obtained from some colchicine-doubled sectors and callus regenerates. Most of the produced seeds were well developed. Backcrosses between amphiploids and rye (2x and 4x) resulted in obtaining (Ae. biuncialis x S. cereale amphiploid) x S. cereale hybrids via embryo culture. The BC1 plants (2n = 4x = 28 and 2n = 5x = 35, respectively) were phenotypically intermediate between the parents and vigorous in vegetative growth. Some seeds were obtained only from the 35-chromosome BC1 hybrids.  相似文献   

17.
P. Keim  K. N. Paige  T. G. Whitham    K. G. Lark 《Genetics》1989,123(3):557-565
Restriction fragment length polymorphisms were used to distinguish genotypes of two species of Populus, P. fremontii ('Fremont') and P. angustifolia ('narrowleaf'). Both inter- and intraspecific polymorphisms were detected in these cottonwood trees. The interspecific variation was much greater than the intraspecific variation. This permitted identification of parental genotypes within individual trees of a hybrid swarm which exists in an overlap zone between the two species. Within this hybrid swarm, individual trees are either F1 hybrids or backcrosses with a pure 'narrowleaf' parent; no progeny were found that could be attributed to crossing between F1 hybrid trees, or to backcrossing between F1 hybrid trees and 'Fremont'.  相似文献   

18.
The effect of B chromosomes on meiosis is described in the diploid and tetraploid interspecific hybrid Lolium multiflorum x Lolium perenne. Although the parental species are very closely related, the presence of B chromosomes in the diploid hybrid reduced both chiasma frequency and the number of bivalents at meiosis by a small but significant amount. However at the tetraploid level the presence of B chromosomes did not seem to alter the pairing pattern and chiasma frequency in any way. The use of B chromosomes to stabilize meiosis in amphiploids of this type between closely related outbreeding species is therefore ruled out.  相似文献   

19.
Summary The genomic relationship between cultivated sorghum [Sorghum bicolar (L.) Moench, race bicolor, De Wet, 2n=20] and Johnsongrass [S. halepense (L.) Pers., 2n=40] has been a subject of extensive studies. Nevertheless, there is no general consensus concerning the ploidy level and the number of genomes present in the two species. This research tested the validity of four major genomic models that have been proposed previously for the two species by studying chromosome behaviors in the parental species, 30-chromosome hybrids [sorghum, (2n=20) x Johnsongrass, (2n=40)], 40-chromosome hybrids [sorghum, (2n=40) x Johnsongrass, (2n=40)] and 60-chromosome amphiploids. Chromosome pairings of amphiploids are reported for the first time. Chromosomes of cultivated sorghums paired exclusively as 10 bivalents, whereas Johnsongrass had a maximum configuration of 5 ring quadrivalents with occasional hexavalents and octovalents. In contrast, 40-chromosome cultivated sorghum had up to 9 ring quadrivalents and 1 hexavalent. Pairing in the 30-chromosome hybrids showed a maximum of 10 trivalents, and that in the 40-chromosome hybrids exhibited 8 quadrivalents, 5 of which were rings, together with a few hexavalents. Amphiploid plants showed up to 3 ring hexavalents, 1 chain hexavalent and a chain of 12 chromosomes. The data suggest that cultivated sorghum is a tetraploid species with the genomic formula AAB1B1, and Johnsongrass is a segmental auto-allo-octoploid, AAAA B1B1B2B2. The model is further substantiated by chromosome pairing in amphiploid plants whose proposed genomic formula is AAAAAA B1B1B1B1 B2B2.Contribution no. 87-391-J from the Kansas Agriculatural Experiment Station  相似文献   

20.
Summary The genomes of the diploid wheats Triticum boeoticum and T. urartu are closely related, giving 7II in the f1 hybrid (TbTu) and 8.4 (0–14) II + 2.5 (0–7) IV in the derived amphiploid (TbTbTuTu). The genomes of the tetraploid wheats are also closely related, giving up to 7II at the polyhaploid level (AB) in the absence of the gene Ph but 14II at the tetraploid level (AABB) in the normal presence of Ph. If the amphiploid is the progenitor of the tetraploids, one or the other homoeologue (Tb or Tu) in each of the 7 homoeologous groups (the 7 potential IV) must have differentiated with respect to pairing affinity in order to account for 14II in the tetraploid. Consequently, in tetraploid X amphiploid hybrids (TbTuAB) carrying the Ph gene from the tetraploid, the seven differentiated chromosomes (B) would be expected to give 7I while, on the basis of their observed chiasma frequency, Tb, Tu and the less differentiated A would be expected to give 4.17I + 3.57II + 3.23III), assuming homoeologous pairing. The expected chromosomal configuration freqencies at MI (11.17I + 3.57II + 3.23III) closely fit the observed values (11.22I + 3.45II + 3.19III + 0.071IV) for such hybrids (X2 = 0.0046; P>0.99). Thus diploidization of the boeoticum-urartu amphiploid clearly could account for the origin of the tetraploid wheats. Furthermore, T. aestivum X amphiploid hybrids (TbTuABD) with and without Ph indicated that B as well as A chomosomes tended to pair with their presumed TbTu homologues in the absence of Ph. Other tests showed that the tetraploid wheats could not plausibly have originated from any postulated Triticum-Sitopsis (TTSS) parental combinations with or without such chromosomal differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号