首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A study is made of the relaxation of plasma rotation in nonaxisymmetric toroidal magnetic confinement systems, such as stellarators and rippled tokamaks. In this way, a solution to the drift kinetic equation is obtained that explicitly takes into account the time dependence of the distribution function, and expressions for the diffusive particle fluxes and longitudinal viscosity are derived that make it possible to write a closed set of equations describing the time evolution of the ambipolar electric field E and the longitudinal (with respect to the magnetic field) plasma velocity U0. Solutions found to the set of evolutionary equations imply that the relaxation of these two parameters to their steady-state values occurs in the form of damped oscillations whose frequency is about 2vT/R (where vT is the ion thermal velocity and R is the major plasma radius) and whose damping rate depends on the ion-ion collision frequency and on the magnetic field parameters. In particular, it is shown that, for tokamaks with a slightly rippled longitudinal magnetic field, the frequency of oscillations in the range q>2 (where q is the safety factor) is, as a rule, much higher than the damping rate. For stellarators, this turns out to be true only of the central plasma region, where the helical ripple amplitude ? of the magnetic field is much smaller than the toroidal ripple amplitude δ=r/R.  相似文献   

2.
The source-sink relationship is one of major determinants of plant performance. The influence of reproductive sink demand on light-saturated photosynthesis (Pmax), dark respiration (RD), stomatal conductance (gs), intrinsic water-use efficiency (WUEi), contents of soluble sugar (SSC), nitrogen, carbon, and photosynthetic pigments was examined in blueberry (Vaccinium corymbosum L. cv. ‘Brigitta’) during the final stage of rapid fruit growth. Measurements were performed three times per day on developed, sun-exposed leaves of girdled shoots with 0.1, 1, and 10 fruit per leaf (0.1F:L, 1F:L, and 10F:L, respectively) and nongirdled shoots bearing one fruit per leaf (NG). Girdling and lower fruit amount induced lower Pmax, gs, N, and total chlorophyll (Chl) and higher WUEi, SSC, RD, Chl a/b ratio and carotenoids-to-chlorophylls ratio (Car/Chl) for the 1F:L and 0.1F:L treatments. The impact of girdling was counterbalanced by 10F:L, with NG and 10F:L having similar values. Variables other than Pmax, RD, gs, WUEi, and SSC were unaffected throughout the course of the day. Pmax and gs decreased during the course of the day, but gs decreased more than Pmax in the afternoon, while WUEi was increasing in almost all treatments. SSC increased from the morning until afternoon, whereas RD peaked at noon regardless of the treatment. Generally, Pmax was closely and negatively correlated to SSC, indicating that sugar-sensing mechanisms played an important role in regulation of blueberry leaf photosynthesis. With respect to treatments, Pmax and N content were positively related, while RD was not associated to substrate availability. The enhanced Car/Chl ratio showed a higher photoprotection under the lower sink demand. Changes in the source-sink relationship in ‘Brigitta’ blueberry led to a rearrangement of physiological and structural leaf traits which allowed adjusting the daily balance between carbon assimilation and absorbed light energy.  相似文献   

3.
There are eight possible pathways for the iron-tricarbonyl-assisted thermal electrocyclic ring opening of fluorocyclobutene due to variations in the orientation of the binding of Fe(CO)3 relative to the fluorine substituent (R1 or R2), stereoselectivity (conrotatory or disrotatory, i.e., C or D), and the torquoselectivity of fluorine (inward-facing or outward-facing, i.e., in or out). A density functional study revealed that the energetically favored pathway is R1 Din. Not only is the D mode favored energetically, but the in configuration was observed to be the lowest-lying mode of R1, despite the general tendency of fluorine substituents to prefer an out configuration. Data on the activation hardness and aromaticity indices such as BAC and HOMA lead to the same conclusion. However, the R2 mode surprisingly shows no particular preference for either the Cout or the Dout pathway (i.e., the R2 mode shows less stereoselectivity than R1). This behavior occurs due to the influences of both the fluorine substituent and metal coordination. Also, the geminal bond orbitals σ(C–F) and σ*(C–F) appear to participate in ring opening, given the excellent correlation of ?BE with the activation barrier of the transition state.  相似文献   

4.
Two new steroid glycosides: distolasteroside D6, (24S)-24-O-(β-D-xylopyranosyl)-5α-cholestane-3β,6α,8,15β,16β,24-hexaol, and distolasteroside D7, (22E,24R)-24-O-(β-D-xylopyranosyl)-5α-cholest-22-ene-3β,6α,8,15β,24-pentaol were isolated along with the previously known distolasterosides D1, D2, and D3, echinasteroside C, and (25S)-5α-cholestane-3β4β,6α,7α,8,15α,16β,26-octaol from the Far Eastern starfish Distolasterias nipon. The structures of new compounds were elucidated by NMR spectroscopy and MALDI TOF mass spectrometry. Like neurotrophins, distolasterosides D1, D2, and D3 were shown to induce neuroblast differentiation in a mouse neuroblastoma C1300 cell culture.  相似文献   

5.
The paper describes the calculation data on the physical parameters of a reactor-stellarator, where the nonuniformities of the helical field are smaller than the toroidal magnetic field nonuniformities: εh < εt. Unlike the previous studies, where the ion-component transport coefficients had the collision frequency dependence proportional to ν1/2, this being equivalent to the εh > εt case, in the present calculations, these coefficients were assumed to be in proportion to the first power of the collision frequency, Di ∝ ν for νeff < 2ωE, and to Di ∝ ν?1 for the inverse inequality. Here, ωE is the rotation frequency of plasma in the radial electric field. As before, the plasma electrons corresponded to the mode of De ∝ ν?1. As initial parameters for numerical calculations, a reactor with R = 8 m, rp = 2 m, and B0 = 5 Т was taken. A numerical code was used to solve the set of equations that describes the plasma space?time behavior in the reactor-stellarator under the conditions of equal diffusion fluxes. The start of reactor operation in the mode of thermonuclear burning was provided by heating sources with a power of several tens of megawatts. Steady-state operating conditions of a self-sustained thermonuclear reaction were attained by maintaining the plasma density through DT fuel pellet injection into the plasma.  相似文献   

6.
Six new natural compounds were isolated from two Far Eastern starfish species, Henricia aspera and H. tumida, collected in the Sea of Okhotsk. Two new glycosylated steroid polyols were obtained from H. aspera: asperoside A and asperoside B, which were shown to be (20R,24R, 25S)-3-O-(2,3-di-O-methyl-β -D-xylopyranosyl)-24-methyl-5α-cholest-4-ene-3β, 6β,8,15α,16β,26-hexaol and (20R, 24R,25S,22E)-3-O-(2,4-di-O-methyl-β-D-xylopyranosyl)-24-methyl-5α-cholest-22-ene-3β,4β,6β,8,15α,26-hexaol, respectively. Two other glycosylated polyols, tumidoside A, with the structure elucidated as (20R, 22E)-3-O-(2,4-di-O-methyl-β -D-xylopyranosyl)-26,27-dinor-24-methyl-5α-cholest-22-ene-3β,4β,6β,8,15α,25-hexaol, and tumidoside B, whose structure was elucidated as (20R,24S)-3-O-(2,3-di-O-methyl-β-D-xylopyranosyl)-5α-cholestan-3β,4β,6β,8,15α,24-hexaol, were isolated from the two starfish species. (20R, 24S)-5α-Cholestan-3β,6β,15α,24-tetraol and (20R, 24S)-5α-cholestan-3β,6β,8,15α,24-pentaol were identified only in H. tumida. The known monoglycosides henricioside H1 and laeviuscolosides H and G were also identified in both species.  相似文献   

7.
How global warming will affect soil respiration (R S) and its source components is poorly understood despite its importance for accurate prediction of global carbon (C) cycles. We examined the responses of R S, heterotrophic respiration (R H), autotrophic respiration (R A), nitrogen (N) availability, and fine-root biomass to increased temperature in an open-field soil warming experiment. The experiment was conducted in a cool-temperate deciduous forest ecosystem in northern Japan. As this forest is subjected to strong temporal variation in temperature, on scales ranging from daily to seasonal, we also investigated the temporal variation in the effects of soil warming on R S, R H, and R A. Soil temperature was continuously elevated by about 4.0°C from 2007 to 2014 using heating wires buried in the soil, and we measured soil respiratory processes in all four seasons from 2012 to 2014. Soil warming increased annual R S by 32–45%, but the magnitude of the increase was different between the components: R H and R A were also stimulated, and increased by 39–41 and 17–18%, respectively. Soil N availability during the growing season and fine-root biomass were not remarkably affected by the warming treatment. We found that the warming effects varied seasonally. R H increased significantly throughout the year, but the warming effect showed remarkable seasonal differences, with the maximum stimulation in the spring. This suggests that warmer spring temperature will produce a greater increase in CO2 release than warmer summer temperatures. In addition, we found that soil warming reduced the temperature sensitivity (Q 10) of R S. Although the Q 10 of both R H and R A tended to be reduced, the decrease in the Q 10 of R S was caused mainly by a decrease in the response of R A to warming. These long-term results indicate that a balance between the rapid and large response of soil microbes and the acclimation of plant roots both play important roles in determining the response of R S to soil warming, and must be carefully considered to predict the responses of soil C dynamics under future temperature conditions.  相似文献   

8.
Cassava (Manihot esculenta) is an important tropical crop with extraordinary tolerance to drought stress but few reports on it. In this study, MeDREB1D was significantly and positively induced by drought stress. Two allelic variants of the gene named MeDREB1D(R-2) and MeDREB1D(Y-3) were identified. Overexpressing MeDREB1D(R-2) and MeDREB1D(Y-3) in Arabidopsis resulted in stronger tolerance to drought and cold stresses. Under drought stress, transgenic plants had more biomass, higher survival rates and less MDA content than wild-type plants. Under cold stress, transgenic plants also had higher survival rates than wild-type plants. To further characterize the molecular function of MeDREB1D, we conducted an RNA-Seq analysis of transgenic and wild-type Arabidopsis plants. The results showed that the Arabidopsis plants overexpressing MeDREB1D led to changes in downstream genes. Several POD genes, which may play a vital role in drought and cold tolerance, were up-regulated in transgenic plants. In brief, these results suggest that MeDREB1D can simultaneously improve plant tolerance to drought and cold stresses.  相似文献   

9.
Understanding patterns of genetic diversity of plants is important in guiding conservation programs. The aim of our study was to characterize genetic diversity in Afzelia quanzensis, an economically important African tree species. We genotyped 192 individuals at 10 nuclear microsatellite loci. Samples were collected from nine sites in Zimbabwe, five in the north and four in the south, separated by a mountain range, the Kalahari-Zimbabwe axis. Overall, genetic diversity was relatively low across all sites (expected heterozygosity (H E)?=?0.452, mean number of alleles (A)?=?4.367, allelic richness (A R)?=?2.917, effective number of alleles (A E)?=?2.208, and private allelic richness (PAR)?=?0.197). Genetic diversity estimates, H E, A, A R, and PAR, were not significantly different between northern and southern sites. Allelic richness was significantly higher in southern sites. Significant population differentiation was observed among all sites (F ST ?=?0.0936, G′ ST ?=?0.1982, G ST ?=?0.1001, D JOST?=?0.0598). STRUCTURE analysis and principal components analysis identified two gene pools, one predominantly made up of southern individuals, and the other of northern individuals. A Monmonier’s function detected a genetic barrier that coincided with the Kalahari-Zimbabwe axis. The relatively low level of genetic diversity in A. quanzensis may reduce adaptability and limit future evolutionary responses. All sites should be monitored for deleterious effects of low genetic diversity, and genetic resource management should take into consideration the existence of the distinct gene pools to capture the entire extant genetic variation.  相似文献   

10.
Crown exposure to light (CE) and tree allometry were investigated for 11 species in a snowy cool-temperate secondary forest dominated by Fagus crenata and Betula ermanii in Japan. The 11 species differentiated horizontal and vertical light gradients for regeneration. CE was highly variable across species in small trees, but variation in CE decreased with increasing height. The 11 species were classified into three patterns of height-dependent change in CE in comparison to community-level trends, and rank reversal of CE with increasing height was not apparent. Allometric relationships between trunk diameter (D) and height (H) and between D and trunk length (L) differed little between trees of high and low CE within species. In contrast, slopes of the allometric relationships between D and H differed across species; species with larger maximum height (H max) were taller at a given D, as was noted in previous studies of warm-temperate and tropical forest trees. Differences in trunk angle among the species of different H max were the main factor generating the differences in allometric relationships between D and H in this forest. Trunk angle increased with increasing height in the species of large H max but decreased in those of small H max. Hence, allometric relationships between D and L were not related to H max. Since the species of small H max grow laterally and are easily covered in snow during winter while those of large H max grow vertically above snow cover, differences in trunk angle may reflect species mechanical properties.  相似文献   

11.
There are two close empirical scalings, namely, the T-11 and neo-Alcator ones, that provide correct estimates for the energy confinement time in tokamaks in ohmic heating regimes in the linear part of the dependence τ E (\(\bar n_e \)) in the range of low values of \(\bar n_e \) and 〈ν e * 〉 ≤ 1. The similar character of electron energy confinement in this range, which expands with increasing magnetic field B 0, has stimulated the search for dimensionless parameters and simple physical models that would explain the experimentally observed dependences χ e ~ 1/n e and τ Ee \(\bar n_e \). In 1987, T. Okhawa showed that the experimental data were satisfactorily described by the formula χe = (c 2 pe 2 )ν e /qR, in deriving of which the random spatial leap along the radius r on the electron trajectory was assumed to be the same as that in the coefficient of the poloidal field diffusion, while the repetition rate of these leaps was assumed to be ν e /qR. In 2004, J. Callen took into account the decrease in the fraction of transient electrons with increasing toroidal ratio ? = r/R and corrected the coefficient c 2 pe 2 in Okhawa equation by the factor σ Sp neo . If one takes into account this correction and assumes that the frequency of the stochastic process is equal to the reciprocal of the half-period of rotation of a trapped electron along its banana trajectory, then the resulting expression for χe will coincide with the T-11 scaling: χ e an ∞ ?1.75(T e /A i )0.5/(n e qR) at A i = 1. If the same stochastic process also involves ions, it may result in the opening of the orbit of a trapped ion at the distance ~(c pe )(m i /m e )1/4. In this case, the calculated coefficient of electron and ion diffusion D is close to D an ≈ χ e an /2.  相似文献   

12.
NMR relaxation of arginine (Arg) 15Nε nuclei is useful for studying side-chain dynamics of proteins. In this work, we studied the impact of two geminal 15N–15N scalar couplings on measurements of transverse relaxation rates (R 2 ) for Arg side-chain 15Nε nuclei. For 12 Arg side chains of the DNA-binding domain of the Antp protein, we measured the geminal 15N–15N couplings ( 2 J NN ) of the 15Nε nuclei and found that the magnitudes of the 2 J NN coupling constants were virtually uniform with an average of 1.2 Hz. Our simulations, assuming ideal 180° rotations for all 15N nuclei, suggested that the two 2 J NN couplings of this magnitude could in principle cause significant modulation in signal intensities during the Carr–Purcell-Meiboom–Gill (CPMG) scheme for Arg 15Nε R 2 measurements. However, our experimental data show that the expected modulation via two 2 J NN couplings vanishes during the 15N CPMG scheme. This quenching of J modulation can be explained by the mechanism described in Dittmer and Bodenhausen (Chemphyschem 7:831–836, 2006). This effect allows for accurate measurements of R 2 relaxation rates for Arg side-chain 15Nε nuclei despite the presence of two 2 J NN couplings. Although the so-called recoupling conditions may cause overestimate of R 2 rates for very mobile Arg side chains, such conditions can readily be avoided through appropriate experimental settings.  相似文献   

13.
The study was carried out in a four-year-old super-high density olive grove in Central Italy to compare leaf gas exchanges of Spanish Arbequina and Italian Maurino olive cultivars. Overall, from mid July to mid November, Maurino had a slightly higher maximum light-saturated net photosynthetic rate (P Nmax) than Arbequina. The lowest and the highest P Nmax values were recorded at the end of July and in mid November, respectively. Current-season leaves showed similar or slightly higher P Nmax values than one-year-old leaves. During the day Maurino always had slightly higher values or values similar to Arbequina, with the highest P Nmax being in the morning. Maurino had similar or higher dark respiration rate (R D) values compared to Arbequina. During the day, in both cultivars the R D was lower at 9:00 than in the afternoon. The pattern of the photosynthetic irradiance-response curve was similar in the two genotypes, but the apparent quantum yield (Y Q) was higher in Maurino. In both cultivars intercellular CO2 concentration (C i) tended to increase when P Nmax decreased. The increase in C i corresponded to a decrease in stomatal conductance (g s). The transpiration rate (E) increased from mid July to the beginning of August, then decreased in September and increased again in November. Particularly in the morning, the current-season leaves showed similar or slightly higher E values than the one-year-old leaves. During the day, in both cultivars and at both leaf ages, E was higher in the afternoon. No effects on leaf gas exchanges due to the presence or absence of fruit on the shoot were found. Overall, there was satisfactory physiological adaptation for Arbequina to the conditions of Central Italy and for Maurino to the superintensive grove conditions.  相似文献   

14.
Pathogens can cause chronic premature needle abscission in coniferous species. To assess the potential impacts on tree productivity, stomatal regulation was investigated in Douglas fir with chronic stomatal occlusion and defoliation from varying levels of the Swiss needle cast (SNC) fungus, Phaeocryptopus gaeumannii. Levels of SNC disease and subsequent defoliation were manipulated by choosing six sites with varying levels of disease and by foliar applications of fungicides on six trees per site. Diurnal measurements of leaf water potential (Ψleaf), stomatal conductance (g s) and vapor pressure deficit (D) were made on six fungicide treated and six control trees per site. In addition, leaf specific hydraulic conductance was calculated on a single branch (K L_B) from three trees per treatment per site. Stomatal conductance at D=1 kPa (g sref) was negatively correlated with fungal colonization (number of fruiting bodies present in needle stomata) and positively correlated with K L_B. Despite reduced needle retention in diseased trees, K L declined due to a reduction in sapwood area and permeability (i.e., increasing presence of latewood in functional sapwood). In general, stomatal sensitivity to D for all foliage was consistent with stomatal regulation based on a simple hydraulic model [g s=K Lsoilleaf)/ D], which assumes strict stomatal regulation of Ψleaf. However, when fungal presence reduced maximum g s below the potential maximum supported by hydraulic architecture, stomatal sensitivity was lower than expected based on the theoretical relationship: dg s/dlnD=0.6·g sref. The results indicate that losses in productivity associated with physical blockage of stomata and defoliation are compounded by additional losses in K L and a reduction in g s in remaining functional stomata.  相似文献   

15.
Bacterial metabolites with communicative functions could provide protection against stress conditions to members of the same species. Yet, information remains limited about protection provided by metabolites in Bacillus cereus and inter-species. This study investigated the effect of extracellular compounds derived from heat shocked (HS) and non-HS cultures of B. cereus and Geobacillus stearothermophilus on the thermotolerance of non-HS vegetative and sporulating B. cereus. Cultures of B. cereus and G. stearothermophilus were subjected to HS (42 or 65 °C respectively for 30 min) or non-HS treatments. Cells and supernatants were separated, mixed in a combined array, and then exposed to 50 °C for 60 min and viable cells determined. For spores, D values (85 and 95 °C) were evaluated after 120 h. In most cases, supernatants from HS B. cereus cultures added to non-HS B. cereus cells caused their thermotolerance to increase (D 50 12.2–51.9) when compared to supernatants from non-HS cultures (D 50 7.4–21.7). While the addition of supernatants from HS and non-HS G. stearothermophilus cultures caused the thermotolerance of non-HS cells from B. cereus to decrease initially (D 50 3.7–7.1), a subsequent increase was detected in most cases (D 50 18–97.7). In most cases, supernatants from sporulating G. stearothermophilus added to sporulating cells of B. cereus caused the thermotolerance of B. cereus 4810 spores to decline, whereas that of B. cereus 14579 increased. This study clearly shows that metabolites in supernatants from either the same or different species (such as G. stearothermophilus) influence the thermotolerance of B. cereus.  相似文献   

16.
Experimental warming of forest ecosystems typically stimulates soil respiration (CO2 efflux), but most warming experiments have been conducted in northern latitudes (>?40°N) with relatively young soils. We quantified the influence of experimental warming on soil respiration (RT) in two adjacent forest habitats—a mature, closed canopy forest and a gap where trees were manually removed— on highly-weathered Ultisols of the southeastern U.S. (33°N). Using temperature variation, both natural and induced by experimental warming, we also quantified the temperature sensitivity of RT, defined as the activation energy, EA in the Arrhenius equation. Experimental warming (either + 3 °C or + 5 °C above ambient) did not significantly increase soil respiration rate or cumulative CO2 loss over the 3 years of the experiment, and did not influence the temperature sensitivity of soil respiration, once the influence of natural temperature variation was taken into consideration. Despite the absence of an experimental warming effect, we observed that EA varied on monthly time scales, and varied differently in each habitat. Soil moisture and habitat also influenced RT, but the effects were not consistent, and varied by month. Our results suggest that although RT does depend on temperature, the sensitivity of RT to temperature variation is influenced primarily by factors like microclimate and plant phenology that can change on relatively short (<?monthly) time scales. Thus, using the temperature sensitivity of RT to predict future CO2 losses due to warming is only reasonable if monthly variation in EA is incorporated into models for lower-latitude subtropical ecosystems with highly weathered soils, such as those in this study. Finally, our results suggest that higher temperatures may not enhance RT in highly-weathered, C-poor soils to the extent that has been reported in prior studies of high-latitude soils, which may constrain ecosystem-atmosphere carbon exchanges and feedbacks to the climate system.  相似文献   

17.
It has been overlooked that the change of hardness, η, upon bonding is intimately connected to thermochemical cycles, which determine whether hardness is increased according to Pearson’s “maximum hardness principle” (MHP) or equalized, as expected by Datta’s “hardness equalization principle” (HEP). So far the performances of these likely incompatible “structural principles” have not been compared. Computational validations have been inconclusive because the hardness values and even their qualitative trends change drastically and unsystematically at different levels of theory. Here I elucidate the physical basis of both rules, and shed new light on them from an elementary experimental source. The difference, Δη = η mol – <η at>, of the molecular hardness, η mol, and the averaged atomic hardness, <η at>, is determined by thermochemical cycles involving the bond dissociation energies D of the molecule, D + of its cation, and D ? of its anion. Whether the hardness is increased, equalized or even reduced is strongly influenced by ΔD = 2D – D +  ? D ?. Quantitative expressions for Δη are obtained, and the principles are tested on 90 molecules and the association reactions forming them. The Wigner-Witmer symmetry constraints on bonding require the valence state (VS) hardness, η VS, instead of the conventional ground state (GS) hardness, η GS. Many intriguingly “unpredictable” failures and systematic shortcomings of said “principles” are understood and overcome for the first time, including failures involving exotic and/or challenging molecules, such as Be2, B2, O3, and transition metal compounds. New linear relationships are discovered between the MHP hardness increase Δη VS and the intrinsic bond dissociation energy D i . For bond formations, MHP and HEP are not compatible, and HEP does not qualify as an ordering rule.  相似文献   

18.
MHD oscillations with m/n = 4/1 and 3/1 that arise at the periphery of the TUMAN-3M tokamak in the initial stage of a discharge are investigated. It is found that these oscillations lead to a significant modulation of the electron density n e , which is attributable to the accumulation of plasma within a magnetic island. Numerical simulations of the modulation structure made it possible to determine the radius of the resonant surface and the radial width of the island and to evaluate the characteristic density gradient in the island. The gradient was found to be ten times larger than that of the unperturbed profile of n e (r) near the resonant surface. This points to reduced plasma transport within the magnetic island.  相似文献   

19.
We explored the relationships between perturbation-driven population decline and genetic/genotypic structure in the clonal seagrass Posidonia oceanica, subject to intensive meadow regression around four Mediterranean fish-farms, using seven specific microsatellites. Two meadows were randomly sampled (40 shoots) within 1,600 m2 at each site: the “impacted” station, 5–200 m from fish cages, and the “control” station, around 1,000 m downstream further away (considered a proxy of the pre-impact genetic structure at the site). Clonal richness (R), Simpson genotypic diversity (D*) and clonal sub-range (CR) were highly variable among sites. Nevertheless, the maximum distance at which clonal dispersal was detected, indicated by CR, was higher at impacted stations than at the respective control station (paired t-test: P < 0.05, N = 4). The mean number of alleles (Â) and the presence of rare alleles ( r) decreased at impacted stations (paired t-test: P < 0.05, and P < 0.02, respectively, N = 4). At a given perturbation level (quantified by the organic and nutrient loads), shoot mortality at the impacted stations significantly decreased with CR at control stations (R = 0.86, P < 0.05). Seagrass mortality also increased with  (R = 0.81, P < 0.10), R (R = 0.96, P < 0.05) and D* (R = 0.99, P < 0.01) at the control stations, probably because of the negative correlation between those parameters and CR. Therefore, the effects of clonal size structure on meadow resistance could play an important role on meadow survival. Large genotypes of P. oceanica meadows thus seem to resist better to fish farm-derived impacts than little ones. Clonal integration, foraging advantage or other size-related fitness traits could account for this effect.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号