首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Among the isozymes of carbonic anhydrase, isozyme III is the least efficient in the catalysis of the hydration of CO2 and was previously thought to be unaffected by proton transfer from buffers to the active site. We report that buffers of small size, especially imidazole, increase the rate of catalysis by human carbonic anhydrase III (HCA III) of (1) 18O exchange between HCO3- and water measured by membrane-inlet mass spectrometry and (2) the dehydration of HCO3- measured by stopped-flow spectrophotometry. Imidazole enhanced the rate of release of 18O-labeled water from the active site of wild-type carbonic anhydrase III and caused a much greater enhancement, up to 20-fold, for the K64H, R67H, and R67N mutants of this isozyme. Imidazole had no effect on the rate of interconversion of CO2 and HCO3- at chemical equilibrium. Steady-state measurements showed that the addition of imidazole resulted in increases in the turnover number (kcat) for the hydration of CO2 catalyzed by HCA III and for the dehydration of HCO3- catalyzed by R67N HCA III. These results are consistent with the transfer of a proton from the imidazolium cation to the zinc-bound hydroxide at the active site, a step required to regenerate the active form of enzyme in the catalytic cycle. Like isozyme II of carbonic anhydrase, isozyme III can be enhanced in catalytic rate by the presence of small molecule buffers in solution.  相似文献   

2.
Carbonic anhydrase III, a cytosolic enzyme found predominantly in skeletal muscle, has a turnover rate for CO2 hydration 500-fold lower and a KI for inhibition by acetazolamide 700-fold higher (at pH 7.2) than those of red cell carbonic anhydrase II. Mutants of human carbonic anhydrase III were made by replacing three residues near the active site with amino acids known to be at the corresponding positions in isozyme II (Lys-64----His, Arg-67----Asn, and Phe-198----Leu). Catalytic properties were measured by stopped-flow spectrophotometry and 18O exchange between CO2 and water using mass spectrometry. The triple mutant of isozyme III had a turnover rate for CO2 hydration 500-fold higher than wild-type carbonic anhydrase III. The binding constants, KI, for sulfonamide inhibitors of the mutants containing Leu-198 were comparable to those of carbonic anhydrase II. The mutations at residues 64, 67, and 198 were catalytically independent; the lowered energy barrier for the triple mutant was the sum of the energy changes for each of the single mutants. Moreover, the triple mutant of isozyme III catalyzed the hydrolysis of 4-nitrophenyl acetate with a specific activity and pH dependence similar to those of isozyme II. Phe-198 is thus a major contributor to the low CO2 hydration activity, the weak binding of acetazolamide, and the low pKa of the zinc-bound water in carbonic anhydrase III. Intramolecular proton transfer involving His-64 was necessary for maximal turnover.  相似文献   

3.
We have measured the pH dependence of the kinetics of CO2 hydration catalyzed by carbonic anhydrase III from the skeletal muscle of the cat. Two methods were used: an initial velocity study in which the change in absorbance of a pH indicator was measured in a stopped flow spectrophotometer, and an equilibrium study in which the rate of exchange of 18O between CO2 and H2O was measured with a mass spectrometer. We have found that the steady state constants kCO2 cat and KCO2 m are independent of pH within experimental error in the range of pH 5.0 to 8.5; the rate of release from the enzyme of the oxygen abstracted from substrate HCO-3 in the dehydration is also independent of pH in this range. This behavior is very different from that observed for carbonic anhydrase II for which kCO2 cat and the rate of release of substrate oxygen are very pH-dependent. The rate of interconversion of CO2 and HCO-3 at equilibrium catalyzed by carbonic anhydrase III is not altered when the solvent is changed from H2O to 98% D2O and 2% H2O. Thus, the interconversion probably proceeds without proton transfer in its rate-limiting steps, similar to isozymes I and II.  相似文献   

4.
We report three experiments which show that the hydrolysis of 4-nitrophenyl acetate catalyzed by carbonic anhydrase III from bovine skeletal muscle occurs at a site on the enzyme different than the active site for CO2 hydration. This is in contrast with isozymes I and II of carbonic anhydrase for which the sites of 4-nitrophenyl acetate hydrolysis and CO2 hydration are the same. The pH profile of kcat/Km for hydrolysis of 4-nitrophenyl acetate was roughly described by the ionization of a group with pKa 6.5, whereas kcat/Km for CO2 hydration catalyzed by isozyme III was independent of pH in the range of pH 6.0-8.5. The apoenzyme of carbonic anhydrase III, which is inactive in the catalytic hydration of CO2, was found to be as active in the hydrolysis of 4-nitrophenyl acetate as native isozyme III. Concentrations of N-3 and OCN- and the sulfonamides methazolamide and chlorzolamide which inhibited CO2 hydration did not affect catalytic hydrolysis of 4-nitrophenyl acetate by carbonic anhydrase III.  相似文献   

5.
Comparison of 18O exchange and pH stop-flow assays for carbonic anhydrase   总被引:1,自引:0,他引:1  
The hydration velocity of CO2 (0.002 M) catalyzed by bovine carbonic anhydrase (BCA) was measured at 25 degrees C and pH 7.4 by three different techniques: two initial-rate (steady-state) stop-flow methods, one using a glass pH electrode (in Hannover, method 1) and one using spectrophotometric measurements of a pH indicator (in Philadelphia, method 2), and an exchange method in which the disappearance of C18O16O from a bicarbonate solution was determined at equilibrium (in Philadelphia, method 3). The Michaelis-Menten constant (Km) and the inhibition constants for chloride (Ki,Cl) and ethoxzolamide (Ki,ez) were the same for methods 1, 2, and 3. The turnover numbers were 270,000, 400,000, and 555,000 s-1 by methods 1, 2, and 3, respectively. Values for CO2 hydration velocity measured by methods 2 and 3 on the same solution of BCA at the same time were the same. Km, maximal reaction velocity (Vmax), Ki,ez, and Ki,Cl obtained from normal human hemolysate at 37 degrees C and pH 7.2 by methods 2 and 3 were the same. Km and Vmax of the carbonic anhydrase isozyme CA III of homogenate from rabbit soleus were also identical by methods 1 and 3. According to Michaelis-Menten theory, the values of Km and Vmax obtained by method 3 should have been significantly smaller than those obtained by methods 1 and 2. We conclude that the catalytic step itself is apparently not rate limiting under physiological conditions and that method 3 can be used to obtain Michaelis-Menten characteristics of carbonic anhydrase.  相似文献   

6.
The binding of bovine oxyhemoglobin to bovine carbonic anhydrase with a dissociation constant between 10(-5) and 10(-7) M has been determined by countercurrent distribution using aqueous, biphasic polymer systems. This result provides an explanation for the very efficient proton transfer between hemoglobin and carbonic anhydrase, a transfer which enhances the catalytic activity of carbonic anhydrase as measured by 18O exchange between bicarbonate and water at chemical equilibrium (Silverman, D. N., Tu, C. K., and Wynns, G. C. (1978) J. Biol. Chem, 253, 2563-2567). Two rate constants describing 18O exchange activity of carbonic anhydrase at pH 7.5 show saturation behavior when plotted against hemoglobin concentration consistent with a dissociation constant of 2.5 X 10(-6) M between bovine hemoglobin and carbonic anhydrase. Interpretation of these rate constants in terms of a two-step model for 18O exchange indicates that hemoglobin enhances the rate of exchange from carbonic anhydrase of water containing the oxygen abstracted from bicarbonate, but does not affect the catalytic interconversion of CO2 and HCO3- at chemical equilibrium.  相似文献   

7.
Rates of CO2/HCO-3 exchange, catalyzed by human carbonic anhydrase I (or B) at chemical equilibrium, were estimated from the nuclear magnetic resonance linewidths of 13C-labeled substrates. The results show that the maximal exchange rate constant is independent of pH in the range 5.7-8.0, whereas the apparent substrate dissociation constant depends on pH. Exchange proceeds rapidly in the absence of added buffers, and the addition of buffers has negligible effects on exchange rates. Exchange is equally rapid with 1H2O or 2H2O as solvents. Chloride ions inhibit CO2/HCO-3 exchange competitively. The maximal exchange rates obtained with human carbonic anhydrase I are 50 times slower than those obtained with human isoenzyme II (or C). From a comparison of the exchange kinetics with the steady-state kinetics of CO2 hydration and HCO-3 dehydration it is tentatively concluded that the transfer of H+ between active site and medium proceeds with rates of similar magnitudes in the two isoenzymes, whereas the central catalytic step, the interconversion of enzyme-bound CO2 and HCO-3, is much slower in isoenzyme I than in isoenzyme II.  相似文献   

8.
Among the seven known isozymes of carbonic anhydrase in higher vertebrates, isozyme III is the least efficient in catalytic hydration of CO2 and the least susceptible to inhibition by sulfonamides. We have investigated the role of two basic residues near the active site of human carbonic anhydrase III (HCA III), lysine 64 and arginine 67, to determine whether they can account for some of the unique properties of this isozyme. Site-directed mutagenesis was used to replace these residues with histidine 64 and asparagine 67, the amino acids present at the corresponding positions of HCA II, the most efficient of the carbonic anhydrase isozymes. Catalysis by wild-type HCA III and mutants was determined from the initial velocity of hydration of CO2 at steady state by stopped-flow spectrophotometry and from the exchange of 18O between CO2 and water at chemical equilibrium by mass spectrometry. We have shown that histidine 64 functions as a proton shuttle in carbonic anhydrase by substituting histidine for lysine 64 in HCA III. The enhanced CO2 hydration activity and pH profile of the resulting mutant support this role for histidine 64 in the catalytic mechanism and suggest an approach that may be useful in investigating the mechanistic roles of active-site residues in other isozyme groups. Replacing arginine 67 in HCA III by asparagine enhanced catalysis of CO2 hydration 3-fold compared with that of wild-type HCA III, and the pH profile of the resulting mutant was consistent with a proton transfer role for lysine 64. Neither replacement enhanced the weak inhibition of HCA III by acetazolamide or the catalytic hydrolysis of 4-nitrophenyl acetate.  相似文献   

9.
Carbonic anhydrase purified from the saliva of the rat had kinetic properties identical with those of carbonic anhydrase II from rat red cells, but its molecular properties were distinctly different from the type II isozyme. Kinetic parameters were measured under steady state conditions by stopped-flow spectrophotometry and under equilibrium conditions by an 18O exchange method. The turnover number kcat for hydration of CO2 was 6.5 X 10(4) s-1 and the Michaelis constant was 4.2 mM at pH 7.5 and 25 degrees C, values which are equal to the steady state constants for red cell carbonic anhydrase II from the rat. Inhibition of the salivary isozyme by sulfanilamide (Ki = 3.7 microM) was nearly as efficient as inhibition of the erythrocyte isozyme II (Ki = 1.1 microM). The molecular weight for the salivary isozyme was 46,000 and the isoelectric point was 5.5. Salivary carbonic anhydrase had high mannose oligosaccharide components as measured by concanavalin A binding. The amino acid composition for the salivary isozyme was not similar to rat type II, but it was similar to that reported for membrane-bound carbonic anhydrase from bovine lung (Whitney, P.L., and Briggle, T.V. (1982) J. Biol. Chem. 257, 12056-12059). These observations suggest to us that salivary carbonic anhydrase is a secretory product.  相似文献   

10.
The maximal turnover rate of CO2 hydration catalyzed by the carbonic anhydrases is limited by proton transfer steps from the zinc-bound water to solution, steps that regenerate the catalytically active zinc-bound hydroxide. Catalysis of CO2 hydration by wild-type human carbonic anhydrase III (HCA III) (k(cat) = 2 ms (-1)) is the least efficient among the carbonic anhydrases in its class, in part because it lacks an efficient proton shuttle residue. We have used site-directed mutagenesis to test positions within the active-site cavity of HCA III for their ability to carry out proton transfer by replacing various residues with histidine. Catalysis by wild-type HCA III and these six variants was determined from the initial velocity of hydration of CO2 measured by stopped-flow spectrophotometry and from the exchange of 18O between CO2 and H2O at chemical equilibrium by mass spectrometry. The results show that histidine at three positions (Lys64His, Arg67His and Phe131His) have the capacity to transfer protons during catalysis, enhancing maximal velocity of CO2 hydration and 18O exchange from 4- to 15-fold compared with wild-type HCA III. Histidine residues at the other three positions (Trp5His, Tyr7His, Phe20His) showed no firm evidence for proton transfer. These results are discussed in terms of the stereochemistry of the active-site cavity and possible proton transfer pathways.  相似文献   

11.
Using stopped flow methods, we have measured the steady state rate constants and the inhibition by N3- and I- of the hydration of CO2 catalyzed by carbonic anhydrase III from cat muscle. Also, using fluorescence quenching of the enzyme at 330 nm, we have measured the binding of the sulfonamide chlorzolamide to cat carbonic anhydrase III. Inhibition by the anions was uncompetitive at pH 6.0 and was mixed at higher values of pH. The inhibition constant of azide was independent of pH between 6.0 and 7.5 with a value of KIintercept = 2 X 10(-5) M; the binding constant of chlorzolamide to cat carbonic anhydrase III was also independent of pH in the range of 6.0 to 7.5 with a value Kdiss = 2 X 10(-6) M. Both of these values increased as pH increased above 8. There was a competition between chlorzolamide and the anions N-3 and OCN- for binding sites on cat carbonic anhydrase III. The pH profiles for the kinetic constants and the uncompetitive inhibition at pH 6.0 can be explained by an activity-controlling group in cat carbonic anhydrase III with a pKa less than 6. Moreover, the data suggest that like isozyme II, cat isozyme III is limited in rate by a step occurring outside the actual interconversion of CO2 and HCO3- and involving a change in bonding to hydrogen exchangeable with solvent water.  相似文献   

12.
C K Tu  D N Silverman 《Biochemistry》1985,24(21):5881-5887
We have measured the catalysis by Co(II)-substituted bovine carbonic anhydrase II from red cells of the exchange of 18O between CO2 and H2O using membrane-inlet mass spectrometry. We chose Co(II)-substituted carbonic anhydrase II because the apparent equilibrium dissociation constant of HCO3- and enzyme at pH 7.4, KHCO3-eff approximately equal to 55 mM, was within a practicable range of substrate concentrations for the 18O method. For the native, zinc-containing enzyme KHCO3-eff is close to 500 mM at this pH. The rate constant for the release from the active site of water bearing substrate oxygen kH2O was dependent on the fraction of enzyme that was free, not bound by substrate HCO3- or anions. The pH dependence of kH2O in the pH range 6.0-9.0 can be explained entirely by a rate-limiting, intramolecular proton transfer between cobalt-bound hydroxide and a nearby group, probably His-64. The rate constant for this proton transfer was found to be 7 X 10(5) S-1 for the Co(II)-substituted enzyme and 2 X 10(6) S-1 for the native enzyme. These results are applied to models derived from proton-relaxation enhancement of water exchanging from the inner coordination shell of the cobalt in carbonic anhydrase. The anions iodide, cyanate, and thiocyanate inhibited catalysis of 18O exchange by Co(II)-substituted carbonic anhydrase II in a manner competitive with total substrate (CO2 and HCO3-) at chemical equilibrium and pH 7.4. These results are discussed in terms of observed steady-state inhibition patterns and suggest that there is no significant contribution of a ternary complex between substrate, inhibitor, and enzyme.  相似文献   

13.
In the site-specific mutant of human carbonic anhydrase in which the proton shuttle His64 is replaced with alanine, H64A HCA II, catalysis can be activated in a saturable manner by the proton donor 4-methylimidazole (4-MI). From 1H NMR relaxivities, we found 4-MI bound as a second-shell ligand of the tetrahedrally coordinated cobalt in Co(II)-substituted H64A HCA II, with 4-MI located about 4.5 A from the metal. Binding constants of 4-MI to H64A HCA II were estimated from: (1) NMR relaxation of the protons of 4-MI by Co(II)-H64A HCA II, (2) the visible absorption spectrum of Co(II)-H64A HCA II in the presence of 4-MI, (3) the inhibition by 4-MI of the catalytic hydration of CO2, and (4) from the catalyzed exchange of 18O between CO2 and water. These experiments along with previously reported crystallographic and catalytic data help identify a range of distances at which proton transfer is efficient in carbonic anhydrase II.  相似文献   

14.
1. The steady-state kinetics of the interconversion of CO2 and HCO3 catalyzed by human carbonic anhydrase C was studied using 1H2O and 2H2O as solvents. The pH-independent parts of the parameters k(cat) and Km are 3-4 times larger in 1H2O than in 2H2O for both directions of the reaction, while the ratios k(cat)/Km show much smaller isotope effects. With either CO2 or HCO3 as substrate the major pH dependence is observed in k(cat), while Km appears independent of pH. The pKa value characterizing the pH-rate profiles is approximately 0.5 unit larger in 2H2O than in 1H2O. 2. The hydrolysis of p-nitrophenyl acetate catalyzed by human carbonic anhudrase C is approximately 35% faster in 2H2O than in 1H2O. In both solvents the pKa values of the pH-rate profiles are similar to those observed for the CO2-HCO3 interconversion. 3. It is tentatively proposed that the rate-limiting step at saturating concentrations of CO2 or HCO3 is an intramolecular proton transfer between two ionizing groups in the active site. It cannot be decided whether the transformation between enzyme-bound CO2 and HCO3 involves a proton trnasfer or not.  相似文献   

15.
The effects of human carbonic anhydrase C on the 13C nuclear magnetic resonance spectra of equilibrium mixtures of 13CO2 and NaH13CO3 were measured at 67.89 MHz. Enzyme-catalyzed CO2-HCO-3 exchange rates were estimated from the linewidths of the resonances. The results show that: (a) the maximal exchange rates are larger than the maximal turnover rates; (b) the exchange is equally rapid with 1H2O or with 2H2O as solvents; (c) the exchange is equally rapid in the presence or in the absence of added buffers; (d) the apparent substrate binding is weaker than predicted if steady-state Km values are assumed to represent substrate dissociation constants. The main conclusion concerning the catalytic mechanism of the enzyme is that the proton-transfer processes which limit turnover rates in the steady state are not directly involved in CO2-HCO-3 exchange. In addition, the results suggest that CO2-HCO-3 interconversion takes place by a nucleophilic mechanism, such as a reversible reaction of zinc-coordinated OH- with CO2.  相似文献   

16.
We have reacted acrolein with human carbonic anhydrase II using conditions reported to result in maximal formylethylation of exposed histidine and lysine residues (Pocker, Y., and Janji?, N. (1988) J. Biol. Chem. 263, 6169-6176). Pocker and Janji? proposed that the decrease by 95-98% in the steady-state turnover number for the hydration of CO2 caused by this chemical modification is due predominantly to the alkylation of one residue, the imidazole side chain of histidine 64. We measured the rate of 18O exchange between CO2 and water catalyzed by these enzymes at chemical equilibrium using membrane inlet mass spectrometry. The catalyzed rate of interconversion of CO2 and HCO3- at chemical equilibrium was the same for the acrolein-modified and the unmodified carbonic anhydrases, but the rate of release of 18O-labeled water from the active site had decreased by as much as 85% for the acrolein-modified enzyme. The 18O-exchange kinetics catalyzed by the acrolein-modified carbonic anhydrase II was similar to that catalyzed by a mutant human carbonic anhydrase II in which histidine at residue 64 was replaced with alanine. Moreover, modification of this mutant carbonic anhydrase II with acrolein did not alter to a significant extent its 18O-exchange pattern. These results support the proposal of Pocker and Janji? and the suggested role of histidine 64 in carbonic anhydrase II as a proton shuttle residue that transfers a proton from zinc-bound water to buffer in solution.  相似文献   

17.
Phosphate and phosphate-containing buffers of physiological interest such as ATP and 3-phosphoglycerate were found to enhance catalysis by human carbonic anhydrase III (HCA III). Addition of phosphate caused an increase in both the catalyzed rate of hydration of CO2 at steady state measured by stopped-flow spectrophotometry and the exchange of 18O between CO2 and water at chemical equilibrium measured by mass spectrometry. The results are consistent with a mechanism in which phosphate enhances the transfer of protons between zinc-bound water at the active site and solution. Site-directed mutations to replace lysine 64 and arginine 67 in the active-site cavity resulted in greater enhancement by phosphate when compared with wild-type HCA III and showed that these basic residues are not essential as a binding site for phosphate. Phosphate did not enhance catalysis by HCA II.  相似文献   

18.
Purification and characterization of human salivary carbonic anhydrase   总被引:15,自引:0,他引:15  
A novel carbonic anhydrase was purified from human saliva with inhibitor affinity chromatography followed by ion-exchange chromatography. The molecular weight was determined to be 42,000 on sodium dodecyl sulfate polyacrylamide gel electrophoresis, indicating that the human salivary enzyme is larger than the cytosolic isoenzymes CA I, CA II, and CA III (Mr 29,000) from human tissue sources. Each molecule of the salivary enzyme had two N-linked oligosaccharide chains which were cleaved by endo-beta-N-acetylglucosaminidase F but not by endo-beta-N-acetylglucosaminidase H, indicating that the oligosaccharides are complex type. The isoelectric point was determined to be 6.4, but significant charge heterogeneity was found in different preparations. The human salivary isozyme has lower specific activity than the rat salivary isozyme and the human red blood cell isozyme II in the CO2 hydratase reaction. The inhibitory properties of the salivary isozyme resemble those of CA II with iodide, sulfanilamide, and bromopyruvic acid, but the salivary enzyme is less sensitive to acetazolamide and methazolamide than CA II. Antiserum raised in a rabbit against the salivary enzyme cross-reacted with CA II from human erythrocytes, indicating that human salivary carbonic anhydrase and CA II must share at least one antigenic site. CA I and CA III did not crossreact with this antiserum. The amount of salivary carbonic anhydrase in the saliva of the CA II-deficient patients was greatly reduced, indicating that the CA II deficiency mutation directly or indirectly affects the expression of the salivary carbonic anhydrase isozyme. From these results we conclude that the salivary carbonic anhydrase is immunologically and genetically related to CA II, but that it is a novel and distinct isozyme which we tentatively designate CA VI.  相似文献   

19.
Rat kidney mitochondrial carbonic anhydrase   总被引:2,自引:0,他引:2  
Mitochondrial carbonic anhydrase has previously been quantitated in liver mitochondria; it was not detected in guinea pig kidney cortical mitochondria. Evidence of this enzyme in rat kidney cortical mitochondria is reported. Electron microscopy showed that intact mitochondria were free of other intracellular organelles. When intact kidney mitochondria were added to isotonic 3'-(N'-morpholino) propanesulfonic acid buffer with 25 mM KHCO3 (1% labeled with 18O) the rate of disappearance of C18O16O was biphasic; this indicates that there is carbonic anhydrase within the inner mitochondrial membrane. Intact rat kidney mitochondria were assayed for carbonic anhydrase activity at 4 degrees C by the changing pH technique. The rate of CO2 hydration in the presence and absence of intact mitochondria was identical; this rate increased when Triton X-100 was added which indicates that all carbonic anhydrase is inside the inner mitochondrial membrane. Carbonic anhydrase activity was quantitated as kenz (units, ml.s-1 mg-1 mitochondrial protein) at 37 degrees C, pH 7.4, in 25 mM NaHCO3 (1% labeled with 18O) by following the rate of disappearance of C18O16O from solutions before and after addition of disrupted mitochondria. Values of Kenz for liver and kidney mitochondria from rats given free access to normal rat chow and water at neutral pH were 0.06 and 0.08 (respectively). Values of kenz for liver and kidney mitochondria from rats fed as above and with free access to water adjusted to pH 2.5 with HCl were 0.04 and 0.16, respectively. Values of kenz for rats starved for 48 h were 0.06 and 0.12 (respectively). The values of kenz remained 0.11-0.14 in liver mitochondria from guinea pigs fed normally, given dilute acid, or starved and the value was always at zero in guinea pig kidney mitochondria. Values of Kenz were measured with disrupted mitochondria by the 18O technique as a function of pH at 25 degrees C, 25 to 75 mM NaHCO3, ionic strength 0.3. From pH 7.0 to 8.0 kenz increased threefold for mitochondria from rat liver, fed rat kidney, and acid rat kidney, and increased eightfold for mitochondria from guinea pig liver. kenz was decreased similarly by increasing HCO3- in mitochondria from rat liver, fed kidney, and acid kidney; it is concluded that carbonic anhydrase in rat liver mitochondria is probably the same isozyme as in rat kidney mitochondria. The published observation that rat kidney cortices are up to 10 times as gluconeogenic from pyruvate as guinea pig kidney cortices can be explained by the presence of mitochondrial carbonic anhydrase in rat but not guinea pig mitochondria.  相似文献   

20.
We have cloned and overexpressed a truncated, recombinant form of beta-carbonic anhydrase from Arabidopsis thaliana. The wild-type enzyme and two site-directed variants, H216N and Y212F, have been kinetically characterized both at steady state by stopped-flow spectrophotometry and at chemical equilibrium by (18)O isotope exchange methods. The wild-type enzyme has a maximal k(cat) for CO2 hydration of 320 ms(-1) and is rate limited by proton transfer involving two residues with apparent pK(a) values of 6.0 and 8.7. The mutant enzyme H216N has a maximal k(cat) at high pH that is 43% that of wild type, but is only 5% that of wild type at pH 7.0. (18)O exchange studies reveal that the effect of the mutations H216N or Y212F is primarily on proton transfer steps in the catalytic mechanism and not in the rate of CO2-HCO3- exchange. These results suggest that residues His-216 and Tyr-212 are both important for efficient proton transfer in A. thaliana carbonic anhydrase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号