首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Key message

Based on a strategy combining extensive segregation analyses and tests for allelism with allele-specific re-sequencing an Hv-eIF4E allele exclusively effective against BaMMV was identified and closely linked markers for BaYMV resistance were developed.

Abstract

Soil-borne barley yellow mosaic disease is one of the most important diseases of winter barley. In extensive screenings for resistance, accession ‘HOR4224’ being resistant to three strains of Barley mild mosaic virus (BaMMV-ASL1, BaMMV-Sil, and BaMMV-Teik) and two strains of Barley yellow mosaic virus (BaYMV-1 and BaYMV-2) was identified. Analyses using Bmac29, being to some extent diagnostic for the rym4/5 locus, gave hint to the presence of the susceptibility-encoding allele at this locus. Therefore, 107 DH lines derived from the cross ‘HOR4224’ × ‘HOR10714’ (susceptible) were screened for resistance. Genetic analyses revealed an independent inheritance of resistance to BaMMV and BaYMV ( $\chi_{1:1:1:1}^{2}$  = 5.58) both encoded by a single gene (BaMMV $\chi_{1:1}^{2}$  = 0.477; BaYMV $\chi_{1:1}^{2}$  = 0.770). Although Bmac29 indicated the susceptibility-encoding allele, BaMMV resistance of ‘HOR4224’ co-localized with rym4/rym5. The BaYMV resistance was mapped to chromosome 5H in the region of rym3. Sequencing of full length cDNA of the Hv-eIF4E gene displayed an already sequenced allele described to be efficient against BaMMV and BaYMV. However, the F1 progenies of crosses involving ‘HOR4224’ and rym4/rym5 donors were all resistant to BaMMV but susceptible to BaYMV. Therefore, this is the first report of an allele at the rym4/rym5 locus exclusively efficient against BaMMV. Changes in the specificity are due to one non-synonymous amino acid substitution (I118K). Results obtained elucidate that combining extensive segregation analyses and tests for allelism involving different strains of BaMMV/BaYMV in combination with allele-specific re-sequencing is an efficient strategy for gene and allele detection in complex pathosystems.  相似文献   

2.

Key message

Two distinct patterns of sequence diversity for the recessive alleles of two host factors HvPDIL5 - 1 and HvEIF4E indicated the adaptive selection for bymovirus resistance in cultivated barley from East Asia.

Abstract

Plant pathogens are constantly challenging plant fitness and driving resistance gene evolution in host species. Little is known about the evolution of sequence diversity in host recessive resistance genes that interact with plant viruses. Here, by combining previously published and newly generated targeted re-sequencing information, we systematically analyzed natural variation in a broad collection of wild (Hordeum spontaneum; Hs) and domesticated barleys (Hordeum vulgare; Hv) using the full-length coding sequence of the two host factor genes, HvPDIL5-1 and HvEIF4E, conferring recessive resistance to the agriculturally important Barley yellow mosaic virus (BaYMV) and Barley mild mosaic virus (BaMMV). Interestingly, two types of gene evolution conferred by sequence variation in domesticated barley, but not in wild barley were observed. Whereas resistance-conferring alleles of HvEIF4E exclusively contained non-synonymous amino acid substitutions (including in-frame sequence deletions and insertions), loss-of-function alleles were predominantly responsible for the HvPDIL5-1 conferred bymovirus resistance. A strong correlation between the geographic origin and the frequency of barley accessions carrying resistance-conferring alleles was evident for each of the two host factor genes, indicating adaptive selection for bymovirus resistance in cultivated barley from East Asia.
  相似文献   

3.
Soil-borne barley yellow mosaic virus disease, caused by different strains of Barley yellow mosaic virus (BaYMV) and Barley mild mosaic virus (BaMMV), is one of the most important diseases of winter barley (Hordeum vulgare L.) in Europe and East Asia. The recessive resistance gene rym11 located in the centromeric region of chromosome 4HL is effective against all so far known strains of BaMMV and BaYMV in Germany. In order to isolate this gene, a high-resolution mapping population (10,204 meiotic events) has been constructed. F2 plants were screened with co-dominant flanking markers and segmental recombinant inbred lines (RILs) were tested for resistance to BaMMV under growth chamber and field conditions. Tightly linked markers were developed by exploiting (1) publicly available barley EST sequences, (2) employing barley synteny to rice, Brachypodium distachyon and sorghum and (3) using next-generation sequencing data of barley. Using this approach, the genetic interval was efficiently narrowed down from the initial 10.72 % recombination to 0.074 % recombination. A marker co-segregating with rym11 was developed providing the basis for gene isolation and efficient marker-assisted selection.  相似文献   

4.
Barley yellow mosaic disease caused by the bymoviruses barley mild mosaic virus (BaMMV) and barley yellow mosaic virus (BaYMV) is one of the economically most important diseases of winter barley in Europe. In European barley breeding programmes, resistance is currently due to only two genes—rym4, which is effective against viruses BaMMV and BaYMV-1, and rym5, which is effective against BaYMV-2. Diversification of resistance is therefore an important task. Because the accession PI1963 confers immunity against all European strains of barley yellow mosaic disease and is not allelic to rym5, we have attempted to develop closely linked markers in order to facilitate the efficient introgression of this resistance into adapted germplasm. By means of restriction fragment length polymorphism analysis, we located a gene locus for resistance to BaMMV, BaYMV-1 and BaYMV-2 of PI1963 on chromosome 4HL using a mapping population (W757) comprising 57 doubled haploid (DH) lines. Subsequent tests for allelism indicated that the BaMMV resistance gene in PI1963 is allelic to rym11. Two DH populations, IPK1 and IPK2, comprising 191 and 161 DH lines, respectively, were derived from the initial mapping population W757 and used for further analysis. As random amplified polymorphic DNA development did not facilitate the identification of more closely linked markers, simple sequence repeat (SSR) analyses were conducted. For population IPK1, the closest SSRs detected were Bmac181 and Bmag353, which flank the gene at 2.1 cM and 2.7 cM, respectively. For the IPK2 population, the SSR markers HVM3 and Bmag353 are located proximally at 2.5 cM and distally at 8.2 cM, respectively. In order to develop markers more tightly linked to rym11, a targeted amplified fragment length polymorphism (AFLP) marker identification approach was adopted using bulks comprising lines carrying recombination events proximal and distal to the target interval. Using this approach we identified six AFLP markers closely linked to rym11, with the two markers, E56M32 and E49M33, co-segregating with rym11 in both populations. The SSRs and AFLPs identified in this study represent useful tools for marker-assisted selection.  相似文献   

5.
The soil-borne barley yellow mosaic virus disease (BaMMV, BaYMV, BaYMV-2) and the aphid-transmitted barley yellow dwarf virus (BYDV) are serious threats to winter barley cultivation. Resistance to barley yellow mosaic virus disease has been identified in extensive screening programmes and several recessive resistance genes have been mapped, e.g. rym4, rym5, rym9, rym11, rym13. In contrast to barley yellow mosaic virus disease, no complete resistance to BYDV is known in the barley gene pool, but tolerant accessions have been identified and QTL for BYDV-tolerance have been detected on chromosomes 2HL and 3HL. The use of resistance and tolerance in barley breeding can be considerably improved today by molecular markers (RFLPs, RAPDs, AFLPs, SSRs, STSs, SNPs), as they facilitate (i) efficient genotyping and estimation of genetic diversity; (ii) reliable selection on a single plant level independent of symptom expression in the field (iii) acceleration of back crossing procedures; (iv) pyramiding of resistance genes; (v) detection of QTL and marker-based combination of positive alleles; and (vi) isolation of resistance genes via map-based cloning.  相似文献   

6.
Although a Chinese landrace of barley, Mokusekko 3, is completely resistant to all strains of Barley yellow mosaic virus (BaYMV) and Barley mild mosaic virus (BaMMV), and is known to have at least two resistant genes, rym1 and rym5, only rym5 has been utilized for BaYMV resistant barley breeding in Japan. In order to clarify the effect of rym1 on BaYMV and BaMMV, and to utilize the gene for resistant barley breeding, the susceptibilities of only rym1 carrying breeding lines against BaYMV and BaMMV were investigated. In the assessment of resistance to BaYMV-I, 341 F(2) populations derived from a cross between the resistant line Y4 with only rym1 and the susceptible cv Haruna Nijo shows that the segregation loosely fits a 1R:3S ratio (0.05 > P > 0.01), suggesting that the resistance is controlled by a single recessive gene, rym1. Further, none of the F(3) lines derived from the nine resistant F(2) plants showed any disease symptoms in the field infected by BaYMV-I. The same nine F(3) lines showed almost the same agronomic characters in the field infected by BaYMV-III as those in the uninfected field, apart from the symptom of showing numerous mosaics. This result indicates that the gene rym1 has an acceptable level of resistance to BaYMV-III. In the assessment of resistance to BaYMV-II, BaMMV-Ka1 and -Na1, an artificial infection method was adopted and the susceptibilities to those viruses were investigated. Although the control varieties, Ko A and Haruna Nijo, were infected with all of them, the rym1 gene carrying BC(2)F(3) lines were completely resistant to all strains. In summary, rym1 is completely resistant to BaYMV-I, -II, BaMMV-Ka1 and -Na1, and has an acceptable level of resistance to BaYMV-III. This study concludes with a discussion of the reason why the important resistance gene rym1 was eliminated along with resistant cultivars during breeding for resistance to BaYMV.  相似文献   

7.
Soil-borne barley yellow mosaic virus disease – caused by a complex of at least three viruses, i.e. Barley mild mosaic virus (BaMMV), Barley yellow mosaic virus (BaYMV) and BaYMV-2 – is one of the most important diseases of winter barley in Europe. The two genes rym4, effective against BaMMV and BaYMV, and rym5, additionally effective against BaYMV-2, comprise a complex locus on chromosome 3HL, which is of special importance to European barley breeding. To provide the genetic basis for positional cloning of the Rym4/Rym5 locus, two high-resolution maps were constructed based on co-dominant flanking markers (MWG838/Y57c10 - MWG010/Bmac29). Mapping at a resolution of about 0.05% rec., rym4 has been located 1.07% recombination distal of marker MWG838 and 1.21% recombination proximal to marker MWG010. Based on a population size of 3,884 F2 plants (0.013% recombination) the interval harbouring rym5 was delimited to 1.49±0.14% recombination. By testing segmental recombinant inbred lines (RILs) for reaction to the different viruses at a resolution of 0.05% rec. (rym4) and 0.019% rec. (rym5), no segregation concerning the reaction to the different viruses could be observed. AFLP-based marker saturation for rym4, using 932 PstI+2/MseI+3 primer combinations only resulted in three markers with the closest one linked at 0.9% recombination to the gene. Two of these markers detected epialleles arising from the differential cytosine methylation of PstI sites. Regarding rym5, profiling of 1,200 RAPD primers (about 18,000 loci) and 2,048 EcoRI+3/MseI+3 AFLP primer combinations (about 205,000 loci) resulted in one RAPD marker and seven AFLP markers tightly linked to the resistance gene. Flanking markers with the closest linkage to rym5 (0.05% and 0.88% recombination) were converted into STS markers. These markers provide a starting point for chromosomal walking and may be exploited in marker-assisted selection for virus resistance based on rym5.  相似文献   

8.
Barley yellow mosaic virus (BaYMV) is the causal agent of a soil-borne systemic mosaic disease on barley. It has been reported in Belgium since the 1980s. The control of this disease is managed almost exclusively through the use of resistant varieties. The resistance of most commercial barley cultivars grown in Europe is conferred mainly by a single recessive gene, rym4. This monogenic resistance provides immunity against BaYMV pathotype 1 and has been mapped on barley chromosome 3HL and shown to be caused by mutations in the translation initiation factor eIF4E. Another pathotype, BaYMV pathotype 2, which appeared in the late 1980s (in Belgium, in the early 1990s), is able to overcome the rym4-controlled resistance. Until recently, this pathotype remained confined to specific locations. During a systematic survey in 2003, mosaic symptoms were observed only on susceptible barley cultivars collected in Belgian fields. BaYMV was detected by ELISA and RT-PCR on the susceptible cultivars and only by RT-PCR on the resistant cultivars. In 2004, mosaic symptoms were observed on susceptible and resistant cultivars. BaYMV was detected by ELISA and RT-PCR on both cultivars. In addition to developing RT-PCR methods for detecting and identifying BaYMV and Barley mild mosaic virus (BaMMV), an RT-PCR targeting the VPg/NIa viral protein part of the genome, known to discriminate the two BaYMV pathotypes, was set up to accurately identify the pathotype(s) now present in Belgium. The sequences from the generated amplicons revealed the single nucleotide substitution resulting in an amino acid change from lysine to asparagine specific to BaYMV pathotype 2. The possible reasons for the change in the BaYMV pathotype situation in Belgium, such as climatic change or a progressive build-up of soil inoculum potential, will be discussed, as well as the use of eIF4E-based resistance.  相似文献   

9.
Ninety-three F(1)-derived doubled haploid (DH) lines from a complex breeders' cross involving the Japanese genotype 'Chikurin Ibaraki 1', which is resistant to barley mild mosaic virus (BaMMV) and two strains of barley yellow mosaic virus (BaYMV and BaYMV-2), three susceptible varieties ('Hamu', 'Julia' and a breeding line) and cv. 'Carola', which carries rym4 conferring resistance to BaMMV and BaYMV, were analysed for resistance to BaMMV, BaYMV and BaYMV-2. The DH lines fell into four phenotypic classes. In addition to completely resistant and susceptible genotypes, DHs were observed which were either resistant to BaMMV and BaYMV or to BaYMV and BaYMV-2. For BaMMV and BaYMV-2 resistance, segregation ratios approaching 1r:1s were observed, suggesting the presence of single resistance genes. In contrast, the segregation ratio for BaYMV fits a 3r:1s segregation ratio, suggesting the presence of two independently inherited genes. From the genetic analysis, we conclude that a resistance locus effective against BaYMV and BaYMV-2 originates from Chikurin Ibaraki 1 and segregates independently from the Carola-derived rym4 resistance that is effective against BaYMV and BaMMV. The BaMMV resistance in Chikurin Ibaraki 1 has probably been lost during population development. This hypothesis was tested using a simple-sequence repeat (SSR) marker (Bmac29) linked to rym4. All BaMMV-resistant DH lines supported amplification of the rym4-resistance diagnostic allele. To identify the genetic location of the Chikurin Ibaraki 1-derived resistance against BaYMV/BaYMV-2, bulked DNA samples were constructed from the four resistance classes, and bulked segregant analysis was performed using a genome-wide collection of SSRs. Differentiating alleles were observed at two linked SSRs on chromosome 5H. The location of this BaYMV/BaYMV-2 resistance locus was confirmed and further resolved by linkage analysis on the whole population using a total of five linked SSRs.  相似文献   

10.

Key message

The Ror1 gene was fine-mapped to the pericentric region of barley chromosome 1HL.

Abstract

Recessively inherited loss-of-function alleles of the barley (Hordeum vulgare) Mildew resistance locus o (Mlo) gene confer durable broad-spectrum disease resistance against the obligate biotrophic fungal powdery mildew pathogen Blumeria graminis f.sp. hordei. Previous genetic analyses revealed two barley genes, Ror1 and Ror2, that are Required for mlo-specified resistance and basal defence. While Ror2 was cloned and shown to encode a t-SNARE protein (syntaxin), the molecular nature or Ror1 remained elusive. Ror1 was previously mapped to the centromeric region of the long arm of barley chromosome 1H. Here, we narrowed the barley Ror1 interval to 0.18 cM and initiated a chromosome walk using barley yeast artificial chromosome (YAC) clones, next-generation DNA sequencing and fluorescence in situ hybridization. Two non-overlapping YAC contigs containing Ror1 flanking genes were identified. Despite a high degree of synteny observed between barley and the sequenced genomes of the grasses rice (Oryza sativa), Brachypodium distachyon and Sorghum bicolor across the wider chromosomal area, the genes in the YAC contigs showed extensive interspecific rearrangements in orientation and order. Consequently, the position of a Ror1 homolog in these species could not be precisely predicted, nor was a barley gene co-segregating with Ror1 identified. These factors have prevented the molecular identification of the Ror1 gene for the time being.  相似文献   

11.

Key Message

This is the first report on genetic analysis and genome mapping of major dominant genes for near non-host resistance to barley crown rust ( Puccinia coronata var. hordei ) in common wheat.

Abstract

Barley crown rust, caused by Puccinia coronata var. hordei, primarily occurs on barley (Hordeum vulgare L.) in the Great Plain regions of the United States. However, a few genotypes of common wheat (Triticum aestivum L.) were susceptible to this pathogen among 750 wheat accessions evaluated. To investigate the genetics of crown rust resistance in wheat, a susceptible winter wheat accession PI 350005 was used in crosses with two resistant wheat varieties, Chinese Spring and Chris. Analysis of F1 plants and F2 populations from these two crosses indicated that crown rust resistance is controlled by one and two dominant genes in Chris and Chinese Spring, respectively. To determine the chromosome location of the resistance gene Cr1 in Chris, a set of 21 monosomic lines derived from Chris was used as female parents to cross with a susceptible spring type selection (SSTS35) derived from the PI 350005/Chris cross. Monosomic analysis indicated that Cr1 is located on chromosome 5D in Chris and one of the crown rust resistance genes is located on chromosome 2D in Chinese Spring. The other gene in Chinese Spring is not on 5D and thus is different from Cr1. Molecular linkage analysis and QTL mapping using a population of 136 doubled haploid lines derived from Chris/PI 350005 further positioned Cr1 between SSR markers Xwmc41-2 and Xgdm63 located on the long arm of chromosome 5D. Our study suggests that near non-host resistance to crown rust in these different common wheat genotypes is simply inherited.  相似文献   

12.

Key message

Stripe rust resistance transferred from Thinopyrum intermedium into common wheat was controlled by a single dominant gene, which mapped to chromosome 1B near Yr26 and was designated YrL693.

Abstract

Stripe rust caused by Puccinia striiformis f. sp. tritici (Pst) is a highly destructive disease of wheat (Triticum aestivum). Stripe rust resistance was transferred from Thinopyrum intermedium to common wheat, and the resulting introgression line (L693) exhibited all-stage resistance to the widely virulent and predominant Chinese pathotypes CYR32 and CYR33 and to the new virulent pathotype V26. There was no cytological evidence that L693 had alien chromosomal segments from Th. intermedium. Genetic analysis of stripe rust resistance was performed by crossing L693 with the susceptible line L661. F1, F2, and F2:3 populations from reciprocal crosses showed that resistance was controlled by a single dominant gene. A total 479 F2:3 lines and 781 pairs of genomic simple sequence repeat (SSR) primers were employed to determine the chromosomal location of the resistance gene. The gene was linked to six publicly available and three recently developed wheat genomic SSR markers. The linked markers were localized to wheat chromosome 1B using Chinese Spring nulli-tetrasomic lines, and the resistance gene was localized to chromosome 1B based on SSR and wheat genomic information. A high-density genetic map was also produced. The pedigree, molecular marker data, and resistance response indicated that the stripe rust resistance gene in L693 is a novel gene, which was temporarily designated YrL693. The SSR markers that co-segregate with this gene (Xbarc187-1B, Xbarc187-1B-1, Xgwm18-1B, and Xgwm11-1B) have potential application in marker-assisted breeding of wheat, and YrL693 will be useful for broadening the genetic basis of stripe rust resistance in wheat.  相似文献   

13.

Key message

In two Spanish barley landraces with outstanding resistance to scald, the Rrs1 Rh4 locus was fine mapped including all known markers used in previous studies and closely linked markers were developed.

Abstract

Scald, caused by Rhynchosporium commune, is one of the most prevalent barley diseases worldwide. A search for new resistance sources revealed that Spanish landrace-derived lines SBCC145 and SBCC154 showed outstanding resistance to scald. They were crossed to susceptible cultivar Beatrix to create large DH-mapping populations of 522 and 416 DH lines that were scored for disease resistance in the greenhouse using two R. commune isolates. To ascertain the pattern of resistance, parents and reference barley lines with known scald resistance were phenotyped with a panel of differential R. commune isolates. Subpopulations were genotyped with the Illumina GoldenGate 1,536 SNP Assay and a large QTL in the centromeric region of chromosome 3H, known to harbour several scald resistance genes and/or alleles, was found in both populations. Five SNP markers closest to the QTL were converted into CAPS markers. These CAPS markers, together with informative SSR markers used in other scald studies, confirmed the presence of the Rrs1 locus. The panel of differential scald isolates indicated that the allele carried by both donors was Rrs1 Rh4 . The genetic distance between Rrs1 and its flanking markers was 1.2 cM (11_0010) proximally and 0.9 cM (11_0823) distally, which corresponds to a distance of just below 9 Mbp. The number and nature of scald resistance genes on chromosome 3H are discussed. The effective Rrs1 allele found and the closely linked markers developed are already useful tools for molecular breeding programs and provide a good step towards the identification of candidate genes.  相似文献   

14.

Key message

Loci conferring resistance to the highly virulent African stem rust race TTKSK were identified in advanced barley breeding germplasm and positioned to chromosomes 5H and 7H using an association mapping approach.

Abstract

African races of the stem rust pathogen (Puccinia graminis f. sp. tritici) are a serious threat to barley production worldwide because of their wide virulence. To discover and characterize resistance to African stem rust race TTKSK in US barley breeding germplasm, over 3,000 lines/cultivars were assessed for resistance at the seedling stage in the greenhouse and also the adult plant stage in the field in Kenya. Only 12 (0.3 %) and 64 (2.1 %) lines exhibited a resistance level comparable to the resistant control at the seedling and adult plant stage, respectively. To map quantitative trait loci (QTL) for resistance to race TTKSK, an association mapping approach was conducted, utilizing 3,072 single nucleotide polymorphism (SNP) markers. At the seedling stage, two neighboring SNP markers (0.8 cM apart) on chromosome 7H (11_21491 and 12_30528) were found significantly associated with resistance. The most significant one found was 12_30528; thus, the resistance QTL was named Rpg-qtl-7H-12_30528. At the adult plant stage, two SNP markers on chromosome 5H (11_11355 and 12_31427) were found significantly associated with resistance. This resistance QTL was named Rpg-qtl-5H-11_11355 for the most significant marker identified. Adult plant resistance is of paramount importance for stem rust. The marker associated with Rpg-qtl-5H-11_11355 for adult plant resistance explained only a small portion of the phenotypic variation (0.02); however, this QTL reduced disease severity up to 55.0 % under low disease pressure and up to 21.1 % under heavy disease pressure. SNP marker 11_11355 will be valuable for marker-assisted selection of adult plant stem rust resistance in barley breeding.  相似文献   

15.

Key message

This study demonstrates for the first time that resistance to different root lesion nematodes ( P. neglectus and P. penetrans ) is controlled by a common QTL. A major resistance QTL ( Rlnnp6H ) has been mapped to chromosome 6H using two independent barley populations.

Abstract

Root lesion nematodes (Pratylenchus spp.) are important pests in cereal production worldwide. We selected two doubled haploid populations of barley (Igri × Franka and Uschi × HHOR 3073) and infected them with Pratylenchus penetrans and Pratylenchus neglectus. Nematode multiplication rates were measured 7 or 10 weeks after infection. In both populations, continuous phenotypic variations for nematode multiplication rates were detected indicating a quantitative inheritance of resistance. In the Igri × Franka population, four P. penetrans resistance QTLs were mapped with 857 molecular markers on four linkage groups (2H, 5H, 6H and 7H). In the Uschi × HHOR 3073 population, eleven resistance QTLs (P. penetrans and P. neglectus) were mapped with 646 molecular markers on linkage groups 1H, 3H, 4H, 5H, 6H and 7H. A major resistance QTL named Rlnnp6H (LOD score 6.42–11.19) with a large phenotypic effect (27.5–36.6 %) for both pests was mapped in both populations to chromosome 6H. Another resistance QTL for both pests was mapped on linkage group 5H (Igri × Franka population). These data provide first evidence for common resistance mechanisms against different root lesion nematode species. The molecular markers are a powerful tool for the selection of resistant barley lines among segregating populations because resistance tests are time consuming and laborious.  相似文献   

16.
In winter and early spring 2004 unequivocal mosaic symptoms were detected for the first time in Germany on six plants of the barley cv. ‘Tokyo’ carrying the resistance gene rym5. By serological and electron microscopic investigations Barley mild mosaic virus (BaMMV) was identified in all plants and could be re‐transmitted to cv. ‘Tokyo’ as well as to additional cultivars carrying rym5. In contrast to this, genotypes carrying the resistance genes rym1 + rym5, Rym2, rym4, rym7, rym9, rym11, rym12, rym13, Rym14Hb, rym15 or Rym16Hb turned out to be resistant. Furthermore, the BaMMV isolates were not transmissible to different dicotyledonous species. Sequence analyses in the VPg coding region of RNA1 revealed differences to the known sequence of the original BaMMV isolate (BaMMV‐ASL1, AJ 242725) and also of a French pathotype (BaMMV‐Sil, AJ 544267, AJ 544268) which is also able to overcome the resistance mediated by rym5. At least in one location a spread of the area infested by this new strain was observed in 2004/2005 and 2005/2006.  相似文献   

17.
The Potyviridae are the largest family of plant-pathogenic viruses. Members of this family are the soil-borne bymoviruses barley yellow mosaic virus (BaYMV) and barley mild mosaic virus (BaMMV), which, upon infection of young winter barley seedlings in autumn, can cause yield losses as high as 50%. Resistance breeding plays a major role in coping with these pathogens. However, some viral strains have overcome the most widely used resistance. Thus, there is a need for novel sources of resistance. In ancient landraces and wild relatives of cultivated barley, alleles of the susceptibility factor PROTEIN DISULFIDE ISOMERASE LIKE 5–1 (PDIL5-1) were identified to confer resistance to all known strains of BaYMV and BaMMV. Although the gene is highly conserved throughout all eukaryotes, barley is thus far the only species for which PDIL5-1-based virus resistance has been reported. Whereas introgression by crossing to the European winter barley breeding pool is tedious, time-consuming and additionally associated with unwanted linkage drag, the present study exemplifies an approach to targeted mutagenesis of two barley cultivars employing CRISPR-associated endonuclease technology to induce site-directed mutations similar to those described for PDIL5-1 alleles that render certain landraces resistant. Homozygous primary mutants were produced in winter barley, and transgene-free homozygous M2 mutants were produced in spring barley. A variety of mutants carrying novel PDIL5-1 alleles were mechanically inoculated with BaMMV, by which all frameshift mutations and certain in-frame mutations were demonstrated to confer resistance to this virus. Under greenhouse conditions, virus-resistant mutants showed no adverse effects in terms of growth and yield.  相似文献   

18.

Key message

The Co - x anthracnose R gene of common bean was fine-mapped into a 58 kb region at one end of chromosome 1, where no canonical NB-LRR-encoding genes are present in G19833 genome sequence.

Abstract

Anthracnose, caused by the phytopathogenic fungus Colletotrichum lindemuthianum, is one of the most damaging diseases of common bean, Phaseolus vulgaris. Various resistance (R) genes, named Co-, conferring race-specific resistance to different strains of C. lindemuthianum have been identified. The Andean cultivar JaloEEP558 was reported to carry Co-x on chromosome 1, conferring resistance to the highly virulent strain 100. To fine map Co-x, 181 recombinant inbred lines derived from the cross between JaloEEP558 and BAT93 were genotyped with polymerase chain reaction (PCR)-based markers developed using the genome sequence of the Andean genotype G19833. Analysis of RILs carrying key recombination events positioned Co-x at one end of chromosome 1 to a 58 kb region of the G19833 genome sequence. Annotation of this target region revealed eight genes: three phosphoinositide-specific phospholipases C (PI-PLC), one zinc finger protein and four kinases, suggesting that Co-x is not a classical nucleotide-binding leucine-rich encoding gene. In addition, we identified and characterized the seven members of common bean PI-PLC gene family distributed into two clusters located at the ends of chromosomes 1 and 8. Co-x is not a member of Co-1 allelic series since these two genes are separated by at least 190 kb. Comparative analysis between soybean and common bean revealed that the Co-x syntenic region, located at one end of Glycine max chromosome 18, carries Rhg1, a major QTL contributing to soybean cyst nematode resistance. The PCR-based markers generated in this study should be useful in marker-assisted selection for pyramiding Co-x with other R genes.  相似文献   

19.

Key message

Genome-wide association studies of barley breeding populations identified candidate minor genes for pairing with the adult plant resistance gene Rph20 to provide stable leaf rust resistance across environments.

Abstract

Stable resistance to barley leaf rust (BLR, caused by Puccinia hordei) was evaluated across environments in barley breeding populations (BPs). To identify genomic regions that can be combined with Rph20 to improve adult plant resistance (APR), two BPs genotyped with the Diversity Arrays Technology genotyping-by-sequencing platform (DArT-seq) were examined for reaction to BLR at both seedling and adult growth stages in Australian environments. An integrated consensus map comprising both first- and second-generation DArT platforms was used to integrate QTL information across two additional BPs, providing a total of four interrelated BPs and 15 phenotypic data sets. This enabled identification of key loci underpinning BLR resistance. The APR gene Rph20 was the only active resistance region consistently detected across BPs. Of the QTL identified, RphQ27 on chromosome 6HL was considered the best candidate for pairing with Rph20. RphQ27 did not align or share proximity with known genes and was detected in three of the four BPs. The combination of RphQ27 and Rph20 was of low frequency in the breeding material; however, strong resistance responses were observed for the lines carrying this pairing. This suggests that the candidate minor gene RphQ27 can interact additively with Rph20 to provide stable resistance to BLR across diverse environments.
  相似文献   

20.

Key message

To find stable resistance using association mapping tools, QTL with major and minor effects on leaf rust reactions were identified in barley breeding lines by assessing seedlings and adult plants.”

Abstract

Three hundred and sixty (360) elite barley (Hordeum vulgare L.) breeding lines from the Northern Region Barley Breeding Program in Australia were genotyped with 3,244 polymorphic diversity arrays technology markers and the results used to map quantitative trait loci (QTL) conferring a reaction to leaf rust (Puccinia hordei Otth). The F3:5 (Stage 2) lines were derived or sourced from different geographic origins or hubs of international barley breeding ventures representing two breeding cycles (2009 and 2011 trials) and were evaluated across eight environments for infection type at both seedling and adult plant stages. Association mapping was performed using mean scores for disease reaction, accounting for family effects using the eigenvalues from a matrix of genotype correlations. In this study, 15 QTL were detected; 5 QTL co-located with catalogued leaf rust resistance genes (Rph1, Rph3/19, Rph8/14/15, Rph20, Rph21), 6 QTL aligned with previously reported genomic regions and 4 QTL (3 on chromosome 1H and 1 on 7H) were novel. The adult plant resistance gene Rph20 was identified across the majority of environments and pathotypes. The QTL detected in this study offer opportunities for breeding for more durable resistance to leaf rust through pyramiding multiple genomic regions via marker-assisted selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号