首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Landmark features of imprinted genes are differentially methylated domains (DMDs), in which one parental allele is methylated on CpG dinucleotides and the opposite allele is unmethylated. Genetic experiments in the mouse have shown that DMDs are required for the parent-specific expression of linked clusters of imprinted genes. To understand the mechanism whereby the differential methylation is established and maintained, we analyzed a series of transgenes containing DMD sequences and showed that imperfect tandem repeats from DMDs associated with the Snurf/Snrpn, Kcnq1, and Igf2r gene clusters govern transgene imprinting. For the Igf2r DMD the minimal imprinting signal is two unit copies of the tandem repeat. This imprinted transgene behaves identically to endogenous imprinted genes in Dnmt1o and Dnmt3L mutant mouse backgrounds. The primary function of the imprinting signal within the transgene DMD is to maintain, during embryogenesis and a critical period of genomic reprogramming, parent-specific DNA methylation states established in the germ line. This work advances our understanding of the imprinting mechanism by defining a genomic signal that dependably perpetuates an epigenetic state during postzygotic development.  相似文献   

3.
Mechanism of imprinting on mouse distal chromosome 7   总被引:3,自引:0,他引:3  
Genomic imprinting is an epigenetic mode of gene regulation that results in expression of the autosomal 'imprinted' genes from only a single allele, determined exclusively by parental origin. To date over 20 imprinted genes have been identified in mouse and man and these appear to lie in clusters in restricted regions on a subset of chromosomes. This may be a critical feature of imprinting suggesting a domain-type mode of regulation. Imprinted domains are replicated asynchronously, show sex-specific meiotic recombination frequencies and have CpG-rich regions that are differentially methylated, often associated with the imprinted genes themselves. Mouse distal chromosome 7 is one such domain, containing at least nine imprinted genes spanning over 1 Mb of DNA. For the maternally expressed p57Kip2 gene, passage through the female germline is essential to generate the active state, whereas passage through the male germline is needed to force the maternally expressed H19 gene into an inactive state. It is therefore possible that the mouse distal chromosome 7 imprinted domain is actually composed of two or more independently regulated subdomains.  相似文献   

4.
The mouse chromosome 7C, orthologous to the human 15q11–q13 has an imprinted domain, where most of the genes are expressed only from the paternal allele. The imprinted domain contains paternally expressed genes, Snurf/Snrpn, Ndn, Magel2, Mkrn3, and Frat3, C/D-box small nucleolar RNAs (snoRNAs), and the maternally expressed gene, Ube3a. Imprinted expression in this large (approximately 3–4 Mb) domain is coordinated by a bipartite cis-acting imprinting center (IC), located upstream of the Snurf/Snrpn gene. The molecular mechanism how IC regulates gene expression of the whole domain remains partially understood. Here we analyzed the relationship between imprinted gene expression and DNA methylation in the mouse chromosome 7C using DNA methyltransferase 1 (DNMT1)-null mutant embryos carrying Dnmt1ps alleles, which show global loss of DNA methylation and embryonic lethality. In the DNMT1-null embryos at embryonic day 9.5, the paternally expressed genes were biallelically expressed. Bisulfite DNA methylation analysis revealed loss of methylation on the maternal allele in the promoter regions of the genes. These results demonstrate that DNMT1 is necessary for monoallelic expression of the imprinted genes in the chromosome 7C domain, suggesting that DNA methylation in the secondary differentially methylated regions (DMRs), which are acquired during development serves primarily to control the imprinted expression from the maternal allele in the mouse chromosome 7C.  相似文献   

5.
Genomic imprinting is essential for development and growth and plays diverse roles in physiology and behaviour. Imprinted genes have traditionally been studied in isolation or in clusters with respect to cis-acting modes of gene regulation, both from a mechanistic and evolutionary point of view. Recent studies in mammals, however, reveal that imprinted genes are often co-regulated and are part of a gene network involved in the control of cellular proliferation and differentiation. Moreover, a subset of imprinted genes acts in trans on the expression of other imprinted genes. Numerous studies have modulated levels of imprinted gene expression to explore phenotypic and gene regulatory consequences. Increasingly, the applied genome-wide approaches highlight how perturbation of one imprinted gene may affect other maternally or paternally expressed genes. Here, we discuss these novel findings and consider evolutionary theories that offer a rationale for such intricate interactions among imprinted genes. An evolutionary view of these trans-regulatory effects provides a novel interpretation of the logic of gene networks within species and has implications for the origin of reproductive isolation between species.  相似文献   

6.
Genomic imprinting is widespread amongst mammals, but has not yet been found in birds. To gain a broader understanding of the origin and significance of imprinting, we have characterized three genes, from three separate imprinted clusters in eutherian mammals in the developing fetus and placenta of an Australian marsupial, the tammar wallaby Macropus eugenii. Imprinted gene orthologues of human and mouse p57(KIP2), IGF2 and PEG1/MEST genes were isolated. p57(KIP2) did not show stable monoallelic expression suggesting that it is not imprinted in marsupials. In contrast, there was paternal-specific expression of IGF2 in almost all tissues, but the biased paternal expression of IGF2 in the fetal head and placenta, demonstrates the occurrence of tissue-specific imprinting, as occurs in mice and humans. There was also paternal-biased expression of PEG1/MESTalpha. The differentially methylated region (DMR) of the human and mouse PEG1/MEST promoter is absent in the wallaby. These data confirm the existence of common imprinted regions in eutherians and marsupials during development, but suggest that the regulatory mechanisms that control imprinted gene expression differ between these two groups of mammals.  相似文献   

7.
8.
9.
The distal end of mouse chromosome 7 (Chr 7) contains a large cluster of imprinted genes. In this region two cis-acting imprinting centers, IC1 (H19 DMR) and IC2 (KvDMR1), define proximal and distal subdomains, respectively. To assess the functional independence of IC1 in the context of Chr 7, we developed a recombinase-mediated chromosome truncation strategy in embryonic stem cells and generated a terminal deletion allele, DelTel7, with a breakpoint in between the two subdomains. We obtained germ line transmission of the truncated Chr 7 and viable paternal heterozygotes, confirming the absence of developmentally required paternally expressed genes distal of Ins2. Conversely, maternal transmission of DelTel7 causes a midgestational lethality, consistent with loss of maternally expressed genes in the IC2 subdomain. Expression and DNA methylation analyses on DelTel7 heterozygotes demonstrate the independent imprinting of IC1 in absence of the entire IC2 subdomain. The evolutionarily conserved linkage between the subdomains is therefore not required for IC1 imprinting on Chr 7. Importantly, the developmental phenotype of maternal heterozygotes is rescued fully by a paternally inherited deletion of IC2. Thus, all the imprinted genes located in the region and required for normal development are silenced by an IC2-dependent mechanism on the paternal allele.  相似文献   

10.
11.
12.
Genomic imprinting is an epigenetic phenomenon by which a subset of genes is asymmetrically expressed in a parent-of-origin manner. However, little is known regarding the epigenetic behaviors of imprinted genes during human development. Here, we show dynamic epigenetic changes in imprinted genes in hESCs during in vitro differentiation into specialized cell types. Out of 9 imprinted genes with single nucleotide polymorphisms, mono-allelic expression for three imprinted genes (H19, KCNQ1OT1, and IPW), and bi- or partial-allelic expression for three imprinted genes (OSBPL5, PPP1R9A, and RTL1) were stably retained in H9-hESCs throughout differentiation, representing imprinting stability. Three imprinted genes (KCNK9, ATP10A, and SLC22A3) showed a loss and a gain of imprinting in a lineage-specific manner during differentiation. Changes in allelic expression of imprinted genes were observed in another hESC line during in vitro differentiation. These findings indicate that the allelic expression of imprinted genes may be vulnerable in a lineage-specific manner in human pluripotent stem cells during differentiation.  相似文献   

13.
Identification and characterisation of imprinted genes in the mouse.   总被引:3,自引:0,他引:3  
Imprinted genes are expressed specifically from one or other parental allele. Over 70 are now known, and about one-half of these are expressed from the paternal allele and one-half from the maternal allele. Most imprinted genes are clustered within imprinting regions of the mouse genome, regions which are associated with abnormal phenotypes when inherited uniparentally. Imprinted genes have been identified from surveys based on differential expression or differential methylation according to parental origin, as well as analyses of candidate genes, mutants and imprinted gene clusters. Many imprinted genes affect growth and development, and more than 25 per cent determine non-coding RNAs that may have a function in controlling imprinted gene expression.  相似文献   

14.
DNA methylation is a hallmark of genomic imprinting and differentially methylated regions (DMRs) are found near and in imprinted genes. Imprinted genes are expressed only from the maternal or paternal allele and their normal balance can be disrupted by uniparental disomy (UPD), the inheritance of both chromosomes of a chromosome pair exclusively from only either the mother or the father. Maternal UPD for chromosome 7 (matUPD7) results in Silver-Russell syndrome (SRS) with typical features and growth retardation, but no gene has been conclusively implicated in SRS. In order to identify novel DMRs and putative imprinted genes on chromosome 7, we analyzed eight matUPD7 patients, a segmental matUPD7q31-qter, a rare patUPD7 case and ten controls on the Infinium HumanMethylation450K BeadChip with 30 017 CpG methylation probes for chromosome 7. Genome-scale analysis showed highly significant clustering of DMRs only on chromosome 7, including the known imprinted loci GRB10, SGCE/PEG10, and PEG/MEST. We found ten novel DMRs on chromosome 7, two DMRs for the predicted imprinted genes HOXA4 and GLI3 and one for the disputed imprinted gene PON1. Quantitative RT-PCR on blood RNA samples comparing matUPD7, patUPD7, and controls showed differential expression for three genes with novel DMRs, HOXA4, GLI3, and SVOPL. Allele specific expression analysis confirmed maternal only expression of SVOPL and imprinting of HOXA4 was supported by monoallelic expression. These results present the first comprehensive map of parent-of-origin specific DMRs on human chromosome 7, suggesting many new imprinted sites.  相似文献   

15.
16.
17.
Several imprinted genes have been implicated in the regulation of placental function and embryonic growth. On distal mouse chromosome 7, two clusters of imprinted genes, each regulated by its own imprinting center (IC), are separated by a poorly characterized region of 280 kb (the IC1–IC2 interval). We previously generated a mouse line in which this IC1–IC2 interval has been deleted (Del7AI allele) and found that maternal inheritance of this allele results in low birth weights in newborns. Here we report that Del7AI causes a partial loss of Ascl2, a maternally expressed gene in the IC2 cluster, which when knocked out leads to embryonic lethality at midgestation due to a lack of spongiotrophoblast formation. The hypomorphic Ascl2 allele causes embryonic growth restriction and an associated placental phenotype characterized by a reduction in placental weight, reduced spongiotrophoblast population, absence of glycogen cells, and an expanded trophoblast giant cell layer. We also uncovered severe defects in the labyrinth layer of maternal mutants including increased production of the trilaminar labyrinth trophoblast cell types and a disorganized labyrinthine vasculature. Our results have important implications for our understanding of the role played by the spongiotrophoblast layer during placentation and show that regulation of the dosage of the imprinted gene Ascl2 can affect all three layers of the chorio-allantoic placenta.  相似文献   

18.
Genomic imprinting is an epigenetic mechanism that is important for the development and function of the extra-embryonic tissues in the mouse. Remarkably all the autosomal genes which were found to be imprinted in the trophoblast (placenta) only are active on the maternal and repressed on the paternal allele. It was shown for several of these genes that their paternal silencing is not dependent on DNA methylation, at least not in its somatic maintenance. Rather, recent studies in the mouse suggest that placenta-specific imprinting involves repressive histone modifications and non-coding RNAs. This mechanism of autosomal imprinting is similar to imprinted X chromosome inactivation in the placenta. Although the underlying reasons remain to be explored, this suggests that imprinting in the placenta and imprinted X inactivation are evolutionarily related.  相似文献   

19.
The Impact is an evolutionarily conserved gene subjected to genomic imprinting in mouse but not in human. A characteristic tandem repeat similar to those found in many other imprinted genes and an elevated expression level, both observed only for the mouse gene, are implicated in the evolution of imprinting, to which the repeat might have contributed via enhancement of the expression. To pursue the possibility further, we examined the correlation among the repeat, expression level, and imprinting of Impact in various mammals ranging from rodents, lagomorphs, carnivores, artiodactyls to primates. Intriguingly, rabbit Impact is abundantly expressed and imprinted like those of rodents, but is missing the repeat from its first intron like those of other mammals that express both alleles weakly. It thus seems that lineage-specific enhancement of gene expression rather than the tandem repeat per se played a critical role in the evolution of imprinting of Impact.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号