首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Due to extensive elaboration of the photoreceptor cilium to form the outer segment, axonemal transport (IFT) in photoreceptors is extraordinarily busy, and retinal degeneration is a component of many ciliopathies. Functional loss of heterotrimeric kinesin-2, a major anterograde IFT motor, causes mislocalized opsin, followed by rapid cell death. Here, we have analyzed the nature of protein mislocalization and the requirements for the death of kinesin-2-mutant rod photoreceptors. Quantitative immuno EM showed that opsin accumulates initially within the inner segment, and then in the plasma membrane. The light-activated movement of arrestin to the outer segment is also impaired, but this defect likely results secondarily from binding to mislocalized opsin. Unlike some other retinal degenerations, neither opsin–arrestin complexes nor photoactivation were necessary for cell loss. In contrast, reduced rod opsin expression provided enhanced rod and cone photoreceptor survival and function, as measured by photoreceptor cell counts, apoptosis assays, and ERG analysis. The cell death incurred by loss of kinesin-2 function was almost completely negated by Rho−/−. Our results indicate that mislocalization of opsin is a major cause of photoreceptor cell death from kinesin-2 dysfunction and demonstrate the importance of accumulating mislocalized protein per se, rather than specific signaling properties of opsin, stemming from photoactivation or arrestin binding.  相似文献   

3.
A quantitative analysis of photoreceptor properties was performed in the retina of the nocturnal deer mouse, Peromyscus maniculatus, using pigmented (wildtype) and albino animals. The aim was to establish whether the deer mouse is a more suitable model species than the house mouse for photoreceptor studies, and whether oculocutaneous albinism affects its photoreceptor properties. In retinal flatmounts, cone photoreceptors were identified by opsin immunostaining, and their numbers, spectral types, and distributions across the retina were determined. Rod photoreceptors were counted using differential interference contrast microscopy. Pigmented P. maniculatus have a rod-dominated retina with rod densities of about 450.000/mm2 and cone densities of 3000 - 6500/mm2. Two cone opsins, shortwave sensitive (S) and middle-to-longwave sensitive (M), are present and expressed in distinct cone types. Partial sequencing of the S opsin gene strongly supports UV sensitivity of the S cone visual pigment. The S cones constitute a 5-15% minority of the cones. Different from house mouse, S and M cone distributions do not have dorsoventral gradients, and coexpression of both opsins in single cones is exceptional (<2% of the cones). In albino P. maniculatus, rod densities are reduced by approximately 40% (270.000/mm2). Overall, cone density and the density of cones exclusively expressing S opsin are not significantly different from pigmented P. maniculatus. However, in albino retinas S opsin is coexpressed with M opsin in 60-90% of the cones and therefore the population of cones expressing only M opsin is significantly reduced to 5-25%. In conclusion, deer mouse cone properties largely conform to the general mammalian pattern, hence the deer mouse may be better suited than the house mouse for the study of certain basic cone properties, including the effects of albinism on cone opsin expression.  相似文献   

4.
5.
A homozygous mutation in STK38L in dogs impairs the late phase of photoreceptor development, and is followed by photoreceptor cell death (TUNEL) and proliferation (PCNA, PHH3) events that occur independently in different cells between 7-14 weeks of age. During this period, the outer nuclear layer (ONL) cell number is unchanged. The dividing cells are of photoreceptor origin, have rod opsin labeling, and do not label with markers specific for macrophages/microglia (CD18) or Müller cells (glutamine synthetase, PAX6). Nestin labeling is absent from the ONL although it labels the peripheral retina and ciliary marginal zone equally in normals and mutants. Cell proliferation is associated with increased cyclin A1 and LATS1 mRNA expression, but CRX protein expression is unchanged. Coincident with photoreceptor proliferation is a change in the photoreceptor population. Prior to cell death the photoreceptor mosaic is composed of L/M- and S-cones, and rods. After proliferation, both cone types remain, but the majority of rods are now hybrid photoreceptors that express rod opsin and, to a lesser extent, cone S-opsin, and lack NR2E3 expression. The hybrid photoreceptors renew their outer segments diffusely, a characteristic of cones. The results indicate the capacity for terminally differentiated, albeit mutant, photoreceptors to divide with mutations in this novel retinal degeneration gene.  相似文献   

6.
7.
11-cis-Retinol has previously been shown in physiological experiments to promote dark adaptation and recovery of photoresponsiveness of bleached salamander red cones but not of bleached salamander red rods. The purpose of this study was to evaluate the direct interaction of 11-cis-retinol with expressed human and salamander cone opsins, and to determine by microspectrophotometry pigment formation in isolated salamander photoreceptors. We show here in a cell-free system using incorporation of radioactive guanosine 5′-3-O-(thio)triphosphate into transducin as an index of activity, that 11-cis-retinol inactivates expressed salamander cone opsins, acting an inverse agonist. Similar results were obtained with expressed human red and green opsins. 11-cis-Retinol had no significant effect on the activity of human blue cone opsin. In contrast, 11-cis-retinol activates the expressed salamander and human red rod opsins, acting as an agonist. Using microspectrophotometry of salamander cone photoreceptors before and after bleaching and following subsequent treatment with 11-cis-retinol, we show that 11-cis-retinol promotes pigment formation. Pigment was not formed in salamander red rods or green rods (containing the same opsin as blue cones) treated under the same conditions. These results demonstrate that 11-cis-retinol is not a useful substrate for rod photoreceptors although it is for cone photoreceptors. These data support the premise that rods and cones have mechanisms for handling retinoids and regenerating visual pigment that are specific to photoreceptor type. These mechanisms are critical to providing regenerated pigments in a time scale required for the function of these two types of photoreceptors.11-cis-Retinol is the precursor to 11-cis-retinal, the 11-cis-aldehyde form of vitamin A and the chromophore that combines covalently with rod and cone opsin proteins to form visual pigments. 11-cis-Retinal is consumed during visual signaling, and its continual synthesis is required. Photon absorption by the visual pigments causes the isomerization of its chromophore to the all-trans configuration. This initiates two processes critical for vision: activation of the photoreceptor cell and the eventual recovery of the original photosensitivity of the cells, requiring regeneration of the visual pigments. As cones are used for bright light vision, these two processes must work more rapidly in cones than in rods and thus cones have a higher requirement of 11-cis-retinoids as suggested by Rushton (1, 2).Photoreceptor activation begins with photoisomerization of the chromophore within the visual pigment. This results in a subsequent conformational change of the protein part of the visual pigment that is able to activate its G protein transducin, which in turn activates a PDE that lowers the concentration of cGMP and closes cGMP-gated ion channels. These steps comprise the visual signal transduction cascade (see Ref. 3 for review).The visual cycle involves regeneration of the visual pigment, which ultimately deactivates the protein and accomplishes the recovery of the photosensitivity of the photoreceptor cell. Classically, this process involves both the photoreceptor cell and the retinal pigment epithelium (RPE).4 After photoisomerization of the chromophore and formation of the active visual pigment, all-trans-retinal is released from the opsin and reduced to all-trans-retinol, which is then transported to the RPE where it is isomerized to 11-cis-retinol through a number of steps. In the RPE, 11-cis-retinol is oxidized to the aldehyde form, which is transported back to the photoreceptor cell and can be directly used by all of the opsins to regenerate an inactive pigment ready for photoactivation. The details of this model have been extensively reviewed (4, 5). Alternatively, recent work suggests that cones have an additional source of 11-cis-retinoids from Müller cells (68). Like the RPE cells, Müller cells have been shown to be able to convert all-trans-retinol to 11-cis-retinol (6). Unlike in the RPE cells, 11-cis-retinol is not oxidized to 11-cis-retinal in Müller cells.Jones et al. (9) demonstrated that administration of 11-cis-retinol to bleached salamander red cones could restore photosensitivity. A logical conclusion was that red cones were able to oxidize 11-cis-retinol to the aldehyde and regenerate visual pigments although noncovalent binding of 11-cis-retinol to red cone opsins generating a light-sensitive complex could not be excluded. On the other hand, 11-cis-retinol does not restore photosensitivity to bleached salamander rod cells but appears to directly activate the cells (9, 10). The data suggested that the rods were not able to oxidize 11-cis-retinol, but that the retinol itself could activate the signal transduction cascade, and indeed we recently demonstrated that 11-cis-retinol acts as an agonist to expressed bovine rod opsin (11). Our aim here was to study the action of 11-cis-retinol on cone opsins and cone photoreceptor cells to determine the efficacy of an alternate visual cycle for cones.The photoreceptor cells used in this study are from tiger salamander, and the expressed opsins used for biochemical experiments are those from salamander and human. Photoreceptor cells are generally identified by cell morphology and the type of opsin it contains that can be further complicated by the findings that some cone cells have multiple opsins (12, 13). Recently genetic analysis has determined that opsins fall into five classes (reviewed in Refs. 14 and 15). We have studied opsins falling into four of these classes and use common color-derived names for the opsins and photoreceptor cells. The classic rod cells used for scotopic vision contain rhodopsin, the visual pigment for the rod opsin (RH1 opsin) and appeared red and thus have been designated as red rods. Some species such as salamanders have an additional rod cell whose photosensitivity is blue-shifted from that of the red rod and thus designated as green rods. In the tiger salamander, the green rods contain the identical opsin (SWS2 opsin) found in blue cones (16). The human blue cones contain an opsin from a different class (SWS1 opsin), which is homologous to the salamander UV cone opsin. The human red and green and salamander red cone opsins all belong to the same class of opsins (M/LWS opsins). Absorption properties of visual pigments are further modulated in some animals including the tiger salamander by use of 11-cis-retinal with an additional double bond (3,4-dehydro or A2 11-cis-retinal) resulting in red-shifted absorbance from pigments containing 11-cis-retinal (A1 11-cis-retinal).We show here that 11-cis-retinol is not an agonist to cone opsins and does not itself generate a light-sensitive opsin. We further show using microspectrophotometry that both red and blue salamander cone cells regenerate visual pigments from 11-cis-retinol, whereas pigments could not be regenerated with 11-cis-retinol in bleached salamander red and green rods even though the latter contains the same opsin as the salamander blue cone. Thus, rods and cones have mechanisms for handling retinoids and regenerating visual pigment that are specific to photoreceptor type, and these mechanisms are critical to providing regenerated pigments in a time scale required for the function of these two types of photoreceptors.  相似文献   

8.
9.
In this study, we addressed the temporal sequence of photoreceptor fate determination in Xenopus laevis by examining a number of key events during early cone and rod development. We compared the relative timing and spatial pattern of cone and rod specification using a number of cell type-specific markers, including probes to a long wavelength-sensitive opsin which is expressed by the major cone subtype. Our results show that cones are initially more numerous, and can arise in less mature regions of the retina than rods, although both types of photoreceptors begin to express their respective opsins at about the same time. We applied these markers to an assay of cellular determination to identify the stages of embryonic development at which the earliest photoreceptor fates are induced in vivo. The relative birth order of the major cone and rod subtypes was revealed by simultaneous labeling with markers of cell proliferation and terminal differentiation. Although there is much temporal overlap between the periods of cone and rod genesis and determination in Xenopus, we could discern that the earliest cones are both born and determined before the first rods. Thus, even in the rapidly developing retina of Xenopus, photoreceptors achieve their identities in a sequential fashion, suggesting that the inductive cues which determine specific photoreceptor fates may also arise sequentially during development. © 1998 John Wiley & Sons, Inc. J Neurobiol 35: 227–244, 1998  相似文献   

10.
Cone visual pigments   总被引:1,自引:0,他引:1  
Cone visual pigments are visual opsins that are present in vertebrate cone photoreceptor cells and act as photoreceptor molecules responsible for photopic vision. Like the rod visual pigment rhodopsin, which is responsible for scotopic vision, cone visual pigments contain the chromophore 11-cis-retinal, which undergoes cis–trans isomerization resulting in the induction of conformational changes of the protein moiety to form a G protein-activating state. There are multiple types of cone visual pigments with different absorption maxima, which are the molecular basis of color discrimination in animals. Cone visual pigments form a phylogenetic sister group with non-visual opsin groups such as pinopsin, VA opsin, parapinopsin and parietopsin groups. Cone visual pigments diverged into four groups with different absorption maxima, and the rhodopsin group diverged from one of the four groups of cone visual pigments. The photochemical behavior of cone visual pigments is similar to that of pinopsin but considerably different from those of other non-visual opsins. G protein activation efficiency of cone visual pigments is also comparable to that of pinopsin but higher than that of the other non-visual opsins. Recent measurements with sufficient time-resolution demonstrated that G protein activation efficiency of cone visual pigments is lower than that of rhodopsin, which is one of the molecular bases for the lower amplification of cones compared to rods. In this review, the uniqueness of cone visual pigments is shown by comparison of their molecular properties with those of non-visual opsins and rhodopsin. This article is part of a Special Issue entitled: Retinal Proteins — You can teach an old dog new tricks.  相似文献   

11.
12.
Phototransduction in vertebrate rod and cone photoreceptor cells involves G protein-mediated light stimulation of cGMP hydrolysis. Enzymes of the cGMP hydrolysis cascades of rods and cones are products of different genes. Three different classes of cones in the human retina are maximally sensitive to either blue, green, or red light. Distinct opsin genes are expressed in each type of cone. The distribution of cone types in human retina was determined using anti-peptide antibodies that recognize specific amino acid sequences in green/red opsin and blue opsin. These antibodies together with an anti-peptide antibody against Tc alpha were used in double labeling experiments to demonstrate the presence of the Tc alpha peptide in all types of cones. cDNA clones corresponding to human rod and cone transducin alpha subunit (Tr alpha and Tc alpha) genes were isolated. Southern blot analyses of human genomic DNA suggest that there is only one rod T alpha gene but more than one cone T alpha gene. The multiple Tc alpha genes could be closely related genes or different Tc alpha alleles, or one could be a pseudogene.  相似文献   

13.
We have investigated the time course of rod photoreceptor determination in the goldfish retina. Rod precursor cells located in the outer nuclear layer of the mature retina continuously generate rod photoreceptors. In this study, we asked when rod precursor cells begin to express opsin, which would signal their commitment to the rod pathway of differentiation. There are three possibilities: a rod precursor could express opsin while still mitotic, at or shortly after the terminal mitosis but before differentiation, or during differentiation. We used immunocytochemistry with antibodies against bromodeoxyuridine, BrdU (a thymidine analogue) and against opsin to determine when during the mitotic history of a cell the expression of opsin first occurred, taking a double labelled cell to be evidence of commitment to the rod cell fate. We found that the first double labelled cells appeared at 4 days after BrdU injection. The number of double labelled cells increased to peak at 10 days, and then fell. These results support the hypothesis that dividing rod precursor cells are probably multipotent stem cells not committed to the rod cell fate.  相似文献   

14.
We have previously shown that postnatal expression of the viral oncoprotein SV40 T antigen in rod photoreceptors (transgene MOT1), at a time when retinal cells have withdrawn from the mitotic cycle, leads to photoreceptor cell death (Al-Ubaidi et al., 1992. Proc. Natl. Acad. Sci. USA. 89:1194-1198). To study the effect of the specificity of the promoter, we replaced the mouse opsin promoter in MOT1 by a 1.3-kb promoter fragment of the human IRBP gene which is expressed in both rod and cone photoreceptors during embryonic development. The resulting construct, termed HIT1, was injected into mouse embryos and five transgenic mice lines were established. Mice heterozygous for HIT1 exhibited early bilateral retinal and brain tumors with varying degrees of incidence. Histopathological examination of the brain and eyes of three of the families showed typical primitive neuroectodermal tumors. In some of the bilateral retinal tumors, peculiar rosettes were observed, which were different from the Flexner-Wintersteiner rosettes typically associated with human retinoblastomas. The ocular and cerebral tumors, however, contained Homer-Wright rosettes, and showed varying degrees of immunoreactivity to antibodies against the neuronal specific antigens, synaptophysin and Leu7, but not to antibodies against photoreceptor specific proteins. Taken together, the results indicate that the specificity of the promoter used for T antigen and/or the time of onset of transgene expression determines the fate of photoreceptor cells expressing T antigen.  相似文献   

15.
neuroD is a member of the family of proneural genes, which function to regulate the cell cycle, cell fate determination and cellular differentiation. In the retinas of larval and adult teleosts, neuroD is expressed in two populations of post-mitotic cells, a subset of amacrine cells and nascent cone photoreceptors, and proliferating cells in the lineages that give rise exclusively to rod and cone photoreceptors. Based on previous studies of NeuroD function in vitro and the cellular pattern of neuroD expression in the zebrafish retina, we hypothesized that within the mitotic photoreceptor lineages NeuroD selectively regulates aspects of the cell cycle. To test this hypothesis, gain and loss-of-function approaches were employed, relying on the inducible expression of a NeuroDEGFP fusion protein and morpholino oligonucleotides to inhibit protein translation, respectively. Conditional expression of neuroD causes cells to withdraw from the cell cycle, upregulate the expression of the cell cycle inhibitors, p27 and p57, and downregulate the cell cycle progression factors, Cyclin B1, Cyclin D1, and Cyclin E2. In the absence of NeuroD, cells specific for the rod and cone photoreceptor lineage fail to exit the cell cycle, and the number of cells expressing Cyclin D1 is increased. When expression is ectopically induced in multipotent progenitors, neuroD promotes the genesis of rod photoreceptors and inhibits the genesis of Müller glia. These data show that in the teleost retina NeuroD plays a fundamental role in photoreceptor genesis by regulating mechanisms that promote rod and cone progenitors to withdraw from the cell cycle. This is the first in vivo demonstration in the retina of cell cycle regulation by NeuroD.  相似文献   

16.
L-Glutamate, a putative photoreceptor cell neurotransmitter, causes thinning of the inner layers of the retina and has been used for preparing biologically fractionated photoreceptor cells. However, it is possible that absence of the inner retinal layers may affect the remaining retina, and/or glutamate may directly affect photoreceptor cells. We evaluated quantitatively the effects of L-glutamate on the developing photoreceptor cells by measuring the rod photoreceptor cell-specific protein, opsin. We purified rat rhodopsin and used it as the standard for measuring opsin content of rat retinas with competitive enzyme-linked immunosorbent assay. Various concentrations of glutamate were injected into 7-day-old rats, and the effects of the amino acid concentration on opsin expression were determined on postnatal day 14. Inner layers of the retina degenerated when 10 microliters or 15 microliters of 2.4 M glutamate/gram body weight was administered subcutaneously. Opsin content of these glutamate-treated retinas decreased significantly compared with control retinas. We administered glutamate to rats at various stages of development and determined the effects by light microscopy on postnatal day 14. The administration of glutamate resulted in no degeneration of the inner retina if injected on postnatal day 1 or 2, degeneration of the inner retina between day 3 to 7, and again, no degeneration after postnatal day 13. Opsin content decreased significantly when glutamate was administered between postnatal day 1 to 7, but not after day 13, the day the blood-retinal barrier seems to reach maturity. Our findings indicate that systemic administration of L-glutamate affects the expression of opsin in the developing rod photoreceptor cells.  相似文献   

17.
Mutations in the RPE65 gene are associated with autosomal recessive early onset severe retinal dystrophy. Morphological and functional studies indicate early and dramatic loss of rod photoreceptors and early loss of S-cone function, while L and M cones remain initially functional. The Swedish Briard dog is a naturally occurring animal model for this disease. Detailed information about rod and cone reaction to RPE65 deficiency in this model with regard to their location within the retina remains limited. The aim of this study was to analyze morphological parameters of cone and rod viability in young adult RPE65 deficient dogs in different parts of the retina in order to shed light on local disparities in this disease. In retinae of affected dogs, sprouting of rod bipolar cell dendrites and horizontal cell processes was dramatically increased in the inferior peripheral part of affected retinae, while central inferior and both superior parts did not display significantly increased sprouting. This observation was correlated with photoreceptor cell layer thickness. Interestingly, while L/M cone opsin expression was uniformly reduced both in the superior and inferior part of the retina, S-cone opsin expression loss was less severe in the inferior part of the retina. In summary, in retinae of young adult RPE65 deficient dogs, the degree of rod bipolar and horizontal cell sprouting as well as of S-cone opsin expression depends on the location. As the human retinal pigment epithelium (RPE) is pigmented similar to the RPE in the inferior part of the canine retina, and the kinetics of photoreceptor degeneration in humans seems to be similar to what has been observed in the inferior peripheral retina in dogs, this area should be studied in future gene therapy experiments in this model.  相似文献   

18.
Achromatopsia is a progressive autosomal recessive retinal disease characterized by early loss of cone photoreceptors and later rod photoreceptor loss. In most cases, mutations have been identified in CNGA3, CNGB3, GNAT2, PDE6C or PDE6H genes. Owing to this genetic heterogeneity, mutation-independent therapeutic schemes aimed at preventing cone cell death are very attractive treatment strategies. In pde6cw59 mutant zebrafish, cone photoreceptors expressed high levels of receptor-interacting protein kinase 1 (RIP1) and receptor-interacting protein kinase 3 (RIP3) kinases, key regulators of necroptotic cell death. In contrast, rod photoreceptor cells were alternatively immunopositive for caspase-3 indicating activation of caspase-dependent apoptosis in these cells. Morpholino gene knockdown of rip3 in pde6cw59 embryos rescued the dying cone photoreceptors by inhibiting the formation of reactive oxygen species and by inhibiting second-order neuron remodelling in the inner retina. In rip3 morphant larvae, visual function was restored in the cones by upregulation of the rod phosphodiesterase genes (pde6a and pde6b), compensating for the lack of cone pde6c suggesting that cones are able to adapt to their local environment. Furthermore, we demonstrated through pharmacological inhibition of RIP1 and RIP3 activity that cone cell death was also delayed. Collectively, these results demonstrate that the underlying mechanism of cone cell death in the pde6cw59 mutant retina is through necroptosis, whereas rod photoreceptor bystander death occurs through a caspase-dependent mechanism. This suggests that targeting the RIP kinase signalling pathway could be an effective therapeutic intervention in retinal degeneration patients. As bystander cell death is an important feature of many retinal diseases, combinatorial approaches targeting different cell death pathways may evolve as an important general principle in treatment.  相似文献   

19.
Rhodopsin, the visual pigment mediating vision under dim light, is composed of the apoprotein opsin and the chromophore ligand 11-cis-retinal. A P23H mutation in the opsin gene is one of the most prevalent causes of the human blinding disease, autosomal dominant retinitis pigmentosa. Although P23H cultured cell and transgenic animal models have been developed, there remains controversy over whether they fully mimic the human phenotype; and the exact mechanism by which this mutation leads to photoreceptor cell degeneration remains unknown. By generating P23H opsin knock-in mice, we found that the P23H protein was inadequately glycosylated with levels 1-10% that of wild type opsin. Moreover, the P23H protein failed to accumulate in rod photoreceptor cell endoplasmic reticulum but instead disrupted rod photoreceptor disks. Genetically engineered P23H mice lacking the chromophore showed accelerated photoreceptor cell degeneration. These results indicate that most synthesized P23H protein is degraded, and its retinal cytotoxicity is enhanced by lack of the 11-cis-retinal chromophore during rod outer segment development.  相似文献   

20.
Mutations in the photoreceptor cell-specific nuclear receptor gene Nr2e3 increased the number of S-cone photoreceptors in human and murine retinas and led to retinal degeneration that involved photoreceptor and non-photoreceptor cells. The mechanisms underlying these complex phenotypes remain unclear. In the hope of understanding the precise role of Nr2e3 in photoreceptor cell fate determination and differentiation, we generated a line of Nr2e3 knockout zebrafish using CRISPR technology. In these Nr2e3-null animals, rod precursors undergo terminal mitoses but fail to differentiate as rods. Rod-specific genes are not expressed and the outer segment (OS) fails to form. Formation and differentiation of cone photoreceptors is normal. Specifically, there is no increase in the number of UV-cone or S-cone photoreceptors. Laminated retinal structure is maintained. After normal development, L-/M-cones selectively degenerate, with progressive shortening of OS that starts at age 1 month. The amount of cone phototransduction proteins is concomitantly reduced, whereas UV- and S-cones have normal OS lengths even at age 10 months. In vitro studies show Nr2e3 synergizes with Crx and Nrl to enhance rhodopsin gene expression. Nr2e3 does not affect cone opsin expression. Our results extend the knowledge of Nr2e3's roles and have specific implications for the interpretation of the phenotypes observed in human and murine retinas. Furthermore, our model may offer new opportunities in finding treatments for enhanced S-cone syndrome (ESCS) and other retinal degenerative diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号