首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A model for neuronal oscillations in the visual cortex   总被引:3,自引:0,他引:3  
  相似文献   

2.
Summary To investigate scene segmentation in the visual system we present a model of two reciprocally connected visual areas comprising spiking neurons. The peripheral area P is modeled similar to the primary visual cortex, while the central area C is modeled as an associative memory representing stimulus objects according to Hebbian learning. Without feedback from area C, spikes corresponding to stimulus representations in P are synchronized only locally (slow state). Feedback from C can induce fast oscillations and an increase of synchronization ranges (fast state). Presenting a superposition of several stimulus objects, scene segmentation happens on a time scale of hundreds of milliseconds by alternating epochs of the slow and fast state, where neurons representing the same object are simultaneously in the fast state. We relate our simulation results to various phenomena observed in neurophysiological experiments, such as stimulus-dependent synchronization of fast oscillations, synchronization on different time scales, ongoing activity, and attention-dependent neural activity.  相似文献   

3.
Orientation sensitive properties of extrastriate area 21a neurons were investigated. Special attention was paid to the qualitative characteristics of neuron responses to the different orientations of visual stimulus motion across neuron classical receptive fields (CRF). The results of experiments have shown that a group of neurons (31%) in area 21a with specialized responses to moving visual stimuli changed their direction selective (DS) characteristics depending on the orientation of the stimulus movement. Some neurons reveal an abrupt drop of the direction sensitivity index (DI) to certain orientation (58%), and some show significant increase of DI at one of applied orientations of stimulus motion (22%). Detailed investigation of response patterns of non-directional neurons to different orientations of stimulus motion have revealed clear-cut qualitative differences, such as different regularities in the distribution of inter-peak inhibitory intervals in the response pattern in dependence of the orientation of stimulus motion. The investigation of neuron CRF stationary functional organization did not reveal correlations between RF's spatial functional organization, and that of qualitative modulations of neuron response patterns. A suggestion was put forward, that visual information central processing of orientation discrimination is a complex integrative process that includes quantitative as well as qualitative transformations of neuron activity.  相似文献   

4.
The inhomogeneous distribution of the receptive fields of cortical neurons influences the cortical representation of the orientation of short lines seen in visual images. We construct a model of the response of populations of neurons in the human primary visual cortex by combining realistic response properties of individual neurons and cortical maps of orientation and location preferences. The encoding error, which characterizes the difference between the parameters of a visual stimulus and their cortical representation, is calculated using Fisher information as the square root of the variance of a statistically efficient estimator. The error of encoding orientation varies considerably with the location and orientation of the short line stimulus as modulated by the underlying orientation preference map. The average encoding error depends only weakly on the structure of the orientation preference map and is much smaller than the human error of estimating orientation measured psychophysically. From this comparison we conclude that the actual mechanism of orientation perception does not make efficient use of all the information available in the neuronal responses and that it is the decoding of visual information from neuronal responses that limits psychophysical performance. Action Editor: Terrence Sejnowski  相似文献   

5.
Many neurons in mammalian primary visual cortex have properties such as sharp tuning for contour orientation, strong selectivity for motion direction, and insensitivity to stimulus polarity, that are not shared with their sub-cortical counterparts. Successful models have been developed for a number of these properties but in one case, direction selectivity, there is no consensus about underlying mechanisms. We here define a model that accounts for many of the empirical observations concerning direction selectivity. The model describes a single column of cat primary visual cortex and comprises a series of processing stages. Each neuron in the first cortical stage receives input from a small number of on-centre and off-centre relay cells in the lateral geniculate nucleus. Consistent with recent physiological evidence, the off-centre inputs to cortex precede the on-centre inputs by a small (~4 ms) interval, and it is this difference that confers direction selectivity on model neurons. We show that the resulting model successfully matches the following empirical data: the proportion of cells that are direction selective; tilted spatiotemporal receptive fields; phase advance in the response to a stationary contrast-reversing grating stepped across the receptive field. The model also accounts for several other fundamental properties. Receptive fields have elongated subregions, orientation selectivity is strong, and the distribution of orientation tuning bandwidth across neurons is similar to that seen in the laboratory. Finally, neurons in the first stage have properties corresponding to simple cells, and more complex-like cells emerge in later stages. The results therefore show that a simple feed-forward model can account for a number of the fundamental properties of primary visual cortex.  相似文献   

6.
Drifting gratings can modulate the activity of visual neurons at the temporal frequency of the stimulus. In order to characterize the temporal frequency modulation in the cat’s ascending tectofugal visual system, we recorded the activity of single neurons in the superior colliculus, the suprageniculate nucleus, and the anterior ectosylvian cortex during visual stimulation with drifting sine-wave gratings. In response to such stimuli, neurons in each structure showed an increase in firing rate and/or oscillatory modulated firing at the temporal frequency of the stimulus (phase sensitivity). To obtain a more complete characterization of the neural responses in spatiotemporal frequency domain, we analyzed the mean firing rate and the strength of the oscillatory modulations measured by the standardized Fourier component of the response at the temporal frequency of the stimulus. We show that the spatiotemporal stimulus parameters that elicit maximal oscillations often differ from those that elicit a maximal discharge rate. Furthermore, the temporal modulation and discharge-rate spectral receptive fields often do not overlap, suggesting that the detection range for visual stimuli provided jointly by modulated and unmodulated response components is larger than the range provided by a one response component.  相似文献   

7.
A hypercolumn of the visual cortex is a functional unit formed of neighboring columns whose neurons respond to a stimulus of particular orientation. The function of the hypercolumn is to amplify the orientation tuning of visually evoked responses. According to the conventional simple model of a hypercolumn, neuronal populations with different orientation preferences are distributed on a ring. Every population is described by a firing rate (FR) model. To determine the limitations of the FR-ring model, it was compared with a more detailed ring model, which takes into account the distribution of neurons of each population according to their voltage values. In the case of leaky integrate-and-fire neurons, every neuronal population is described by the Fokker-Planck equation (FPE). The mapping of parameters was obtained. The simulations revealed differences in the behavior of the two models. The FPE-based model reacts faster to a change in stimulus orientation. The FPE ring model gives a steady-state solution in the form of waves of activity traveling on the ring, whereas the FR ring model presents amplitude instability for the same parameter set. The FPE ring model reproduces the characteristic effects of the FR ring model: virtual rotation and symmetry breaking.  相似文献   

8.
Yu J  Ferster D 《Neuron》2010,68(6):1187-1201
When the primary visual cortex (V1) is activated by sensory stimulation, what is the temporal correlation between the synaptic inputs to nearby neurons? This question underlies the origin of correlated activity, the mechanism of how visually evoked activity emerges and propagates in cortical circuits, and the relationship between spontaneous and evoked activity. Here, we have recorded membrane potential from pairs of V1 neurons in anesthetized cats and found that visual stimulation suppressed low-frequency membrane potential synchrony (0-10 Hz), and often increased synchrony at high frequencies (20-80 Hz). The increase in high-frequency synchrony occurred for neurons with similar orientation preferences and for neurons with different orientation preferences and occurred for a wide range of stimulus orientations. Thus, while only a subset of neurons spike in response to visual stimulation, a far larger proportion of the circuit is correlated with spiking activity through subthreshold, high-frequency synchronous activity that crosses functional domains.  相似文献   

9.
We explore a computationally efficient method of simulating realistic networks of neurons introduced by Knight, Manin, and Sirovich (1996) in which integrate-and-fire neurons are grouped into large populations of similar neurons. For each population, we form a probability density that represents the distribution of neurons over all possible states. The populations are coupled via stochastic synapses in which the conductance of a neuron is modulated according to the firing rates of its presynaptic populations. The evolution equation for each of these probability densities is a partial differential-integral equation, which we solve numerically. Results obtained for several example networks are tested against conventional computations for groups of individual neurons.We apply this approach to modeling orientation tuning in the visual cortex. Our population density model is based on the recurrent feedback model of a hypercolumn in cat visual cortex of Somers et al. (1995). We simulate the response to oriented flashed bars. As in the Somers model, a weak orientation bias provided by feed-forward lateral geniculate input is transformed by intracortical circuitry into sharper orientation tuning that is independent of stimulus contrast.The population density approach appears to be a viable method for simulating large neural networks. Its computational efficiency overcomes some of the restrictions imposed by computation time in individual neuron simulations, allowing one to build more complex networks and to explore parameter space more easily. The method produces smooth rate functions with one pass of the stimulus and does not require signal averaging. At the same time, this model captures the dynamics of single-neuron activity that are missed in simple firing-rate models.  相似文献   

10.
A neural model is constructed based on the structure of a visual orientation hypercolumn in mammalian striate cortex. It is then assumed that the perceived orientation of visual contours is determined by the pattern of neuronal activity across orientation columns. Using statistical estimation theory, limits on the precision of orientation estimation and discrimination are calculated. These limits are functions of single unit response properties such as orientation tuning width, response amplitude and response variability, as well as the degree of organization in the neural network. It is shown that a network of modest size, consisting of broadly orientation selective units, can reliably discriminate orientation with a precision equivalent to human performance. Of the various network parameters, the discrimination threshold depends most critically on the number of cells in the hypercolumn. The form of the dependence on cell number correctly predicts the results of psychophysical studies of orientation discrimination. The model system's performance is also consistent with psychophysical data in two situations in which human performance is not optimal. First, interference with orientation discrimination occurs when multiple stimuli activate cells in the same hypercolumn. Second, systematic errors in the estimation of orientation can occur when a stimulus is composed of intersecting lines. The results demonstrate that it is possible to relate neural activity to visual performance by an examination of the pattern of activity across orientation columns. This provides support for the hypothesis that perceived orientation is determined by the distributed pattern of neural activity. The results also encourage the view of neural activity. The results also are determined by the responses of many neurons rather than the sensitivity of individual cells.  相似文献   

11.
Here we report the first quantitative analysis of spiking activity in human early visual cortex. We recorded multi-unit activity from two electrodes in area V2/V3 of a human patient implanted with depth electrodes as part of her treatment for epilepsy. We observed well-localized multi-unit receptive fields with tunings for contrast, orientation, spatial frequency, and size, similar to those reported in the macaque. We also observed pronounced gamma oscillations in the local-field potential that could be used to estimate the underlying spiking response properties. Spiking responses were modulated by visual context and attention. We observed orientation-tuned surround suppression: responses were suppressed by image regions with a uniform orientation and enhanced by orientation contrast. Additionally, responses were enhanced on regions that perceptually segregated from the background, indicating that neurons in the human visual cortex are sensitive to figure-ground structure. Spiking responses were also modulated by object-based attention. When the patient mentally traced a curve through the neurons’ receptive fields, the accompanying shift of attention enhanced neuronal activity. These results demonstrate that the tuning properties of cells in the human early visual cortex are similar to those in the macaque and that responses can be modulated by both contextual factors and behavioral relevance. Our results, therefore, imply that the macaque visual system is an excellent model for the human visual cortex.  相似文献   

12.
The mouse is emerging as an important model for understanding how sensory neocortex extracts cues to guide behavior, yet little is known about how these cues are processed beyond primary cortical areas. Here, we used two-photon calcium imaging in awake mice to compare visual responses in primary visual cortex (V1) and in two downstream target areas, AL and PM. Neighboring V1 neurons had diverse stimulus preferences spanning five octaves in spatial and temporal frequency. By contrast, AL and PM neurons responded best to distinct ranges of stimulus parameters. Most strikingly, AL neurons preferred fast-moving stimuli while PM neurons preferred slow-moving stimuli. By contrast, neurons in V1, AL, and PM demonstrated similar selectivity for stimulus orientation but not for stimulus direction. Based on these findings, we predict that area AL helps guide behaviors involving fast-moving stimuli (e.g., optic flow), while area PM?helps guide behaviors involving slow-moving objects.  相似文献   

13.
Adaptation-induced plasticity of orientation tuning in adult visual cortex   总被引:16,自引:0,他引:16  
Dragoi V  Sharma J  Sur M 《Neuron》2000,28(1):287-298
A key emergent property of the primary visual cortex (V1) is the orientation selectivity of its neurons. The extent to which adult visual cortical neurons can exhibit changes in orientation selectivity is unknown. Here we use single-unit recording and intrinsic signal imaging in V1 of adult cats to demonstrate systematic repulsive shifts in orientation preference following short-term exposure (adaptation) to one stimulus orientation. In contrast to the common view of adaptation as a passive process by which responses around the adapting orientation are reduced, we show that changes in orientation tuning also occur due to response increases at orientations away from the adapting stimulus. Adaptation-induced orientation plasticity is thus an active time-dependent process that involves network interactions and includes both response depression and enhancement.  相似文献   

14.
Variability of orientation tuning of primary visual cortical neurons in single orientation columns and the degree of its stability during changes in the level of contrast between stimulus and background were investigated in acute experiments on immobilized cats. Several types of orientation columns were found, with the following properties of orientation tuning of their neurons: relatively high, standard, and stable; varying widely from neuron to neuron; invariant regardless of the level of contrast; noninvariant; mixed (invariant-noninvariant). Properties of standardization-nonstandardization, on the one hand, and invariance-noninvariance of the neurons, on the other hand, may be combined differently in a column. Differences of orientation tuning within a column were observed most frequently in neurons of the upper and lower layers of the cortex. Possible differences in the functional role of the variance of orientation columns described and in the mechanisms of formation of the detector properties of their neurons are discussed.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 17, No. 2, pp. 175–182, March–April, 1985.  相似文献   

15.
Empirical mode decomposition (EMD) has recently been introduced as a local and fully data-driven technique for the analysis of non-stationary time-series. It allows the frequency and amplitude of a time-series to be evaluated with excellent time resolution. In this article we consider the application of EMD to the analysis of neuronal activity in visual cortical area V4 of a macaque monkey performing a visual spatial attention task. We show that, by virtue of EMD, field potentials can be resolved into a sum of intrinsic components with different degrees of oscillatory content. Low-frequency components in single-trial recordings contribute to the average visual evoked potential (AVEP), whereas high-frequency components do not, but are identified as gamma-band (30–90 Hz) oscillations. The magnitude of time-varying gamma activity is shown to be enhanced when the monkey attends to a visual stimulus as compared to when it is not attending to the same stimulus. Comparison with Fourier analysis shows that EMD may offer better temporal and frequency resolution. These results support the idea that the magnitude of gamma activity reflects the modulation of V4 neurons by visual spatial attention. EMD, coupled with instantaneous frequency analysis, is demonstrated to be a useful technique for the analysis of neurobiological time-series.  相似文献   

16.
Neurons in the primary visual cortex are more or less selective for the orientation of a light bar used for stimulation. A broad distribution of individual grades of orientation selectivity has in fact been reported in all species. A possible reason for emergence of broad distributions is the recurrent network within which the stimulus is being processed. Here we compute the distribution of orientation selectivity in randomly connected model networks that are equipped with different spatial patterns of connectivity. We show that, for a wide variety of connectivity patterns, a linear theory based on firing rates accurately approximates the outcome of direct numerical simulations of networks of spiking neurons. Distance dependent connectivity in networks with a more biologically realistic structure does not compromise our linear analysis, as long as the linearized dynamics, and hence the uniform asynchronous irregular activity state, remain stable. We conclude that linear mechanisms of stimulus processing are indeed responsible for the emergence of orientation selectivity and its distribution in recurrent networks with functionally heterogeneous synaptic connectivity.  相似文献   

17.
Recent studies have shown that local cortical feedback can havean important effect on the response of neurons in primary visualcortex to the orientation of visual stimuli. In this work, westudy the role of the cortical feedback in shaping thespatiotemporal patterns of activity in cortex. Two questionsare addressed: one, what are the limitations on the ability ofcortical neurons to lock their activity to rotatingoriented stimuli within a single receptive field? Two, can thelocal architecture of visual cortex lead to the generation ofspontaneous traveling pulses of activity? We study theseissues analytically by a population-dynamic model of ahypercolumn in visual cortex. The order parameter thatdescribes the macroscopic behavior of the network is thetime-dependent population vector of the network. We firststudy the network dynamics under the influence of a weakly tunedinput that slowly rotates within the receptive field. We showthat if the cortical interactions have strong spatialmodulation, the network generates a sharply tuned activityprofile that propagates across the hypercolumn in a path thatis completely locked to the stimulus rotation. The resultantrotating population vector maintains a constant angular lagrelative to the stimulus, the magnitude of which grows with thestimulus rotation frequency. Beyond a critical frequency thepopulation vector does not lock to the stimulus but executes aquasi-periodic motion with an average frequency that is smallerthan that of the stimulus. In the second part we consider thestable intrinsic state of the cortex under the influence of isotropic stimulation. We show that if the local inhibitoryfeedback is sufficiently strong, the network does not settleinto a stationary state but develops spontaneous travelingpulses of activity. Unlike recent models of wave propagation incortical networks, the connectivity pattern in our model isspatially symmetric, hence the direction of propagation ofthese waves is arbitrary. The interaction of these waves withan external-oriented stimulus is studied. It is shown that thesystem can lock to a weakly tuned rotating stimulus if thestimulus frequency is close to the frequency of the intrinsic wave.  相似文献   

18.
Anesthesia affects brain activity at the molecular, neuronal and network level, but it is not well-understood how tuning properties of sensory neurons and network connectivity change under its influence. Using in vivo two-photon calcium imaging we matched neuron identity across episodes of wakefulness and anesthesia in the same mouse and recorded spontaneous and visually evoked activity patterns of neuronal ensembles in these two states. Correlations in spontaneous patterns of calcium activity between pairs of neurons were increased under anesthesia. While orientation selectivity remained unaffected by anesthesia, this treatment reduced direction selectivity, which was attributable to an increased response to the null-direction. As compared to anesthesia, populations of V1 neurons coded more mutual information on opposite stimulus directions during wakefulness, whereas information on stimulus orientation differences was lower. Increases in correlations of calcium activity during visual stimulation were correlated with poorer population coding, which raised the hypothesis that the anesthesia-induced increase in correlations may be causal to degrading directional coding. Visual stimulation under anesthesia, however, decorrelated ongoing activity patterns to a level comparable to wakefulness. Because visual stimulation thus appears to ‘break’ the strength of pairwise correlations normally found in spontaneous activity under anesthesia, the changes in correlational structure cannot explain the awake-anesthesia difference in direction coding. The population-wide decrease in coding for stimulus direction thus occurs independently of anesthesia-induced increments in correlations of spontaneous activity.  相似文献   

19.
Neocortical theta-band oscillatory activity is associated with cognitive tasks involving learning and memory. This oscillatory activity is proposed to originate from the synchronization of interconnected layer V intrinsic bursting (IB) neurons by recurrent excitation. To test this hypothesis, a sparsely connected spiking circuit model based on empirical data was simulated using Hodgkin-Huxley-type bursting neurons and use-dependent depressing synaptic connections. In response to a heterogeneous tonic current stimulus, the model generated coherent and robust oscillatory activity throughout the theta-band (4-12 Hz). These oscillations were not, however, self-sustaining without a driving current, and not dependent on N-methyl-D-aspartate receptor synaptic currents. At realistic connection strengths, synaptic depression was necessary to avoid instability and expanded the basin of attraction for theta oscillations by controlling the gain of recurrent excitation. These results support the hypothesis that IB neuron networks can generate robust and coherent theta-band oscillations in neocortex.  相似文献   

20.
We studied the responses of neurons of the extrastriate cortical area 21b of the cat to changes in orientation of the movements of visual stimuli within the receptive field (RF) of the neuron under study. Our experiments demonstrated that 24 of 108 cells (22%) responded differentially to a certain extent to orientation of the movements of visual stimuli. As a whole, neurons of the area 21b did not demonstrate fine tuning on the optimum angle of orientation. In many cases, neuronal responses to different orientations of the movement of visual stimulus depended significantly on specific parameters of this stimulus (its shape, dimensions, and contrast). Some directionally sensitive neurons responded to a change in orientation of the movement of visual stimuli by modification of the index of directionality. We also studied spatial organization of the RF of neurons with the presentation of stationary visual stimuli. Comparison of the neuronal responses to a change in orientation of the movements of stimuli and to presentation of stationary stimuli showed that the correlation between the orientation sensitivity of the neuron under study and the stationary functional organization of its RF was insignificant. We hypothesize that inhibitory processes and subthreshold influences from a space surrounding the RF play a special role in the formation of the neuronal responses generated in the associative visual cortical regions to visual stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号