首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1. Peacock butterflies, Inachis io , were tested experimentally for their preferences for nectar sugars.
2. In tests with different plain sugar solutions (25%, weight to total weight) the butterflies strongly preferred sucrose and fructose over glucose. They also preferred sucrose over fructose.
3. In tests with mixed sugar solutions the butterflies clearly preferred both sucrose-dominant (sucrose : hexoses = 5 : 1) and balanced sugar solutions (sucrose : glucose : fructose = 1 : 1 : 1) over hexose-dominant sugar solutions (sucrose : hexoses = 1 : 5).
4. Females consumed significantly more of the balanced sugar solution than did males.
5. These results are discussed with respect to previous experiments on nectar preferences of butterflies, nectar sugar composition of butterfly-pollinated flowers, and flower preferences, physiological and reproductive aspects of butterflies.  相似文献   

2.
Most Lepidoptera feed during the adult stage on carbohydrate‐rich food sources, primarily floral nectar. However, little is known about the factors leading to the acceptance of a possible food source. It is reported that butterflies select for nectar rich in sucrose and amino acids. This suggests that the insects have developed a sensitivity to these nectar compounds. We tested females of the large cabbage white, Pieris brassicae L. (Lepidoptera: Pieridae) for their responses to 10 different nectar‐ or honeydew‐sugars after either tarsal or proboscis stimulation. In no‐choice experiments, food‐deprived P. brassicae showed the strongest response to sucrose, followed by fructose. Other sugars, including galactose, glucose, maltose, mannose, melezitose, melibiose, raffinose and trehalose, did not elicit a feeding response. Mixtures of essential or common non‐essential amino acids did not stimulate feeding. In a choice situation, P. brassicae preferred sucrose over fructose, whereas they accepted a sucrose and amino acid solution equally to a plain sucrose solution. The results indicate that for P. brassicae, feeding is mainly elicited by sucrose and fructose.  相似文献   

3.
The preferences for nectar amino acids, urea and ammonium ions of peacock butterflies, Inachis io, were tested experimentally. Females clearly preferred a mimic of Lantana camara nectar containing amino acids to an otherwise similar plain sugar solution, whereas males did not discriminate between these test solutions. Neither males nor females discriminated between the full mixture of amino acids in a mimic of L. camara nectar and similar test solutions containing only the single amino acids arginine or proline. Furthermore, the butterflies were not able to detect methionine in the test solutions. Both sexes detected and preferred ammonium ions in test solutions but showed no response to urea. These results support the hypothesis that butterflies can select for high amino acid concentrations in floral nectar. However, it seems unlikely that they select for particular amino acids. The rather unspecific response of I. io males to the nectar constituents tested may result from their relatively low demand for nitrogen for spermatophore and sperm production, while their high activity may make energy supply (i.e. sugar) more important. The preference for ammonium ions suggests that I. io could also acquire nitrogen from ammonium-contaminated soil by puddling, as has been shown for sodium in swallowtail butterflies. Received: 15 August 1997 / Accepted: 14 September 1998  相似文献   

4.
Fabian Cahenzli  Andreas Erhardt 《Oikos》2012,121(9):1417-1423
The principal components of floral nectar are water and the sugars sucrose, fructose and glucose. Several studies have shown the importance of nectar sugars for female butterfly fecundity, whereas to date little attention has been paid to the effect of nectar sugars on male butterfly reproduction. Clear evidence for an effect of nectar sugars on male realized reproductive success is still missing. In this study, we fed male Coenonympha pamphilus butterflies nectar mimics with low (5%), medium (20%) or high (30%) total sugar concentrations with a sucrose:glucose:fructose ratio of 2.7:1.1:1. Sugar solutions were made mimicking Knautia arvensis, an essential nectar plant for C. pamphilus and many other European butterflies. Realized male reproductive success for each treatment was measured indirectly via nuptial gifts, by recording reproductive parameters and by characterizing time patterns over the oviposition period of their female partner. Male butterflies fed high‐concentrated nectar sugars had a longer lifespan than males fed low‐concentrated nectar sugars. In contrast, offspring of males fed medium‐concentrated nectar sugars had a higher hatching mass than progeny of males fed low‐concentrated nectar sugars, indicating a tradeoff between somatic maintenance and reproduction in the use of nectar sugars. Thus, allocation patterns of nectar sugars differed according to sugar concentrations in adult food. The method used in this experiment took into account the indispensable role of female butterflies in passing male nutrients to offspring. With this comprehensive approach, we can show the general importance of nectar sugars for male butterfly fitness and support previous findings suggesting a coevolutionary process between butterflies and flowers dependent on butterfly pollination.  相似文献   

5.
1. Field observations in the Swiss Jura mountains showed that males and females of the bivoltine Adonis Blue butterfly Lysandra bellargus Rott. differed significantly in their flower visitation patterns. 2. In both generations, females visited a broader range of available nectar plants than did males. The specific flower visitation patterns of males and females were not affected by the general availability and abundance of potential nectar plant species during both flight periods, indicating high selectivity for nectar plants by both males and females. 3. In addition, the sexes differed in their nectar foraging behaviours: distances between successively visited flowers were significantly longer in males than in females, indicating that male and female butterflies have different foraging strategies. 4. Investigations of nectar characteristics showed that the sexes preferred flowers with different nectar compositions. Males of both generations preferred flowers with high proportions of sucrose and high amounts of total sugar, whereas females preferred flowers with high portions of glucose in their nectar, and, in the spring generation, flowers rich in amino acids. 5. Flowers visited exclusively by males or females in spring differed significantly in their amino acid composition. 6. This clear‐cut pattern did not hold for the autumn generation, most probably due to the limited availability of flowers. 7. The observed nectar foraging patterns underline the importance of adult feeding for longevity and reproduction in butterflies. The findings are particularly relevant for conservation, because L. bellargus is an increasingly threatened species in many European countries.  相似文献   

6.
Plant nectar is a simple food consumed by many different animals. Preferences regarding its components, especially sugars, have been studied for many species, but the preferences of nectar-feeding birds for different sugar concentrations are less well known than their sugar type preferences. The concentration preferences of white-bellied sunbirds, Cinnyris talatala, were examined using paired solutions of either sucrose or equicaloric 1:1 mixtures of glucose and fructose. Preferences were tested over a broad concentration range of 0.25–2.5 M sucrose equivalents (using 0.25 or 0.5 M differences between pairs). On both sucrose and hexose diets, the higher concentration was preferred up to 1 M, but there were no significant preferences above this concentration, except that birds preferred 1.5 to 2 M sucrose. As with other nectar-feeding vertebrates, the laboratory preferences of sunbirds do not explain the low concentration of their natural nectars. We recorded apparent excess sugar consumption during 6 h preference tests involving concentrated hexose diets; this could be due to digestive constraints or viscosity differences between sucrose and hexose solutions.  相似文献   

7.
Vetches (Vicia spp.) were studied in the San Francisco Bay Area of California in the spring of 1978. The stipular nectaries of the vetches are visited by the Argentine ant, Iridomyrmex humilis Mayr. The nectaries were removed to exclude ants in controlled experiments to determine if these ants protect the vetches from herbivores or seed predators. Plants with excised nectaries suffered substantially greater damage to their foliage than control plants, indicating that ants protect the foliage. There was no indication that ants protect the vetches from seed predators, but fruit set was substantially lower in plants with excised nectaries. Analysis of sugar and amino acid composition of extrafloral nectar served as a basis for feeding tests with Argentine ants by using artificial nectar solutions. Ants preferred sucrose and glucose solutions over fructose. They showed no preference for any one sugar mixture over another, nor did they exhibit differential recruitment to artificial nectar solutions containing only sugars or sugars and amino acids.  相似文献   

8.
The increase of the amino acid concentration over different time intervals in artificial nectar (i.e., a sucrose solution) due to pollen contamination was investigated in four Californian plant species (Aesculus californica, Amsinckia lunaris, Brodiaea pulchella, Carduus pycnocephalus), which are important nectar resources for a Californian colony of the butterflyBattus philenor as well as for other insects. The increase of the amino acid concentration in the medium is different in all four species and seems to be determined by a variety of factors including permeability of the pollen grain wall and presence or absence of pores. The results suggest a passive diffusion process of the free pollen amino acids into the medium rather than an active release. Implications from the experiments forBattus philenor and for other nectar feeding pollinators are discussed. A possible complementary effect of free pollen and nectar amino acids is proposed for plant species in which pollen is likely to be knocked into nectar by their flower visitors. A possible evolutionary pathway from nectar feeding butterflies such asBattus philenor to the complex derived pollen feeding habit in theHeliconius butterflies is proposed.  相似文献   

9.
  • Research into the influence of stress factors, such as drought, different temperatures and/or varied light conditions, on plants due to climate changes is becoming increasingly important. Epiphytes, like many species of the Bromeliaceae, are particularly affected by this, but little is known about impacts on nectar composition and nectary metabolism.
  • We investigated the influence of drought, different temperatures and light–dark regimes on nectar and nectaries of the epiphytic bromeliad species, Aechmea fasciata, and also the influence of drought with the terrestrial bromeliad, Billbergia nutans. The content of sugars, amino acids and ions in nectar and nectaries was analysed using HPLC. In addition, the starch content and the activities of different invertases in nectaries were determined.
  • Compositions of nectar and nectaries were hardly influenced, neither by light nor dark, nor by different temperatures. In contrast, drought revealed changes in nectar volumes and nectar sugar compositions in the epiphytic bromeliad as well as in the terrestrial bromeliad. In both species, the sucrose‐to‐hexose ratio in nectar decreased considerably during the drought period. These changes in nectar sugar composition do not correlate with changes in the nectaries. The total sugar, amino acid and ion concentrations remained constant in nectar as well as in nectaries during the drought period.
  • Changes in nectar composition or in the production of floral pollinator rewards are likely to affect plant–pollinator interactions. It remains questionable how far the adaptations of the bromeliads to drought and diverse light or temperature conditions are still sufficient.
  相似文献   

10.
It is commonly assumed that holometabolic insects such as Lepidoptera rely primarily on larval storage reserves for reproduction. Recent studies though have documented a prominent role of adult-derived carbohydrates for butterfly reproduction. Moreover, a few studies have shown that adult butterflies may also benefit from adult-derived amino acids, at least when larval storage reserves are reduced. Given that in holometabolous insects larval deficiencies are carried over into the adult stage, reduced storage reserves have the potential to modulate adult feeding preferences and responses in order to allow for a successful compensation. We tested this hypothesis here in the fruit-feeding butterfly Bicyclus anynana using larval food stress to manipulate storage reserves. Alcohols (methanol, ethanol, butanol, propanol), sugars (maltose, glucose, fructose, sucrose), and acetic acid acted as feeding stimuli, while butterflies did not respond to other substances such as amino acids, yeast, salts, or vitamins. Contrary to expectations, stressed butterflies showed a weaker response than controls to several feeding stimuli. In preference tests, butterflies preferred sugar solutions containing proline, arginine, glutamic acid, acetic acid, or ethanol over plain sugar solutions, but discriminated against salts. However, there were no general differences among starved and control butterflies. We conclude that larval food-stress does not elicit compensatory feeding behavior such as a stronger preference for amino acids or other essential nutrients in B. anynana. Instead, the stress imposed by a period of starvation yielded negative effects.  相似文献   

11.
Abstract Ants (Hymenoptera: Formicidae) consume a broad spectrum of liquid food sources including nectar and honeydew, which play a key role in their diet especially in tropical forests. This study compares carbohydrates and amino acids from a representative spectrum of liquid sources used by ants in the canopy and understorey of a tropical rainforest in northern Queensland, Australia. Eighteen floral nectars, 16 extrafloral nectars, two wound sap and four homopteran honeydew sources were analysed using high performance liquid chromatography. Wounds comprised flower abscission scars on Normanbya normanbyi L. H. Bailey and bitemarks on Cardwellia sublimis F. Muell. where ants were actively involved in wounding. Discriminant analysis was performed to model differences between food sources in sugar and amino acid concentration and composition. All characteristics varied significantly among plant species. Honeydew contained a broader spectrum of sugars (including melezitose, raffinose, melibiose, lactose and maltose) than nectar (sucrose, glucose, fructose), but certain extrafloral nectars had similar amino acid profiles and, like honeydew sources, were often monopolized by ants. Most common amino acids across the sources were proline, alanine and threonine among 17 α‐amino acids identified. Interspecific variability concealed characteristic differences in sugar and amino acid parameters between nectar, honeydew and wound sap across all plants, but these types differed significantly when found on the same plant. Among all sources studied, only a few flower nectars were naturally not consumed by ants and they were significantly less attended than sugar controls in feeding trials. These nectars did not differ in sugars and amino acids from ant‐attended flower nectars, suggesting the activity of repellents. Apart from these exceptions, variability in amino acids and carbohydrates is proposed to play a key role in ant preferences and nutrition.  相似文献   

12.
Due to their long‐distance migration routes and high longevity, monarch butterflies (Danaus plexippus) are likely to benefit from learning how to discriminate and remember suitable feeding resources. In this study, we assessed monarchs’ abilities to track changing nectar sources over time and to retain learned information presented in two conditioning schedules. Non‐preferred (blue and red) and preferred (yellow) artificial flowers were concomitantly offered to monarchs in a three‐phase experiment. In each phase, flowers of only one color contained sucrose solution, while the others contained water. The rewarding color was changed in each phase. Instantaneous observations were made to assess butterfly visits to each color during each phase; continuous observations over the first 90 min of a new phase allowed us to look in more detail at the transition process. Overall, monarchs tracked sucrose availability, visiting the rewarding flowers more often than the unrewarding ones, regardless of innate preferences. However, butterflies reverted to innate color preferences when the newly rewarding color was different from the initial trained color. In a second experiment, memory decay was compared for butterflies trained according to two schedules: ‘single training’ (sucrose solution in red vs. water in blue artificial flowers in one 15‐min session per day) or ‘intermittent training’ (as above, but in two 7.5‐min sessions per day). Afterwards, butterflies were tested on alternate days for a week in arrays containing unrewarding models of both colors. Following either training schedule, memory persisted for at least 3 d after reinforcement ceased. Our findings reveal that monarchs are able to change their feeding responses according to the flowers’ reward status despite innate preferences, as well as to retain flower information for about half a week regardless of the conditioning dynamics.  相似文献   

13.
Abstract.
  • 1 The role that amino acids in extrafloral nectars play in attracting ants to plants was investigated. Workers from laboratory colonies of Solenopsis invicta Buren and S.geminafa (F). (Formicidae) fed from artificial nectaries containing mimics of the extrafloral nectar of Passiflora menispermifoh and P.caerulea; P.menispermifoh nectar contains higher levels of amino acids (1347.3 pdml) than does the nectar of P.currulea (125.2 μm /ml).
  • 2 When sugar-only and sugar—amino acid nectar mimics were presented simultaneously, more S.invicta workers were counted at sugar—amino acid nectar mimics than at sugar-only nectars. S.geminatu did not discriminate between the two nectars.
  • 3 When the two Pamiflora L. nectar mimics were presented simultaneously, S.invicta and S.geminata workers were more abundant at the nectaries containing high levels of amino acids (P.menispermifolia HBK mimic) than at the nectaries containing low levels of amino acids (P.cuerulea L. mimic).
  • 4 The behaviour shown by S.invicta and S.gerninata suggests that plants with high levels of amino acids in their extrafloral nectars attract more ant protectors and might suffer less herbivory than plants producing nectars with low levels of amino acids. If so, ants may favour, over evolutionary time, plants that produce nectars with high levels of amino acids.
  • 5 Day-to-day variability in ant behaviour was considerable even among laboratory colonies maintained on the same diet in similar environmental conditions. This variability will reduce the selective impact that ants have on plants and may help to explain why most ant-plant interactions are facultative.
  相似文献   

14.
Amino acids in nectar enhance butterfly fecundity: a long-awaited link   总被引:3,自引:0,他引:3  
Thirty years ago, researchers discovered that flowers pollinated by butterflies are consistently rich in nectar amino acids, and more recent findings have shown that butterflies prefer nectar with high amino acid content. These observations led to speculation that amino acids in nectar enhance butterfly fitness and that butterflies have acted as agents of natural selection on nectar composition. Despite a number of experimental efforts over the years, convincing proof that nectar amino acids affect butterfly fitness has been lacking. Here, we provide the first evidence that amino acids in nectar have a positive effect on fecundity of one butterfly species, supporting the existence of a relationship between nectar preferences and fitness benefits. Map butterflies (Araschnia levana L.) raised under natural larval food conditions laid more eggs when they were fed nectar containing amino acids, whereas nectar amino acids had no effect on the number of eggs laid by butterflies raised on larval food rich in nitrogen. Uptake and utilization of nectar amino acids by map butterflies appear to be compensatory mechanisms enabling them to override impacts of poor larval food. These results provide strong support for the long-standing postulate that nectar amino acids benefit butterflies.  相似文献   

15.
The mechanisms mediating the use of flowers in the butterfly Heliconius erato phyllis (Nymphalidae) are poorly understood. Availability of nectar and pollen, nectar concentration, and abundance of Stachytarpheta cayennensis and Lantana camara (Verbenaceae), two flower species commonly used by H. erato phyllis in the Neotropics, as well as flower use by this butterfly species in the field were examined in southern Brazil. Under insectary conditions, the preference of H. erato phyllis for different sucrose concentrations (0, 10, 20, 40, and 80%) and the ability to associate sucrose concentrations with preferred and non-preferred flower colors were evaluated through choice tests. Lantana camara inflorescences were less abundant, but contained larger amounts of pollen and nectar than S. cayennensis, and H. erato phyllis utilized the flowers of the former species with higher frequency compared to the latter. In the choice tests, butterflies fed more intensely on 20 and 40% sucrose solutions, an interval in which the nectars of L. camara and S. cayennensis are situated, and were able to associate preferred sucrose concentrations with flower color efficiently within the color spectrum of L. camara flowers (i.e., preferred colors), but not within that of S. cayennensis (non-preferred colors). Thus, the greater use of L. camara flowers by H. erato phyllis is related to the plant’s superior floral rewards and not flower abundance, and to the cognitive abilities of these butterflies to adjust their feeding to the availability of pollen and nectar. To our knowledge, this is the first report showing sucrose preferences in a butterfly species.  相似文献   

16.
1. Dozens of social bee species, most of them stingless bees, occur sympatrically in the tropics. The proximate mechanisms through which they partition their resources are, apart from aggressive interactions between Trigona species, not well studied. In the work reported here, niche differentiation at patch level was studied, using two species of Melipona that occur sympatrically in the Central Pacific part of Costa Rica. Foragers of Melipona beecheii are known to collect more concentrated nectar than do Melipona fasciata foragers, even from the same plant species. This observation raises the question of what mechanism leads to such partitioning of nectar resources? To address this question, the roles of bee morphology, floral preferences, and interference competition in partitioning of nectar sources were studied. 2. It was shown experimentally that the feeding rate of both species was highest at 60% nectar concentration. Melipona fasciata preferred 60–70% concentrations to less concentrated solutions, whereas M. beecheii ignored 20% solutions and visited the other solutions equally often. Both species preferred sucrose to glucose and fructose. Melipona beecheii, with a yellowish coloured body, preferred sunny patches, whereas M. fasciata, with a dark brown body, preferred shady patches. Interference competition between the species occurred when they visited the same sugar-water feeder: M. fasciata was dominant over M. beecheii. 3. The nectar foraging strategies of the two species can be summarised as follows: M. beecheii is able to visit sunlit patches, due to its lighter body colour, and is thus able to collect nectar of optimal or near optimal sugar concentration (40–65%). Individuals do not actively choose nectar with a high concentration of sugar, but the average sugar concentration in bee-collected nectar will typically be high in sunlit patches. Melipona fasciata, on the other hand, avoids sunlit patches, but actively chooses the richest nectar in shady patches and tries to dominate such patches. Thus, niche differentiation occurs according to the radiation regime at flower patches, and interference competition will occur rarely under natural conditions. The role of similar mechanisms in other closely related stingless bees is discussed.  相似文献   

17.
Summary Amino acids occur in most floral nectars but their role in pollinator attraction is relatively unstudied. Nectars of butterfly-pollinated flower tend to have higher concentrations of amino acids than do flowers pollinated by bees and many other animals, suggesting that amino acids are important attractants of butterflies to flowers. In order to determine whether amino acids are important in attracting butterflies and bees, we tested the preference of cabbage white butterflies (Pieris rapae) and honey bees (Apis mellifera) by allowing them to feed from artificial flowers containing sugar-only or sugar-amino acid mimics ofLantana camara nectar. Honey bees and female cabbage white butterflies consumed more sugar-amino acid nectar than sugar-only nectar. In addition, female cabbage white butterflies visited artificial flowers containing sugar-amino acid nectars more frequently than flowers containing sugar-only nectars; honey bees spent more time consuming the sugar-amino acid nectar. Male cabbage white butterflies did not discriminate between the two nectars. These results support the hypothesis that the amino acids of nectar contribute to pollinator attraction and/or feeding.  相似文献   

18.
Sucrose, glucose, and fructose are the three sugars that commonly occur in floral nectar and fruit pulp. The relative proportions of these three sugars in nectar and fruit in relation to the sugar preferences of pollinators and seed dispersers have received considerable attention. Based on the research of Herbert and Irene Baker and their collaborators, a dichotomy between sucrose‐dominant hummingbird‐pollinated flowers and hexose‐dominant passerine flowers and fruits was proposed. Data on sugar preferences of several hummingbird species (which prefer sucrose) vs. a smaller sample of passerines (which prefer hexoses) neatly fitted this apparent dichotomy. This hummingbird–passerine dichotomy was strongly emphasized until the discovery of South African plants with sucrose‐dominant nectars, which are pollinated by passerines that are able to digest, and prefer sucrose. Now we know that, with the exception of two clades, most passerines are able to assimilate sucrose. Most sugar preference studies have been conducted using a single, relatively high, sugar concentration in the nectar (ca 20%). Thus, we lack information about the role that sugar concentration might play in sugar selection. Because many digestive traits are strongly affected not only by sugar composition, but also by sugar concentration, we suggest that preferences for different sugar compositions are concentration‐dependent. Indeed, recent studies on several unrelated nectar‐feeding birds have found a distinct switch from hexose preference at low concentrations to sucrose preference at higher concentrations. Finally, we present some hypotheses about the role that birds could have played in molding the sugar composition of plant rewards.  相似文献   

19.
Nectar was collected from the extrafloral nectaries of leaf stipels and inflorescence stalks, and phloem sap from cryopunctured fruits of cowpea plants. Daily sugar losses as nectar were equivalent to only 0.1–2% of the plant's current net photosynthate, and were maximal in the fourth week after anthesis. Sucrose:glucose:fructose weight ratios of nectar varied from 1.5:1:1 to 0.5:1:1, whereas over 95% of phloem-sap sugar was sucrose. [14C]Sucrose fed to leaves was translocated as such to nectaries, where it was partly inverted to [14C]glucose and [14C]fructose prior to or during nectar secretion. Invertase (EC 3.2.1.26) activity was demonstrated for inflorescence-stalk nectar but not stipel nectar. The nectar invertase was largely associated with secretory cells that are extruded into the nectar during nectary functioning, and was active only after osmotic disruption of these cells upon dilution of the nectar. The nectar invertase functioned optimally (phloem-sap sucrose as substrate) at pH 5.5, with a starting sucrose concentration of 15% (w/v). Stipel nectar was much lower in amino compounds relative to sugars (0.08–0.17 mg g-1 total sugar) than inflorescence nectar (22–30 mg g-1) or phloem sap (81–162 mg g-1). The two classes of nectar and phloem sap also differed noticeably in their complements of organic acids. Xylem feeding to leaves of a range of 14C-labelled nitrogenous solutes resulted in these substrates and their metabolic products appearing in fruit-phloem sap and adjacent inflorescence-stalk nectar. 14C-labelled asparagine, valine and histidine transferred freely into phloem and appeared still largely as such in nectar. 14C-labelled glycine, serine, arginine and aspartic acid showed limited direct access to phloem and nectar, although labelled metabolic products were transferred and secreted. The ureide allantoin was present in phloem, but absent from both types of nectar. Models of nectary functioning are proposed.  相似文献   

20.
To investigate feeding‐related decisions in Aedes aegypti (L.), adults are presented with simple diets of paired gustatory stimuli conveying information concerning energy content, nutrient richness, osmotic balance and food toxicity in a two‐diet matrix assay. Assessment of mosquito gut contents indicates that both sexes accept single sugar diets in a dose‐dependent manner. When presented with a choice between two different yet equimolar sugar solutions, more individuals of both sexes accept the disaccharides, sucrose and trehalose, than the monosacharrides, fructose and glucose. The combination of pyranose and furanose sugars in solution, either physically associated (as in sucrose) or present as monomers (as glucose and fructose), is accepted over solutions containing a single sugar moiety. Using the two‐diet matrix assay, mosquito diet‐choice is also tested between two equimolar sucrose ‘driver’ solutions in which one is presented with various concentrations of another potential feeding cue ‘test’ compound (i.e. each of the 20 naturally‐occurring amino acids, sodium chloride, quinine or caffeine). Diet‐choice between the ‘driver’ sucrose‐only solution and the solution of the ‘driver’ sucrose containing a ‘test’ amino acid is influenced by sex, amino acid concentration and sucrose concentration. There is also an example of synergism between the diet components, leucine and sucrose. Mosquitoes demonstrate a dose‐dependent acceptance of sucrose‐only diets over sodium chloride‐containing sucrose when presented together. Interestingly, the sucrose‐only diet is accepted by more mosquitoes than all concentrations of the saline‐containing sucrose diets except those approximately isotonic to mosquito haemolymph, at which concentration mosquitoes show no clear choice between the diets. More individuals of both sexes accept sucrose‐only diets than the diets of caffeine‐containing sucrose in a dose‐dependent manner. Only females, however, respond to quinine‐containing sucrose diets and modulate this behaviour in relation to the energetic reward: more females imbibed quinine‐containing sucrose at the higher sucrose concentration (1 m ). A systematic characterization of diet selection behaviour of A. aegypti is presented for 27 putative feeding cues potentially involved in nectar/honeydew feeding. This study will be used as a basis from which to investigate further the mosquito's assessment of food quality and ultimately host choice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号