首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Aim  A panbiogeographical analysis of the genus Bomarea was undertaken in order to determine generalized tracks and biogeographical nodes, and to evaluate the current distribution of the genus based on the available tectonic information and the biogeographical regionalization of Latin America.
Location  The Neotropical region from northern Mexico to northern Argentina, and the Nearctic and Andean regions.
Method  A total of 2205 records of 101 species were analysed, representing 95% of the species assigned to Bomarea . Localities were represented on maps and their individual tracks were drawn. Based on their comparison, generalized tracks were detected and mapped. Nodes were identified in the areas where different generalized tracks were superimposed.
Results  Five generalized tracks were recovered. One is located in the Eastern Central America and Western Panamanian Isthmus provinces (Caribbean subregion, Neotropical region), which was supported by three species of Central American distribution. The four remaining generalized tracks were located in South America, in the North Andean Paramo, Cauca and Puna biogeographical provinces. These tracks were supported by species of Bomarea with an Andean distribution. Biogeographical nodes were established in the Central Andean region of Colombia, central Ecuador and central Peru.
Main conclusions  The nodes obtained for Bomarea support a hybrid origin for the Andean region, which presents diverse components from both northern and southern South America. Likewise, the track recovered between Colombia and Ecuador includes Andean and Neotropical areas, providing further support for this hypothesis. The nodes obtained are coherent with vicariant elements evident for Bomarea. Species of three clades proposed for Bomarea are distributed in specific generalized tracks.  相似文献   

2.
Aim  We analysed the geographical distributions of species of Buprestidae (Coleoptera) in Mexico by means of a panbiogeographical analysis, in order to identify their main distributional patterns and test the complex nature of the Mexican Transition Zone, located between the Nearctic and Neotropical regions.
Location  Mexico.
Methods  The geographical distributions of 228 species belonging to 33 genera of Buprestidae were analysed. Localities of the buprestid species were represented on maps and their individual tracks were drawn. Based on a comparison of the individual tracks, generalized tracks were detected and mapped. Nodes were identified as the areas where generalized tracks converged.
Results  Thirteen generalized tracks were obtained: one was restricted to the Mexican Transition Zone and five to the Neotropical region (Antillean and Mesoamerican dominions), a further two occurred in both the Nearctic region (Continental Nearctic dominion) and the Mexican Transition Zone, and a further five in both the Neotropical region (Mesoamerican dominion) and the Mexican Transition Zone. Seven nodes were identified at the intersections of the generalized tracks – in the Mesoamerican dominion (Mexican Pacific Coast, Mexican Gulf and Chiapas biogeographical provinces) and the Mexican Transition Zone (Trans-Mexican Volcanic Belt, Balsas Basin and Sierra Madre Oriental biogeographical provinces).
Main conclusions  We conclude that the geographical distribution of Buprestidae is mainly Neotropical, corresponding to the Mesoamerican dominion and the Antillean dominion of the Neotropical region, and the Mexican Transition Zone. Most of the generalized tracks and nodes correspond to the Mexican Transition Zone, thus confirming its complex nature. We suggest that the nodes we have identified could be particularly important areas to choose for conservation prioritization.  相似文献   

3.
Aim The Mexican transition zone is a complex area where Neotropical and Nearctic biotic elements overlap. A previous study on mammal species has shown a great diversification in the area. We analyse the diversification of their flea species (Insecta: Siphonaptera), in order to determine if a diversification similar to their mammal host species has occurred. Location The area analysed corresponds to Mexico. Methods The panbiogeographical or track analysis was based on the comparison of the individual tracks of 112 species belonging to 48 genera and eight families of the order Siphonaptera. Generalized tracks were obtained based on the comparison of the individual tracks. Nodes were found in the areas where generalized tracks overlapped. Results Thirty‐four generalized tracks were obtained, distributed within the Mexican transition zone (20), the Nearctic region plus the Mexican transition zone (8), the Nearctic region (4) and the Neotropical region plus the Mexican transition zone (2). In the areas where they intersected, 26 nodes were identified: 23 in the Mexican transition zone and 3 in the Nearctic region. Main conclusions The nodes are concentrated in the Transmexican Volcanic Belt (14), Sierra Madre Oriental (5) and Sierra Madre del Sur (4) provinces of the Mexican transition zone. These results show a significant diversification of the flea taxa, in parallel with the diversification of their mammal hosts.  相似文献   

4.
We undertook a panbiogeographic analysis of the broad‐nosed weevils of the genera Naupactus Dejean, 1821, Pantomorus Schönherr, 1840 and Phacepholis Horn, 1876 (Coleoptera: Curculionidae) from North and Central America to propose a biogeographic scenario to explain their biotic diversification. Based on individual tracks of 30 species, we obtained six generalized tracks: Mesoamerican, Chiapas, Sierra Madre del Sur, Mexican Pacific Coast, Southern Great Plains and Northern Great Plains tracks. The Sierra Madre del Sur generalized track is the best supported, based on 10 species of the three genera. We found two nodes, one at the intersection of the Mesoamerican and Chiapas tracks, and another at the intersection of the Chiapas and Sierra Madre del Sur tracks. Species of Naupactus are primarily distributed in lowlands, associated mostly with dry forests and xeric environments. Species of Pantomorus and Phacepholis would have diversified from South American Naupactus‐like ancestors, mainly in montane habitats and lowlands of North and Central America, between sea level to about 2500 m of altitude.  相似文献   

5.
The boundary between the Nearctic and Neotropical regions has been delineated using different approaches, methods and taxa. Using a panbiogeographical approach, identification of nodes can help understand the dynamics and evolution of the boundary. We analysed the distribution patterns of 46 Mexican land mammal species belonging to the Nearctic biotic component and delineated generalized tracks and nodes, in order to determine the southernmost boundary of the Nearctic region in Mexico. We found six generalized tracks and nine nodes; the latter located largely in the Sierra Madre Oriental, Transmexican Volcanic Belt, Sierra Madre del Sur and Chiapas biogeographical provinces. The highlands of Chiapas were found to represent the southernmost area inhabited by Nearctic taxa. The other biogeographical provinces, together with the Sierra Madre Occidental and Balsas Basin provinces, represent the Mexican transition zone in the strict sense. Instead of a classic static boundary, this transition zone represents an evolutionarily 'active' zone, where several speciation events have taken place in the past.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 83 , 327–339.  相似文献   

6.
To demonstrate that parsimony analysis of endemicity (PAE) can be a method implementing the panbiogeographic approach, we analyzed two data matrices of 40/38 biogeographic provinces × 148 plant species from the Caribbean subregion of the Neotropical region, one where taxa are represented by individual tracks and the other where taxa are represented by single sample localities. We obtained six generalized tracks resulted from the PAE of the areas × individual tracks matrix, and one generalized track from the PAE of the areas × single sample localities matrix, with the latter nested within the former tracks. The results obtained show that PAE works as a panbiogeographical tool if it is based on an areas × individual tracks matrix. When performed in this way, PAE retrieves spatial information that is lost when it is based on an areas × single sample localities matrix, raising doubts regarding the conclusions derived from this latter type of analysis. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 961–976.  相似文献   

7.
The Mexican transition zone is the complex and varied area in which the Neotropical and Nearctic biotas overlap. In a series of contributions, Gonzalo Halffter provided a coherent theory that explains how sets of taxa that evolved in different geographical areas assembled in this transition zone. Halffter's theory developed gradually, being refined and clarified in successive contributions from him and other authors. After a review of the historical development of the Mexican transition zone, including the characterization of the dispersal or distributional patterns recognized by Halffter, its relevance for evolutionary biogeography is discussed briefly. The Mexican transition zone in the strict sense includes the highlands of Mexico and Guatemala (Sierra Madre Occidental, Sierra Madre Oriental, Transmexican Volcanic Belt, Sierra Madre del Sur and Chiapas Highlands provinces), whereas northern Mexico and the southern United States are clearly Nearctic, and the lowlands of southern Mexico and Central America are clearly Neotropical. The distributional patterns recognized by Halffter are considered to represent cenocrons (sets of taxa that share the same biogeographical history, constituting identifiable subsets within a biota by their common biotic origin and evolutionary history). The development of the Mexican transition zone is summarized into the following stages: (1) Jurassic–Cretaceous: the four Paleoamerican cenocrons extend in Mexico; (2) Late Cretaceous–Palaeocene: dispersal from South America of the Plateau cenocron; (3) Oligocene–Miocene: dispersal from the Central American Nucleus of the Mountain Mesoamerican cenocron; (4) Miocene–Pliocene: dispersal from North America of the Nearctic cenocron; and (5) Pleistocene: dispersal from South America of the Typical Neotropical cenocron.  相似文献   

8.
Track analysis is the core of panbiogeographic analysis. In this work, we reflect on the formalization of track analysis, its methodological issues, and interpretations by using new software developments and from a contemporary evolutionary biogeographical viewpoint. From a geometric perspective, we analyze the meaning of a minimal spanning tree, considering that Prim’s algorithm is the most commonly used to draw individual tracks. We then show the existing methodologies (graphs, PAE, combined method, AE) and software packages (Trazos2004, Croizat, Martitracks, fossil) used to perform track analysis. Finally, we illustrate a track analysis using Nearctic mammals as an example. Based on our review, connectivity matrix analysis may be the best way to associate individual tracks into generalized tracks because it compares the minimal spanning tree topologies. However, it is the most demanding of all methods, since it requires a high spatial congruence among species, and therefore more algorithmic development.  相似文献   

9.

Background

The causes for the higher biodiversity in the Neotropics as compared to the Nearctic and the factors promoting species diversification in each region have been much debated. The refuge hypothesis posits that high tropical diversity reflects high speciation rates during the Pleistocene, but this conclusion has been challenged. The present study investigates this matter by examining continental patterns of avian diversification through the analysis of large-scale DNA barcode libraries.

Methodology and Principal Findings

Standardized COI datasets from the avifaunas of Argentina, the Nearctic, and the Palearctic were analyzed. Average genetic distances between closest congeners and sister species were higher in Argentina than in North America reflecting a much higher percentage of recently diverged species in the latter region. In the Palearctic genetic distances between closely related species appeared to be more similar to those of the southern Neotropics. Average intraspecific variation was similar in Argentina and North America, while the Palearctic fauna had a higher value due to a higher percentage of variable species. Geographic patterning of intraspecific structure was more complex in the southern Neotropics than in the Nearctic, while the Palearctic showed an intermediate level of complexity.

Conclusions and Significance

DNA barcodes can reveal continental patterns of diversification. Our analysis suggests that avian species are older in Argentina than in the Nearctic, supporting the idea that the greater diversity of the Neotropical avifauna is not caused by higher recent speciation rates. Species in the Palearctic also appear to be older than those in the Nearctic. These results, combined with the patterns of geographic structuring found in each region, suggest a major impact of Pleistocene glaciations in the Nearctic, a lesser effect in the Palearctic and a mild effect in the southern Neotropics.  相似文献   

10.
Biogeographical patterns of distribution of 74 species of Asteraceae that inhabit mainly the temperate forests of eastern Mexico were studied usingtrack analysis. Five generalized tracks were identified and conservation areas proposed based on degree of complexity of floristic patterns (Luna et al., 1999) and biotic richness. The northern part of the Sierra Madre Oriental harbours a high concentration of narrowly restricted species. In this area there are four track nodes that coincide with the Mexican priority terrestrial regions (RTPs) proposed by the Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO) and with previously identified areas of importance for bird conservation (AICAs). Two more nodes are found in the central and southern part of the Sierra. With the gathered information, we propose particular selected species of Asteraceae to be included in the Mexican areas of endangered species (NOM).  相似文献   

11.
Since the 19th Century, two regions have been recognized for North American mammals, which overlap in Mexico. The Nearctic region corresponds to the northern areas and the Neotropical region corresponds to the southern ones. There are no recent regionalizations for these regions under the criterion of endemism. In the present study, we integrate two methods to regionalize North America, using species distribution models of mammals: endemicity analysis (EA) and parsimony analysis of endemicity (PAE). EA was used to obtain areas of endemism and PAE was used to hierarchize them. We found 76 consensus areas from 329 sets classified in 146 cladograms, and the strict consensus cladogram shows a basal polytomy with 14 areas and 16 clades. The final regionalization recognizes two regions (Nearctic and Neotropical) and a transition zone (Mexican Transition Zone), six subregions (Canadian, Alleghanian, Californian‐Rocky Mountain, Pacific Central America, Mexican Gulf‐Central America, and Central America), two dominions (Californian and Rocky Mountain), and 23 provinces. Our analysis show that North America is probably more complex than previously assumed. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110 , 485–499.  相似文献   

12.
Aim We present a biogeographical analysis of the areas of endemism and areas of diversification in the Muscidae. This analysis searched for geographical patterns in the Muscidae to reconstruct elements of the evolutionary biogeographical history of this insect family. Location Andean and Neotropical regions. Method We constructed a geographic database of 728 species from the literature and museum specimens. Areas of endemism were established by parsimony analysis of endemicity (PAE) based on grids of two different sizes: 5° (550 × 550 km) and 2° (220 × 220 km). Areas of diversification were delimited by track analysis that also included phylogenetic information. This process was independently applied to 11 genera. For each genus, we plotted generalized tracks generated by sister species on a map. When these generalized tracks supported inter‐generic nodes they were manually contoured and inferred to be areas of diversification for the Muscidae. Results Thirteen endemic areas were found using the 5° grid, and eight endemic areas resulted from the 2° grid. Ten areas were in agreement with previous studies, and 11 were new. Amazonian and Atlantic areas of diversification agreed with previous areas for the genus Polietina, and new areas of diversification were found in Panama and in central Chile. Main conclusions Six spatial patterns in the Muscidae were identified: (1) areas of endemism in both Pampa and Puna provinces were established with species whose distributions had not previously been analysed; (2) a new area of endemism was established in extreme southern South America, in Tierra del Fuego; (3) two new areas of diversification, which include Panama and central Chile, were identified; (4) a spatial association was identified between the separation of Chiloe Island from the continent and the diversification in Andean species; (5) a north–south track axis and latitudinal node intervals were identified, interpreted as spatial responses to glaciation or glacial retreat in the Andes; and (6) a spatial coincidence of areas of endemism, of diversification and high species richness in the Muscidae was discovered. The analysis of a complete database and the recognition of areas of diversification are extremely important in elucidating novel biogeographical patterns, which will in turn contribute to a better understanding of the geographical patterns of evolution in the Muscidae.  相似文献   

13.
The taxonomy of Megaloptera from the Nearctic region is fairly well known and their faunal diversity has been largely surveyed, even in relatively remote regions. However, the evolutionary history of Nearctic Megaloptera is still poorly known with phylogenetic and biogeographic studies lacking. In this paper, we report a new fishfly species of the endemic North American genus Neohermes Banks, 1908, increasing the total number known of species to six. This new species (Neohermes inexpectatus sp. nov.) is currently known to occur only in California (USA) and is apparently confined to the Northern Coastal Range. The new species resembles the three Neohermes species from eastern North America based on the relatively small body size and the presence of female gonostyli 9. However, our phylogenetic analysis using adult morphological data recovered the new species as the sister species to the remaining Neohermes, which includes two species from western North America and three from eastern North America. According to the present interspecific phylogeny of Neohermes, with reconstructed ancestral areas, the initial divergence within the genus was found to take place in western North America, with a subsequent eastward dispersal. This likely lead to the modern distribution of Neohermes in eastern North America with the closure of the Mid-Continental Seaway, which separated western and eastern North America in the Mid-Late Cretaceous (100–80 MYA) and finally disappeared at the end of the Cretaceous (70 MYA). The uplift of the Cordilleran System probably accounted for the divergence between the eastern and two western Neohermes species.  相似文献   

14.
水青冈属(Fagus L.)在北温带呈间断分布, 已发现的丰富的第三纪化石为讨论其起源和演化提供了证据。该文采用泛生物地理学的轨迹分析方法对水青冈属的分布进行了研究, 试图分析水青冈属的分布格局, 进而讨论其进化问题。结果表明, 水青冈属在中国、日本、北美、欧洲的分布是完全间断的, 没有一个共有轨迹连接它们, 即使在毗邻的、且有植物亲缘关系的中国和日本, 也没有一个共有轨迹连接。完全间断的轨迹对分析水青冈属的起源、演化和扩散学说, 没有提供任何信息。仅有两条共有轨迹分别分布在中国东南部和日本, 分别代表了中国4种和日本3种水青冈属种类的连接, 说明水青冈属经历了漫长的历史演化, 扩散能力是有局限性的, 仅在分化和多样性中心进行了一些分化和演化, 整个属并未进行长距离的扩散, 或者长距离扩散早已销声匿迹了, 现代的分布格局完全是以间断为最主要特征的。间断分布的动力解释为古地中海西撤、青藏高原隆起、东亚季风活动等地质历史事件, 第三纪以来特别是第四纪冰期活动等气候波动, 以及水青冈属植物的生物学特性(特别是喜温喜湿)。  相似文献   

15.
Panbiogeography represents the spatial congruence among species distributions by means of generalized tracks. Some critics have suggested the method fails to objectively evaluate congruence, being neither repeatable nor falsifiable. The MartiTracks software was proposed to address spatial congruence using geometric properties as a counterpoint to the manual procedures so far employed in generalized track obtainment. To evaluate whether MartiTracks is a reliable alternative to the congruence problem in the quantitative panbiogeographic approach, we tested the software parameters with three analysis schemes under two real datasets. Then, we proceeded to a comparison of the results to those produced from Parsimony Analysis of Endemicity (PAE) and Clique Analysis, two quantitative methods which are based in predefined biogeographic areas or in the employment of grid cells. For PAE we used both analytical units, while Clique Analysis was restricted to grid cells. Through this, we aimed to comparatively evaluate the criteria of spatial congruence in different approaches. For each dataset and method, significantly different tracks resulted, highlighting the disparate congruence criteria among panbiogeographic approaches. Despite PAE ending up as the most reliable of the tools tested, it is still far from solving panbiogeographic congruence. The main focus of this paper, MartiTracks, is indeed a tool that makes minimum spanning tree construction a repeatable and easy-to-visualize process, but stumbles upon its obscure procedures of generalized track obtainment, congruence criteria, subjective parameter definition, the unclear implications of employing said parameters, and dubious results. Our results suggest that the subjectivity of the parameter setup process substantially influences the results, biasing them to the user-desired level of congruence. That the software produces fast and easy-to-visualize results does not make it a definitive solution to the problem of quantitative panbiogeographic approaches.  相似文献   

16.
The selection of priority areas is an enormous challenge for biodiversity conservation. Some biogeographic methods have been used to identify the priority areas to conservation, and panbiogeography is one of them. This study aimed at the utilization of panbiogeographic tools, to identify the distribution patterns of aquatic insect genera, in wetland systems of an extensive area in the Neotropical region (approximately 280 000km2), and to compare the distribution of the biogeographic units identified by the aquatic insects, with the conservation units of Southern Brazil. We analyzed the distribution pattern of 82 genera distributed in four orders of aquatic insects (Diptera, Odonata, Ephemeroptera and Trichoptera) in Southern Brazil wetlands. Therefore, 32 biogeographic nodes corresponded to the priority areas for conservation of the aquatic insect diversity. Among this total, 13 were located in the Atlantic Rainforest, 16 in the Pampa and three amongst both biomes. The distribution of nodes showed that only 15% of the dispersion centers of insects were inserted in conservation units. The four priority areas pointed by node cluster criterion must be considered in further inclusions of areas for biodiversity conservation in Southern Brazil wetlands, since such areas present species from different ancestral biota. The inclusion of such areas into the conservation units would be a strong way to conserve the aquatic biodiversity in this region.  相似文献   

17.
Panbiogeography represents an evolutionary approach to biogeography, using rational cost-efficient methods to reduce initial complexity to locality data, and depict general distribution patterns. However, few quantitative, and automated panbiogeographic methods exist. In this study, we propose a new algorithm, within a quantitative, geometrical framework, to perform panbiogeographical analyses as an alternative to more traditional methods. The algorithm first calculates a minimum spanning tree, an individual track for each species in a panbiogeographic context. Then the spatial congruence among segments of the minimum spanning trees is calculated using five congruence parameters, producing a general distribution pattern. In addition, the algorithm removes the ambiguity, and subjectivity often present in a manual panbiogeographic analysis. Results from two empirical examples using 61 species of the genus Bomarea (2340 records), and 1031 genera of both plants and animals (100118 records) distributed across the Northern Andes, demonstrated that a geometrical approach to panbiogeography is a feasible quantitative method to determine general distribution patterns for taxa, reducing complexity, and the time needed for managing large data sets.  相似文献   

18.
Aim We analysed phylogeographic patterns and ecological niche models (ENMs) of the widespread velvet ant (Hymenoptera: Mutillidae) Sphaeorpthalma difficilis to understand the history of diversification in the Nearctic deserts and to identify areas that may have been cold‐desert refugia during the Pleistocene. These areas should be targeted for conservation because of their climatic stability throughout historical climate change events. Location North American arid regions. Methods The two internal transcribed spacer regions (ITS1 and ITS2) were sequenced and analysed using Bayesian techniques to uncover phylogeographic patterns of relatedness among S. difficilis populations. History of diversification was estimated using parsimony‐based and maximum likelihood character reconstructions. Molecular dating analyses were implemented in the program r8s and were calibrated with Dominican amber fossils. ENMs were developed based on current climate data and projected onto Pleistocene climate surfaces. Results The analyses suggest that S. difficilis had a complex history of Pleistocene range expansion and contraction that led to the formation of genetically distinct populations inhabiting distinct arid regions. ENMs and phylogeographic patterns indicate that several cold‐desert refugia existed in North America, particularly in the Colorado Plateau and parts of the Great Basin Desert. Main conclusions Analyses of S. difficilis are used to identify potential Pleistocene refugia in the North American cold deserts. Because these areas represent climatically stable locations, they are critical for the long‐term persistence of biodiversity. This research provides evidence that in addition to desert‐like conditions persisting through the ice age in parts of the Nearctic warm deserts, many areas maintained desert‐like characteristics in the regional cold deserts. Further work is needed to elucidate options for preserving biodiversity in these cold‐desert refugia.  相似文献   

19.
The glacial refugium hypothesis (GRH) proposes that glaciers promoted differentiation and generation of intraspecific diversity by isolating populations in ice-free refugia. We tested three predictions of this hypothesis for the evolutionary divergence of rock ptarmigan (Lagopus mutus) during the Wisconsin glaciation of the late Pleistocene. To do this, we examined subspecies distributions, population genetic structure, and phylogenetic relationships in 26 populations across North America and the Bering Sea region. First, we analyzed sequence variation in the mitochondrial control region, in a nuclear intron (Gapdh), and in an internal transcribed spacer (ITS1). Control region sequences of 154 rock ptarmigan revealed strong population and phylogeographic structure. Variation in intron sequences of 114 rock ptarmigan also revealed significant population structure compatible with results for the control region. Rock ptarmigan were invariant for ITS1. Second, we show that five known Nearctic refugia and an Icelandic refugium are concordant with the current distribution of morphologically distinct subspecies; five of these six refugia are geographically concordant with the distribution of closely related control region haplotypes. Third, our estimates of the time since phylogenetic lineages diverged predated the last glacial maximum for all but two lineages. In addition, all lines of evidence suggest that two unknown refugia in the Bering Sea region supported rock ptarmigan during the Wisconsin glaciation. Overall, our results are most consistent with the hypothesis that isolated populations of rock ptarmigan diverged in multiple refugia during the Wisconsin and that geographic variation reflects patterns of recolonization of the Nearctic after the ice receded. The GRH may therefore offer the most plausible explanation for similar biogeographic patterns in a variety of Nearctic vertebrates.  相似文献   

20.
Aim  To analyse the worldwide distribution patterns of Turonian marine biotas using a panbiogeographical approach.
Location  Turonian localities of southern and north-eastern Brazil, Mexico, Canada, central Europe, England and Morocco.
Method  Panbiogeographical track analysis.
Results  Nine generalized tracks and six nodes were found. The generalized tracks comprise two vicariant track patterns (one northern and one mid-southern) across the Atlantic.
Main conclusions  The generalized tracks show clearly two separate marine biotas, which were associated with the proto-South Atlantic and the proto-North Atlantic oceans. These generalized tracks, as well as the two vicariant track clusters between the north and south Atlantic, are identified by vicariant relationships shared by most of the taxa analysed, and illustrate the final break up of the Gondwana and Laurasia supercontinents and the consequences of vicariant events for the biogeography of the Atlantic Ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号