首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The changes in the structural and functional properties of yersinin, a porin from the outer membrane of Yersinia pseudotuberculosis, were studied in the pH range 8.0–2.0 using SDs-PAGE, scanning microcalorimetry, optical spectroscopy and bilayer lipid membrane technique. It was found that in the pH range under study the changes in the spatial structure of yersinin were biphasic. In the first steps of pH titration (pH 8.0–4.5), porin underwent a series of conformational transitions, which did not affect the trimeric structure of its molecule. In the second step (pH 4.0–2.0), structural rearrangements led to dissociation of the protein trimers into monomers. It is noteworthy that complete unfolding of the polypeptide chain of the protein was not observed even at low values of pH. Thus, at pH 2.0 the conformational intermediate of the protein retained up to 50% of its regular secondary structure. Studies of current fluctuations in the bilayer lipid membrane revealed that in weakly acidic media the conductivity of yersinin pores was decreased by one order of magnitude. The most drastic changes in the conductivity of the model membrane were observed at pH 5.8, whereas a further decrease of pH to 5.0 resulted in the closure of porin channels. It was concluded that the observed changes in the pore-forming properties of yersinin in a narrow range of pH represent an early step in the adaptation of bacteria to the changing conditions of the environment and entail control over the biosynthesis of nonspecific porins. The pH-dependent changes in the structure and pore-forming properties of yersinin provide additional evidence in favor of conformational and functional plasticity of porins.  相似文献   

2.
Thermus thermophilus NADH oxidase (NOX) activity exhibits a bell-shaped pH-dependency with the maximal rate at pH 5.2 and marked inhibition at lower pH. The first pH transition, from pH 7.2 to pH 5.2, results in more than a 2-fold activity increase with protonation of a group with pKa=6.1+/-0.1. The difference in fluorescence of the free and enzyme-bound flavin strongly indicates that the increase in enzyme activity in a pH-dependent manner is related to a protein-cofactor interaction. Only one amino acid residue, His75, has an intrinsic pKa approximately 6.0 and is localized in proximity (<10 A) to N5-N10 of the isoalloxazine ring and, therefore, is able to participate in such an interaction. Solvent acidification leads to the second pH transition from pH 5.2 to 2.0 that results in complete inhibition of the enzyme with protonation of a group with an apparent pKa=4.0+/-0.1. Inactivation of NOX activity at low pH is not caused by large conformational changes in the quaternary structure as judged by intrinsic viscosity and sedimentation velocity experiments. NOX exists as a dimer even as an apoprotein at acidic conditions. There is a strong coupling between the fluorescence of the enzyme-bound flavin and the intrinsic tryptophans, as demonstrated by energy transfer between Trp47 and the isoalloxazine ring of flavin adenine dinucleotide (FAD). The pH-induced changes in intrinsic tryptophan and FAD fluorescence indicate that inhibition of the FAD-binding enzyme at low pH is related to dissociation of the flavin cofactor, due to protonation of its adenine moiety.  相似文献   

3.
Weng J  Tan C  Shen JR  Yu Y  Zeng X  Xu C  Ruan K 《Biochemistry》2004,43(16):4855-4861
In this paper, we analyzed the pH-induced changes in the conformational states of the manganese-stabilizing protein (MSP) of photosystem II. Distinct conformational states of MSP were identified using fluorescence spectra, far-UV circular dichroism, and pressure-induced unfolding at varying suspension pH values, and four different conformational states of MSP were clearly distinguished using the center of fluorescence spectra mass when suspension pH was altered from 2 to 12. MSP was completely unfolded at a suspension pH above 11 and partly unfolded below a pH of 3. Analysis of the center of fluorescence spectral mass showed that the MSP structure appears stably folded around pH 6 and 4. The conformational state of MSP at pH 4 seems more stable than that at pH 6. Studies of peak positions of tryptophan fluorescence and MSP-bound 1-anilinonaphthalene-8-sulfonic acid fluorescence spectra supported this observation. A decrease in the suspension pH to 2 resulted in significant alterations in the MSP structure possibly because of protonation of unprotonated residues at lower pH, suggesting the existence of a large number of unprotonated amino acid residues at neutral pH possibly useful for proton transport in oxygen evolution. The acidic pH-induced conformational changes of MSP were reversible upon increase of pH to neutral pH; however, N-bromosuccinimide modification of tryptophan (Trp241) blocks the recovery of pH-induced conformational changes in MSP, implying that Trp241 is a key residue for the unfolded protein to form a functional structure. Thus, pH-induced structural changes of stable MSP (pH 6-4) may be utilized to analyze its functionality as a cofactor for oxygen evolution.  相似文献   

4.
The ability of dromedary skim milk to form an acid curd during a lactic acid starter fermentation was investigated. The activity of the starter in dromedary milk was characterized by a longer lag phase (∼5 vs. ∼1 h) and by an earlier decline phase. This suggests the presence of inhibiting factors. The maximum buffering capacity of dromedary milk as well as its minimum apparent viscosity were obtained at lower pH values. Similarly, its elastic modulus appeared later (pH 5.7 vs. 6.3). Because these rheological and biochemical events took place at lower pH values, dromedary skim milk seems to present a higher physical stability toward the increase of acidity. Determination of the rheological and microscopic characteristics of the dromedary milk coagulum (pH 4.4) did not reveal curd formation but indicated a fragile and heterogeneous structure. This coagulum, which is very different from that of cows' milk, seems to be made up of dispersed casein flakes. Journal of Industrial Microbiology & Biotechnology (2001) 26, 263–270. Received 01 May 2000/ Accepted in revised form 26 January 2001  相似文献   

5.
The chiroptical, viscosity and titration studies of hyaluronic acid in mixed organic/water solvent show a reversible conformational transition of the molecule depending upon pH, solvent composition, temperature, and molecular weight. Neither methylhyaluronate nor chondroitin undergoes conformational transition of this type. These results indicate that hydrogen bonding between the protonated carboxylic group and carbonyl oxygen of the acetamido group is directly involved in the conformational change. Results with chondroitin provide further support for the 4-fold helical structure that we have proposed for hyaluronic acid in mixed organic/water solvent. The thermal stability of the conformation has been studied under various pH values and solvent compositions.  相似文献   

6.
The conformation of the encephalitogenic protein isolated from normal human myelin has been studied by circular dichroism and surface tension techniques. The findings support the conclusion that this protein has a highly ordered structure in solution, with little α-helical or β structure. Conformational changes were observed at extremes of pH. Heating at high or low pH values had the effect of inducing more structure as determined by circular dichroism. Surface tension measurements showed a low temperature conformational change at low pH and a high temperature conformational change at high pH. At other pH values the structure appeared to be stable.  相似文献   

7.
Phenolic titration of ovalbumin was performed in the pH range 7-12 at 30 degrees C and at three ionic strengths viz. 0.033, 0.133 and 0.200. The conformational integrity of ovalbumin was studied by viscosity measurements at different pH values in the pH range 7-12.4. At ionic strength 0.133 two phenolic groups titrated reversibly with pKint = 10.31, and w = 0.032 up to pH 11.25 under native conditions. The value of w expectedly decreased with increase in ionic strength. Two additional phenolic groups became available for reversible titration between pH 11.25 and 11.95 after some conformational change. Above pH 12, the phenolic titration became irreversible and all of the nine tyrosine residues were titrated at pH 13.3 Exposure of ovalbumin to alkaline pH (12.4) caused considerable disruption of the native protein conformation. The reduced viscosity increased from 4.2 ml/g at pH 7.0 to 16.8 ml/g at pH 12.4 under identical conditions of the protein concentration. All of the nine tyrosyl groups of ovalbumin were titrated normally (pKint = 9.9) in a mixture of 5 M guanidine hydrochloride and 1.2 M urea. However, even in this mixture electrostatic interaction, as measured by w was not completely abolished.  相似文献   

8.
Interaction of bromophenol blue with bovine serum albumin and its five succinylated forms was studied spectrophotometrically at three different ionic strengths, i.e. 0.04, 0.15 and 1.0 and at two different pH values, namely pH 7.0 and pH 5.0 respectively. Results showed a decrease in bromophenol blue binding on increasing succinylation at low ionic strengths. This decrease was more marked at pH 7.0 than pH 5.0. However, at both the pH values binding returned to a significant degree on increasing the ionic strength to 1.0. Succinylation also caused marked conformational changes at pH 7.0 and ionic strength 0.15 as evidenced by changes in hydrodynamic properties and reduction in antigen-antibody precipitin reaction. However, an increase in ionic strength to 1.0 or decrease in pH to 5.0 caused significant reversal in hydrodynamic parameters. These studies show that lysine residues of bovine serum albumin are not important in bromophenol blue binding.  相似文献   

9.
α-Synuclein is an intrinsically disordered protein that appears in aggregated forms in the brains of patients with Parkinson's disease. The conversion from monomer to aggregate is complex, and aggregation rates are sensitive to changes in amino acid sequence and environmental conditions. It has previously been observed that α-synuclein aggregates faster at low pH than at neutral pH. Here, we combine NMR spectroscopy and molecular simulations to characterize α-synuclein conformational ensembles at both neutral and low pH in order to understand how the altered charge distribution at low pH changes the structural properties of these ensembles and leads to an increase in aggregation rate. The N-terminus, which has a small positive charge at neutral pH due to a balance of positively and negatively charged amino acid residues, is very positively charged at low pH. Conversely, the acidic C-terminus is highly negatively charged at neutral pH and becomes essentially neutral and hydrophobic at low pH. Our NMR experiments and replica exchange molecular dynamics simulations indicate that there is a significant structural reorganization within the low-pH ensemble relative to that at neutral pH in terms of long-range contacts, hydrodynamic radius, and the amount of heterogeneity within the conformational ensembles. At neutral pH, there is a very heterogeneous ensemble with transient contacts between the N-terminus and the non-amyloid β component (NAC); however, at low pH, there is a more homogeneous ensemble that exhibits strong contacts between the NAC and the C-terminus. At both pH values, transient contacts between the N- and C-termini are observed, the NAC region shows similar exposure to solvent, and the entire protein shows similar propensities to secondary structure. Based on the comparison of the neutral- and low-pH conformational ensembles, we propose that exposure of the NAC region to solvent and the secondary-structure propensity are not factors that account for differences in propensity to aggregate in this context. Instead, the comparison of the neutral- and low-pH ensembles suggests that the change in long-range interactions between the low- and neutral-pH ensembles, the compaction of the C-terminal region at low pH, and the uneven distribution of charges across the sequence are key to faster aggregation.  相似文献   

10.
The dielectric features of poly(L -glutamic acid) are studied by the Fourier synthesized pseudorandom noise method in a time domain combined with a four-electrode cell. Polymer concentration dependence, the effect of the solvent viscosity, salt effects, and pH dependence are studied concomitantly with measurements of CD. A helix-to-coil transition occurs near pH 5.6 for a salt-free solution; at higher pH values, the polymer has an ionized random-coil conformation, and at lower pH, it has a deionized α-helical conformation. When it is in the ionized random-coil conformation, with the usual features of an electrolytic polymer, the solution shows a relaxation spectrum with a large dielectric increment at low frequencies. In the deionized α-helical state, no distinct relaxation curves are obtained, which does not deny the existence of a permanent peptide dipole. The pH dependence of the dielectric increment does not mainly correspond to the conformational change from helix to coil, but rather corresponds to the change of chain expansion on account of a charge–charge interaction under low ionic strength, which is conceived of by a viscosity measurement.  相似文献   

11.
Three groups of male Sprague Dawley rats received methimazole without or with Na-thyroxine in drinking water (3 and 0.33 mg T4/l, respectively) to induce characteristic alterations of their thyroid status (hypothyroid, hyperthyroid, euthyroid). A fourth group served as an untreated control without any additive to the drinking water. With respect to the different thyroid status, the following changes in the blood parameters were found: increasing plasma-T3-levels caused a reduction in plasma viscosity, in total plasma protein and in alpha 1-globulin, but an increase in hematocrit, whole blood viscosity, the number of erythrocytes and leukocytes, alpha 2-globulin and beta-globulin. It was concluded that the increase in the plasma viscosity in the hypothyroid status is mainly due to an alteration of the plasma protein pattern, and that the increase in whole blood viscosity in the hyperthyroid rat is a consequence of increased hematocrit.  相似文献   

12.
The molar optical rotation at 220 nm and ellipticity values at 210 nm of both sodium hyaluronate and hyaluronic acid are greatly enhanced in comparison to the values for the monomeric units and oligosaccharides indicating a degree of preferred order. With increasing hydrogen ion concentration, there is no appreciable change in the 210 nm circular dichroic band, but the second circular dichroic band below pH 4 changes abruptly to the positive side and reaches a maximum value at pH 2·5. This positive circular dichroic band of hyaluronic acid is temperature and concentration dependent. The major change in sign and position of the second circular dichroic band of hyaluronic acid below pH 4 is attributed to the conformational change of a single polysaccharide chain or to a chain-chain interaction. The results indicate that increase in concentration or decrease in temperature and in the ionization of carboxyl group promotes the formation of ordered cross-link regions. The conformational changes found in solution have been interpreted as an order-disorder transition in the crosslink regions based on the interconversion of random coil and double helix.  相似文献   

13.
When pea lectin was exposed to a low pH range, it was found that the secondary structure of the lectin resisted conformational changes to a large extent up to pH 2.4 and below this pH, a sharp transition was observed which could be due to the presence of 27 acidic amino acid residues present in the protein. The effects of 1,1,1,3,3,3 hexafluoro-isopropanol (HFIP) and 2,2,2-Trifluoroethanol (TFE) on the conformation of pea lectin at pH 2.4 were studied using circular dichroism and fluorescence spectroscopy. Analysis varying the TFE concentration showed that up to 80% TFE (v/v) protein retained the residual beta-structure accompanied by a loss in tertiary structure. A similar conformation is presumed to exist at 4% HFIP (v/v), with an increase in HFIP concentration structural rearrangements occurred and a transition from beta-structure to alpha-helical structure started from 12% HFIP which completed at 30% HFIP. Our studies show the occurrence of a common intermediate in the folding pathway of pea lectin induced by two different fluoroalcohols, which differ in their mode of action to stabilize the secondary structure of a given protein. While TFE was not found to induce any alpha-helical structure, HFIP caused the transition of pea lectin, which is predominantly a beta-sheet protein, to a structure rich in alpha-helical contacts. Thus, our results also point out the possibility of a non-hierarchical model of protein folding in lectins.  相似文献   

14.
Interactions of glutaraldehyde with either n-butylamine, poly(α,L -lysine), or collagen resulted in a fast release of protons in dilute aqueous solutions at various pH values, followed by much slower changes. The latter reactions, which extended over hours and days, were followed spectrophotometrically and revealed the formation of distinct absorption bands in the visible and near-ultraviolet regions in all the above systems. The visible-range bands disappeared upon treatment with sodium borohydride. A qualitative relationship between oxygen uptake by the system n-butylamine–glutaraldehyde and the slow formation of colored products has been established, while the chemical nature of the reaction products has not been determined. Sedimentation velocity, viscosity, and optical rotation measurements on the products of interaction between poly(L -lysine) and glutaraldehyde in aqueous solution indicated large conformational changes in the polyamino acid present in excess (in residues) over the dialdehyde. In particular, the intrinsic viscosity dropped considerably after interaction, indicating intramolecular crosslinking. At molar ratios of 1:1 between polylsine residues and aldehyde groups, intermolecular crosslinking of polylysine was obtained at pH 8.6. Electron microscopic examinations of collagen samples treated by glutaraldehyde at various pH values indicated changes from unordered to more ordered structures upon treatment with glutaraldehyde, in particular at pH 10. The present structural and optical investigations are considered to be relevant to tanning processes of hides and to fixation procedures.  相似文献   

15.
To understand the structure-function relationship of the enzyme lipase the effect of acid pH on the activity of lipase has been followed using a number of physico-chemical techniques. Lipase from wheat/germ has S20,w value of 2.2 S and a molecular weight of 42,000 +/- 1,000. The enzyme has an intrinsic viscosity of 4.72 ml/g indicating it to be elongated in shape. With decrease in pH below 7.0 microenvironmental changes occur in the neighborhood of active site accompanied by minor conformational changes without any gross change in the hydrodynamic properties of the protein, as monitored with ultraviolet difference spectra, fluorescence spectra, viscosity and circular dichroism. The kinetics of the inactivation process has been established as consisting of a fast step and a slow step with a k value of 73/sec and 7.2/sec respectively. At extreme acid pH the enzyme reaggregates to a polymer arising out of hydrophobic interaction and the polymer has no activity.  相似文献   

16.
The insertion of soluble proteins into membranes has been a topic of considerable interest. We have studied the insertion of bovineα-lactalbumin into single-bilayer vesicles prepared from egg phosphatidylcholine (PC). Fluoresence studies indicated rapid and tight binding of apo-α-lactalbumin (apo-α-LA) to PC vesicles as a function of pH. The binding was maximal at pH values which favor the formation of the molten globule state. As an increase of hydrophobic surface is observed in the molten globule state, this conformational state can provide a molecular basis for insertion of soluble proteins into membranes. The membrane-bound complex formed at low pH (3.0) could be isolated and was found to be stable at neutral pH. The structural characterization of the apo-α-LA-PC complex was studied by fluorescence quenching using iodide, acrylamide, and 9,10-dibromostearic acid. The results obtained indicated that some of the tryptophans of apo-α-LA were buried in the membrane interior and some were exposed on the outer side. Fluorescence quenching and CD studies indicated the membrane-bound conformation of apo-α-LA was some conformational state that is between the soluble, fully folded conformation and the molten globule state.  相似文献   

17.
The unusual salt-dependent behavior of the homodimeric flavoenzyme NADH oxidase from Thermus thermophilus in acidic pH has been studied using circular dichroism (CD) and sedimentation velocity. The native-like secondary and quaternary structures in acidic low ionic strength conditions were significantly perturbed by the addition of salts. The peptide region of the CD spectra showed a major salt-induced conformational change in the protein secondary structure. Sedimentation velocity experiments showed dissociation of the homodimeric structure of NADH oxidase in the presence of salt (>1 M). The new acidic conformation of the protein was stabilized by high ionic strength as indicated by a salt-induced increase in the melting temperature of the protein, and by a shift in the apparent pK(a) values of the conformational transition to a less acidic pH. Distortion of the dominant alpha-helical signal was expressed as the disappearance of the parallel polarized Moffitt exciton band at 208 nm without an accompanying loss of amplitude of n-->pi* electronic transitions at 222 nm. The unusual CD spectra correlated qualitatively with the theoretically calculated CD spectra of short alpha-helical structures and/or twisted beta-sheets. Differences between the experimentally obtained CD spectra and theoretical calculations (AGADIR) of the alpha-helical content of NADH oxidase indicate a role for non-local interactions in the protein conformation at high ionic strength and low pH. These findings indicate the importance of the homodimeric interface and electrostatic interactions for maintaining the structural integrity of this thermophilic protein.  相似文献   

18.
A recombinant form of the peptide N-terminally positioned from proSP-B (SP-BN) has been produced in Escherichia coli as fusion with the Maltose Binding Protein, separated from it by Factor Xa cleavage and purified thereafter. This protein module is thought to control assembly of mature SP-B, a protein essential for respiration, in pulmonary surfactant as it progress through the progressively acidified secretory pathway of pneumocytes. Self-aggregation studies of the recombinant propeptide have been carried out as the pH of the medium evolved from neutral to moderately acid, again to neutral and finally basic. The profile of aggregation versus subsequent changes in pH showed differences depending on the ionic strength of the medium, low or moderate, and the presence of additives such as L-arginine (a known aggregation suppressor) and Ficoll 70 (a macromolecular crowder). Circular dichroism studies of SP-BN samples along the aggregation process showed a decrease in α-helical content and a concomitant increase in β-sheet. Intrinsic fluorescence emission of SP-BN was dominated by the emission of Trp residues in neutral medium, being its emission maximum shifted to red at low pH, suggesting that the protein undergoes a pH-dependent conformational change that increases the exposure of their Trp to the environment. A marked increase in the fluorescence emission of the extrinsic probe bis-ANS indicated the exposure of hydrophobic regions of SP-BN at pH 5. The fluorescence of bis-ANS decreased slightly at low ionic strength, but to a great extent at moderate ionic strength when the pH was reversed to neutrality, suggesting that self-aggregation properties of the SP-BN module could be tightly modulated by the conditions of pH and the ionic environment encountered by pulmonary surfactant during assembly and secretion.  相似文献   

19.
Globular protein stability: aspects of interest in protein turnover   总被引:1,自引:0,他引:1  
The conformational stability of globular proteins is remarkably low. Under physiological conditions, the native globular conformation is only from 5 to 15 kcal/mole more stable than unfolded conformations. In addition, small changes in the structure of a protein such as removing one terminal residue or cleaving a single peptide bond frequently lead to a substantial decrease in the stability. Likewise, single substitutions in the amino acid sequence can increase or decrease the stability by several kilocalories per mole. The low conformational stability of globular proteins and the sensitivity to small changes in structure suggest a possible role for conformational stability in the intracellular degradation of proteins. Several lines of evidence from in vivo studies of protein degradation are consistent with this idea.  相似文献   

20.
Alkaline pH induced conformational changes in different domains of bovine serum albumin were studied by using domain specific ligands: chloroform, bilirubin and diazepam for domains I, II and III respectively. The effect of alkaline pH on the secondary structure of BSA was monitored by far-UV CD in the range 250 nm to 200 nm. The pH profiles of BSA in the alkaline region showed a two-step change, one corresponding to N<-->B transition (pH 7.5 to 9.0) and the other to B --> U (pH 11.0 to 13.5). Binding of chloroform decreased continuously on increasing pH, whereas binding of diazepam, remained unchanged up to pH 9 and decreased thereafter. In contrast, binding of bilirubin gradually increased up to pH 11.0 and decreased thereafter reaching a value similar to one obtained with native BSA at pH 11.5. Above pH 11.5, bilirubin binding decreased and was abolished completely at pH 12.5. In the pH region 7.5 to 11.0, a continuous decrease in chloroform binding (pH 7.5 to 9.5) and a late decrease in diazepam binding (pH 9.5 to 11.0) suggested major loss of native conformation of domain I followed by domain III during alkaline induced unfolding of BSA. However, a significant increase in bilirubin binding showed a favorable conformational rearrangement in domain II in this pH region (pH7.5 to 11.0). Further, a nearly complete abolishment of bilirubin binding to BSA and significant loss of secondary structure around pH 12.5 indicated that domain II was more resistant to alkaline pH and unfolds only at extreme alkalinity. Taken together, these data suggest that unfolding of three domains of BSA follow the following order of susceptibility towards alkaline denaturation of BSA domain I>domain III>domain II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号