首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
野豌豆属4种植物种子萌发的积温模型分析   总被引:1,自引:0,他引:1       下载免费PDF全文
以青藏高原野豌豆属窄叶野豌豆(Vicia angustifolia)、山野豌豆(V. amoena)、歪头菜(V. unijuga) 3种野生植物与一种当地栽培植物救荒野豌豆(箭筈豌豆) (V. sativa) ‘兰箭3号’种子为材料, 在5、10、15、20、25及30 ℃下进行萌发实验, 应用种子萌发的积温模型对上述4种植物萌发对温度的响应特征进行了比较分析。结果表明: 1)基于萌发速率(1/Tg)对种子萌发温度最低温Tb值的估计受萌发率(g)的影响较小; 与此不同, 除‘兰箭3号’种子外, 对萌发最高温Tc值的估计, 受到g的显著影响。 这表明种群内所有种子个体萌发的Tb值相对恒定, 但Tc值在有些物种中变异较大; 2)基于重复概率单位回归分析估计的种子萌发Tb值与基于萌发速率估计的值较为接近; 而由此方法估计的Tc值则与萌发率为50%时的估计值较为接近; 3)相比多年生豆科植物歪头菜和山野豌豆, 一年生豆科植物箭筈豌豆‘兰箭3号’与窄叶野豌豆具有相对较低的TbTc值; 4)积温模型可准确地预测休眠破除后豆科植物种子在不同温度条件下的萌发进程。  相似文献   

2.
The physiological and biochemical changes associated with and resulting in adaptation to both sub- and supra-optimal temperatures are presented for the thermophilic cyanophyte Synechococcus lividus Copeland. The optimum temperature for growth was 45 C. An increase in the optimum temperature of photosynthesis from 50 to 55 C was shown for cells grown at the supra-optimum temperature of 57 C; whereas, cells grown at the sub-optimal temperature of 35 C exhibited a decrease in the optimal temperature from 50 to 45 C for 14CO2 uptake. These changes in optimal temperatures are interpreted as adaptive. Associated with the 5 C increase in optimal temperature for photosynthesis was an increase in chlorophyll a, plastoquinone A, and activity of ribulose-1,5-diphosphate carboxylase (RuDP carboxylase). However, the increase in the temperature optimum for 57 C grown cells was associated with a reduced O2 yield correlated with a reduced ferricyanide photoreduction capacity. RuDP carboxylase activity decreased rapidly above 55 C. Therefore reduced rates above 55 C resulted from damage to ferricyanide reducing systems and reduced RuDP-carboxylase activity, whereas low photosynthesis rates at sub-optimal temperatures were probably due to rate limiting effect of low temperatures on RuDP carboxylase activity with no evidence of damage to ferricyanide photoreducing systems.  相似文献   

3.
Thermoinhibition, or failure of seeds to germinate when imbibed at warm temperatures, can be a significant problem in lettuce (Lactuca sativa L.) production. The reliability of stand establishment would be improved by increasing the ability of lettuce seeds to germinate at high temperatures. Genes encoding germination- or dormancy-related proteins were mapped in a recombinant inbred line population derived from a cross between L. sativa cv. Salinas and L. serriola accession UC96US23. This revealed several candidate genes that are located in the genomic regions containing quantitative trait loci (QTLs) associated with temperature and light requirements for germination. In particular, LsNCED4, a temperature-regulated gene in the biosynthetic pathway for abscisic acid (ABA), a germination inhibitor, mapped to the center of a previously detected QTL for high temperature germination (Htg6.1) from UC96US23. Three sets of sister BC3S2 near-isogenic lines (NILs) that were homozygous for the UC96US23 allele of LsNCED4 at Htg6.1 were developed by backcrossing to cv. Salinas and marker-assisted selection followed by selfing. The maximum temperature for germination of NIL seed lots with the UC96US23 allele at LsNCED4 was increased by 2–3°C when compared with sister NIL seed lots lacking the introgression. In addition, the expression of LsNCED4 was two- to threefold lower in the former NIL lines as compared to expression in the latter. Together, these data strongly implicate LsNCED4 as the candidate gene responsible for the Htg6.1 phenotype and indicate that decreased ABA biosynthesis at high imbibition temperatures is a major factor responsible for the increased germination thermotolerance of UC96US23 seeds.  相似文献   

4.
Use of the Weibull Function to Calculate Cardinal Temperatures in Faba Bean   总被引:1,自引:0,他引:1  
The onset of germination of faba bean seeds at constant temperaturewas progressively delayed as that temperature diverged froman optimum of 25.5 ?C. At temperatures below 10 ?C, or above28 ?C, the maximum germination percentage fell to below 90%.There was no germination at 39 ?C. Positive and negative linearrelationships were established between the constant temperaturesand the rates of progress of germination to different percentiles,at sub-optimal and supra-optimal temperatures, respectively.Like germination rates, base temperature (Tb) declined from3.71 to –0.83 ?C as the percentile value increased from10% to 80%. Caution was urged in extrapolating beyond the experimentaldata set. Differences in the ceiling temperature (Tc) with percentilecould not be discerned. Cumulative germination progress curves at each temperature weremodelled by the Weibull, logistic, and cumulative normal distributionfunctions. Cardinal temperatures (Tb and Tc) calculated fromthese data reasonably approximated the actual data. The Weibullfunction demonstrated a good approximation at all percentilelevels, while the logistic and cumulative normal distributionfunctions, as a result of their inherent symmetry, deviatedat the extreme percentiles. It was concluded that the Weibullfunction not only accurately modelled cumulative germinationbut could also be used in the calculation of cardinal temperatures. Key words: Seed germination rate, cardinal temperatures, faba bean, Weibull function, probit and logic scales  相似文献   

5.
Ellis, R. H. and Butcher, P. D. 1988. The effects of primingand ‘natural’ differences in quality amongst onionseed lots on the response of the rate of germination to temperatureand the identification of the characteristics under genotypiccontrol —J. exp. Bot. 39: 935–950. A screening procedure was applied to define the response ofthe rate of seed germination to sub-and supra-optimal temperaturesfor different lots or sub-lots of two onion (Allium cepa L.)cultivars.Three sub-lots of the cultivar White Lisbon were derived froma control lot by osmotic priming (–1.4 MPa, 20 °C.7 d) alone, by priming and drying and by priming, drying andsubsequently storing the seeds for 7 weeks at 2–5 °C.The major effect of priming was to reduce the thermal time forgermination at both sub- and supra-optimal temperatures. Primingalone also altered the distribution of thermal times at sub-optimaltemperatures. A new equation is presented to describe this variation.In contrast, priming had no consistent effect on base temperature(Tb and little effect on the distribution of ceiling temperatures[Te(G)]. For the control lot of White Lisbon Tb was 4°C,whilst the best common estimate of Tb for all four sub-lotswas 3.5°C. The mean estimate of Tc(50) for the control,primed and primed and dried sub-lots was 35.5°C.Comparisonof three lots of the cultivar Senshyu Semi Globe Yellow of widely-differingviability showed substantial differences in the thermal timefor germination at sub-optimal temperatures, but no significantdifferences in Tb (P>0.10), the common estimate being 4°C.There was a significant negative correlation between probitpercentage viability and the logarithm of the thermal time for50% germination at sub-optimal temperatures amongst the threelots (P<0.05). The work suggests that base temperature forgermination is a genotypic characteristic which is unaffectedby differences in seed quality. It also shows that the effectof priming, quantified as a reduction in thermal time requirementsfor germination, varies amongst the seeds within a lot. Key words: -Onion, seed germination rate, temperature, priming  相似文献   

6.
Fluridone, an inhibitor of ABA biosynthesis, restored the seedgermination of lettuce (Lactuca sativa L. cv. Grand Rapids)and many other plant species at supra-optimal temperatures.ABA content in lettuce seeds after imbibition quickly decreasedat 23°C, but not at 33°C (a supraoptimal temperature).Fluridone caused a decrease in ABA content at 33°C, whichsuggests that the maintenance of high ABA content could be responsiblefor high-temperature inhibition of germination of lettuce seeds.This probably results from an increase in the rate of ABA biosynthesisat the higher temperature. The present study indicates thatABA plays a decisive role in the regulation of seed germinationat supraoptimal temperatures. 1 Corresponding author: fax 81-22-717-8834; e-mail yoshi@bios.tohoku.ac.jp  相似文献   

7.
Summary Seeds of erect and prostrate plants ofTrianthema govindia Buch. ham. ex DC., growing in shade and open respectively, differed significantly in seed weight and percentage germination. Effect of high temperature exposure to these seeds has been studied in view of water depletion, imbibition and seed germination. The seeds of both the types were subjected to temperatures of 40, 50, 60, and 70° C for 24, 48, 96, and 144 hours. The three factors viz., loss of water, water imbibition and germination of seeds were positively correlated to the duration of treatment at different temperatures. A highly significant positive correlation was also observed between moisture depletion and imbibition, and between imbibition and germination. The percentage germination was favoured at 40° C in both the types of seeds and was increased with the increase of treatment duration. However, at higher temperatures (50 and 60° C) the percentage declined while at 70° C the seeds lost their vitality.  相似文献   

8.
9.
Most cultivars of tomato, Lycopersicon esculentum, are sensitive to low (chilling) temperatures (0–15 °C) during seed germination; however, genetic sources of cold (chilling) tolerance have been identified within the related wild species. The purpose of this study was to identify quantitative trait loci (QTLs) that contribute to cold tolerance during germination in tomato using a backcross population of an interspecific cross between a cold-sensitive tomato line (NC84173, recurrent parent) and a L. pimpinellifolium accession (LA722) that germinates rapidly under low temperatures. A total of 119 BC1 individuals were genotyped for 151 restriction fragment length polymorphism (RFLP) markers and a genetic linkage map was constructed. The parental lines and 119 BC1S1 families (self-pollinated progeny of the BC1 individuals) were evaluated for germination at a low temperature (11±0.5 °C). Germination was scored visually as radicle protrusion at 8 h intervals for 28 consecutive days. Germination response was analyzed by the survival analysis and the times to 25, 50 and 75% germination were calculated. In addition, a germination index (GI) was calculated as the weighted mean of the time from imbibition to germination for each family/line. Two QTL mapping techniques, interval mapping (using MAPMAKER/QTL) and single-point analysis (using QGENE), were used to identify QTLs. The results of both methods were similar and two chromosomal locations (3–5 putative QTLs) with significant effects on low temperature germination were identified. The L. pimpinellifolium accession had favorable QTL alleles on chromosomes 1 and NC84173 had favorable QTL alleles on chromosome 4. The percentage of phenotypic variation explained (PVE) by individual QTLs ranged from 11.9% to 33.4%. Multilocus analysis indicated that the cumulative action of all significant QTLs accounted for 43.8% of the total phenotypic variance. Digenic epistatic interactions were evident between two of the QTL-linked markers and two unlinked markers. Transgressive phenotypes were observed in the direction of cold sensitivity. The results indicate that low temperature germination of tomato seed can be improved by marker-assisted selection.  相似文献   

10.
Dormant and after-ripened seeds of Agrostemma githago (corn-cockle)were pretreated in polyethylene glycol 400 (PEG) solutions attemperatures which would have allowed germination if the seedshad been imbibed in water, viz. 4?C or 20?C for after-ripenedseeds, and 4?C for dormant seeds. Pretreated seeds germinatedfaster than untreated seeds. The maximum decrease of the T50(time to 50% germination) was 66%. Furthermore, pretreated seedswere capable of germination at supra-optimal temperatures whichotherwise had inhibited germination completely (20?C for dormantseeds and 30?C for after-ripened seeds). The percentage germinationat a supra-optimal temperature was considerably higher whenthe seeds had been primed at a temperature at which they developedmore extension power. The advantageous effects of the osmotic pretreatment were lessthan might be expected when the osmoticum had inhibited onlycell elongation. This was largely, if not fully, due to a generaldetrimental effect of osmotic stress and not to a selectiveinhibition of the processes which occur during the pregerminativephase in preparation for growth. Thus, during priming seedscomplete all or almost all processes which occur in water-imbibedseeds prior to radicle emergence. Key words: Agroatemma githago, dormancy, germination, germination performance, osmotic stress, priming  相似文献   

11.
Here we report that glucose delays germination of Arabidopsis thaliana (L.) Heynh. seeds at concentrations below those known to inhibit early seedling development. This inhibition acts on embryo growth and is independent of hexokinase (HXK) function. Hormones and hormone inhibitors were applied to the germination media and several hormone biosynthesis and signalling mutants were tested on glucose media to investigate a possible role of abscisic acid (ABA), gibberellin and ethylene in the glucose-induced germination delay. Results indicate that the germination inhibition by glucose cannot be antagonized by ethylene or gibberellin and is independent of the HXK1/ABA/ABI4 signalling cascade. These findings suggest that there is a separate regulatory pathway independent of ABI2/ABI4/ABI5. Thus, in a relatively short time frame sugars utilize different signalling cascades to inhibit germination and post-germination growth, underlining the complexity of sugar responses.Abbreviations ABA Abscisic acid - ABI ABA insensitive - ACC 1-Aminocyclopropane-1-carboxylic acid - BR Brassinosteroid - CAB Chlorophyll a/b-binding protein - FUS3 Fusca3 - GA Gibberellin - GA 3 Gibberellic acid - HXK Hexokinase - LEC1 Leafy cotyledon1 - RBCS Ribulose-1,5-bisphosphate carboxylase small subunit - WT Wild type  相似文献   

12.
13.
The QTLs controlling germination and early seedling growth were mapped using seeds acquired from mapping population and parental lines of Chinese Spring and SQ1 grown under water-limited conditions, severe drought (SDr) and well-watered plants (C). Germination ability was determined by performing a standard germination test based on the quantification of the germination percentage (GP24) of seeds incubated for 24 h at 25°C in the dark. Early seedling growth was evaluated on the basis of the length of the root and leaf at the 6th day of the experiment. QTLs were identified by composite interval mapping method using Windows QTLCartographer 2.5 software. For the traits studied, a total of thirty eight additive QTLs were identified. Seventeen QTLs were mapped in C on chromosomes: 1A, 2A, 7A, 1B, 2B, 3B, 4B, 5B, 6B, 7B, 2D, 3D, 4D and 6D, while twenty one QTLs were identified in SDr on chromosomes: 1A, 2A, 5A, 2B, 3B, 4B, 5B, 6B, 7B, 3D, 5D and 6D. Most of the QTLs for GP and early leaf growth parameters were clustered on chromosome 4B (associated with the Rht-B1 marker) both in C and SDr plants. The results indicate the complex and polygenic nature of germination.  相似文献   

14.
Positive linear relationships were shown between constant temperaturesand the rates of progress of germination to different percentiles,G, for single populations of each of five genotypes of chickpea(Cicer anetinum L.). The base temperature, Tb, at which therate of germination is zero, was 0·0°C for all germinationpercentiles of all genotypes. The optimum temperature, To(G),at which rate of germination is most rapid, varied between thefive genotypes and also between percentiles within at leastone population. Over the sub-optimal temperature range, i.e.from Tb to To(G), the distribution of thermal times within eachpopulation was normal. Consequently a single equation was appliedto describe the influence of sub-optimal temperatures on rateof germination of all seeds within each population of each genotype.The precision with which optimum temperature, Tb(G), could bedefined varied between populations. In each of three genotypesthere was a negative linear relationship between temperatureabove Tb(G) and rate of germination. For all seeds within anyof these three populations thermal time at supra-optimal temperatureswas constant. Variation in the time taken to germinate at supra-optimaltemperatures was a consequence of normal variation in the ceilingtemperature, To(G)—the temperature at or above which rateof progress to germination percentile G is zero. A new approachto defining the response of seed germination rate to temperatureis proposed for use in germplasm screening programmes. In two populations final percentage germination was influencedby temperature. The optimum constant temperature for maximumfinal germination was between 10°C and 15°C in thesepopulations; approximately 15°C cooler than the optimumtemperature for rate of germination. It is suggested that laboratorytests of chickpea germination should be carried out at temperaturesbetween 10°C and 15°C. Key words: Chickpea, seed germination rate, temperature  相似文献   

15.
A linear relationship between constant temperatures in the sub-optimaltemperature range and germination rate is shown in both Quercusrobur L and Castanea sativa Mill germinated under nominal darkconditions. The mean base temperature was interpolated for Qrobur as 0 8 ? or 2-4 ?, depending on seed lot provenance, andfor C. sativa as 1 -4? The optimum temperature for germinationin Q. robur was about 20? compared with around 28 ? in C. sativaOver the sub-optimal temperature range the distribution of thermaltimes was log-normal for each population studied their spreadvarying both between Q robur seed lots and between species However,in C. sativa germinated close to the mean base temperature,the distribution in thermal times was reduced Thermal timesto germination were decreased in Q. robur and C sativa by approximately0 3 and 0-5 log-units, respectively, when the pericarp was removed,i.e in the seeds, but the sensitivity of the response remainedrelatively unaltered In both species the germination rate was the same when nominaldark or safe green light conditions were employed during thegermination test. However, at 21 ? Q robur exhibited the highirradiance reaction (HIR) at photon doses above 30mmol m–2d–1. HIR first affected the germination rate by an inhibitionof radicle extension The sensitivity of the response to thermaltime was reduced as photon dose increased. This photo-inhibitionwas exacerbated at supra-optimal temperatures. In contrast,C. sativa germination rate at 26 ? was little influenced bylight at a photon dose of 752 mmol m–2 d–1 Key words: Seed germination rate, temperature, thermal time, light, photon dose  相似文献   

16.
Summary The influence of soil temperature was examined on niacin and thiamine concentration in honey mesquite (Prosopis glandulosa var.glandulosa) seedlings. The seedlings were grown in soil temperature regimes of 21, 27, and 32°C in a controlled environment growth room. Nodulation randomly occurred on the roots of the seedlings, necessitating separate analysis according to the occurrence of nodulation. Roots of nodulated seedlings from the 21°C soil temperature regime contained greater quantities of niacin and thiamine compared to root samples from seedlings grown in either 27 or 32°C regimes. Niacin concentration of non-nodulated seedlings was highest in samples from seedlings grown in the 27°C soil temperature regime and lowest in samples from seedlings grown in the 21°C regime. Thiamine concentration was the greatest from non-nodulated seedlings grown in the 27°C soil temperature regime, while the thiamine concentration of non-nodulated samples from the 32°C regime was the least. Optimal soil temperature for honey mesquite root growth appears to be about 27°C. At sub-optimal soil temperatures niacin might have limited ‘growth’ while at supra-optimal soil temperatures, thiamine might be a limiting factor. College of Agricultural Sciences Contribution No. T-9-164.  相似文献   

17.
Ambient temperature is one of the major environmental factors that modulate plant growth and development. There is extensive natural genetic variation in thermal responses of plants exemplified by the variation exhibited by the accessions of Arabidopsis thaliana. In this work we have studied the enhanced temperature response in hypocotyl elongation and flowering shown by the Tsu‐0 accession in long days. Genetic mapping in the Col‐0 × Tsu‐0 recombinant inbred line (RIL) population identified several QTLs for thermal response including three major effect loci encompassing candidate genes FRIGIDA (FRI), FLOWERING LOCUS C (FLC) and FLOWERING LOCUS T (FT). We confirm and validate these QTLs. We show that the Tsu‐0 FRI allele, which is the same as FRI‐Ler is associated with late flowering but only at lower temperatures in long days. Using transgenic lines and accessions, we show that the FRI‐Ler allele confers temperature‐sensitive late flowering confirming a role for FRI in photoperiod‐dependent thermal response. Through quantitative complementation with heterogeneous inbred families, we further show that cis‐regulatory variation at FT contributes to the observed hypersensitivity of Tsu‐0 to ambient temperature. Overall our results suggest that multiple loci that interact epistatically govern photoperiod‐dependent thermal responses of A. thaliana.  相似文献   

18.
Fluctuating temperature plays a critical role in determining the timing of seed germination in many plant species. However, the physiological and biochemical mechanisms underlying such a response have been paid little attention. The present study investigated the effect of plant growth regulators and cold stratification in regulating Leymus chinensis seed germination and dormancy response to temperature. Results showed that seed germination was less than 2 % at all constant temperatures while fluctuating temperature significantly increased germination percentage. The highest germination was 71 % at 20/30 °C. Removal of the embryo enclosing material of L. chinensis seed germinated to 74 %, and replaced the requirement for fluctuating temperature to germinate, by increasing embryo growth potential. Applications of GA4+7 significantly increased seed germination at constant temperature. Also, inhibition of GA biosynthesis significantly decreased seed germination at fluctuating temperatures depending upon paclobutrazol concentration. This implied GA was necessary for non-dormant seed germination and played an important role in regulating seed germination response to temperature. Inhibition of ABA biosynthesis during imbibition completely released seed dormancy at 20/30 °C, but showed no effect on seed germination at constant temperature, suggesting ABA biosynthesis was important for seed dormancy maintenance but may not involve in seed germination response to temperature. Cold stratification with water or GA3 induced seed into secondary dormancy, but this effect was reversed by exogenous FL, suggesting ABA biosynthesis during cold stratification was involved in secondary dormancy. Also, cold stratification with FL entirely replaced the requirement of fluctuating temperature for germination with seeds having 73 % germination at constant temperature. This appears to be attributed to inhibition of ABA biosynthesis and an increase of GA biosynthesis during cold stratification, leading to an increased embryo growth potential. We suggest that fluctuating temperature promotes seed germination by increasing embryo growth potential, mainly attributed to GA biosynthesis during imbibitions. ABA is important for seed dormancy maintenance and induction but showed less effect on non-dormant seed germination response to temperature.  相似文献   

19.
Flow cytometric determination of cell cycle activation duringimbibition and visible germination in five families of jackpine (Pinus banksiana Lamb.) embryos and megagametophytes revealedthat in seeds that had undergone no imbibition the majorityof cells were in the 2C state. As the imbibition period increased,less of the nuclei were blocked in the G0/G1 state and morebecome active in the cell cycle. The augmentation in the nucleiactive in the 2C–4C cycle as well as those with DNA levelshigher than the 4C state occured gradually and preceeded radicleemergence. In megagametophyte tissue examined at various stagesof imbibition, cell cycle activity became apparent rapidly followingimbibition. In nuclei of green and white embryos examined separatelythe 2frequency distributions were significantly different forall three families after 144h. As imbibition period increased,fewer nuclei from the green embryos were blocked in the 2C state,and more became active in the 2C–4C cell cycle. This wasnot the case for white embryos where no significant linear relationwas noted. Cell cycle activity in the hypocotyl+cotyledons regionand the emerging radicle were examined separately. Functionalrelations found in the hypocotyl+cotyledons region were notevident in the radicle. As visible germination proceeded, cellcycle activity in the hypocotyl + cotyledons region for thisperiod of germination showed a reversal of the activity notedduring imbibition: fewer nuclei were active and once again ahigher proportion were found in the 2C state. cell cycle; C levels; DNA content; flow cytometry; germination; imbibition; jack pine; megagametophyte; Pinus banksiana Lamb  相似文献   

20.
Hypocotyl growth occurs as a result of an interaction between environmental factors and endogenous phytohormones. In Arabidopsis, high temperature promotes auxin synthesis to increase hypocotyl growth. We previously showed that exogenously provided auxin stimulates expression of the brassinosteroid (BR) biosynthetic gene DWARF4. To determine whether temperature-induced hypocotyl elongation depends on BR biosynthesis, we examined the morphological responses to high temperature and the expression pattern of DWF4pro:GUS in different genetic backgrounds, which are as follows: Ws-2 wild-type, iaa19/msg2, bri1-5, and dwf7-1. In contrast to the wild-type, growth of the three genotypes at 29°C did not significantly increase hypocotyl length; whereas, with the exception of iaa19/msg2, the roots were elongated. These results confirm that BR biosynthesis and signaling pathways are required for hypocotyl growth at high temperature. Furthermore, a GUS histochemical assay revealed that a temperature of 29°C greatly increased DWF4pro:GUS expression in the shoot and root tips compared to a temperature of 22°C. Quantitative measurements of GUS activity in DWF4pro:GUS revealed that growth at 29°C is similar to the level of growth after addition of 100 nM IAA to the medium. Our results suggest that temperature-dependent synthesis of free auxin stimulates BR biosynthesis, particularly via the key biosynthetic gene DWF4, and that the BRs thus synthesized are involved in hypocotyl growth at high temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号