首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
L K Opresko  R A Karpf 《Cell》1987,51(4):557-568
We examined the role of proteolytic ligand modification in endosomal targeting using vitellogenin (VTG) uptake by Xenopus oocytes as a model system. Non-cleavable VTG is internalized, but does not appear in yolk platelets. We identified two inhibitors of VTG processing into the yolk proteins: the ionophore monensin and pepstatin A, a specific inhibitor of cathepsin D. Pepstatin neither affected ligand binding and internalization, nor inhibited the degradation of nonspecifically incorporated proteins, whereas monensin inhibited all of these processes. Inhibiting VTG processing prevented its deposition into yolk platelets by strongly interfering with endosome-yolk platelet fusion. Monensin treatment resulted in morphologically abnormal endosomes, while pepstatin only inhibited VTG cleavage and the subsequent fusion of endosomes with yolk platelets. Since VTG cleavage is initiated prior to its deposition in platelets, we postulate that ligand proteolysis could be necessary for normal endosomal targeting.  相似文献   

2.
A cysteine, cathepsin B-like proteinase activity has been found in Drosophila embryos. It appears associated with yolk granules and its activity during embryogenesis correlates well with the degradation of these organelles. In mature oocytes, the enzyme is found in an inactive form which may be activated by limited proteolysis by a serine proteinase also present in oocytes. In early embryos, when solubilized in vitro, the cathepsin B-like proteinase is found in a form of high molecular mass (approx 1000 kDa). This decreases with development down to about 39 kDa, likely the mass of the free proteinase. The heavy form apparently results from the tight association with a yolk protein complex. The proteinase has been found in vitro to degrade readily the yolk polypeptides. The proteinase activity increases during early embryogenesis in parallel with the decrease in molecular weight of the heavy form, and decreases to low values in late embryos. We have also found that ammonium chloride can inhibit in vivo the degradation of yolk and, in parallel, the developmental inactivation of the proteinase. The results altogether suggest that the cathepsin B-like proteinase is implicated in yolk degradation in Drosophila.  相似文献   

3.
A novel method has been developed using ferric particles to label endosomes, and to achieve magnetic sorting of the various endocytic compartments involved in lipoprotein uptake into cells. Ferric particles conjugated to a receptor-recognized ligand are bound to coated membrane pits and become internalized into the cytoplasm inside coated vesicles. After apparent fusion of the vesicles to tubular endosomes, the conjugates accumulate and finally discharge into multivesicular endosomes. Pulse-chase experiments elucidate the pathway of internalized conjugates and allow both early compartments (pinosomes and tubular endosomes) and late compartments (multivesicular endosomes and storage organelles) to be selectively labelled. After ferroloading of the various transport compartments, the cells are homogenized and subcellularly fractionated. Sorting of labelled endosomes is performed by a specially designed "free-flow" magnetic chamber. Prophase I-arrested oocytes of the toad Xenopus laevis are used as a model system for studying the transport pathway and the conversion of the yolk precursor vitellogenin. It is possible to follow the route of internalization of vitellogenin-iron conjugates via coated pits, coated vesicles, uncoated vesicles, tubular endosomes, multivesicular endosomes, and light primordial yolk platelets. These endosomes shuttle the ferric particles together with the vitellogenin from oolemma to performed heavy yolk organelles which are still growing. In addition, these various compartments can be isolated according to their function and subjected to electron microscopy and to gel electrophoresis for detailed characterization of their limiting membranes as well as their contents.  相似文献   

4.
Utilization of yolk platelets in cleaving embryos of Rana temporaria and Bufo bufo was studied by different methods. Morphological observations of yolk platelets of R. temporaria embryos at tail bud stage by transmission electron microscopy indicated four initial phases of platelet degradation. The pattern of these events is similar to that found in embryos of B. bufo. The morphological observations were confirmed by energy-dispersive X-ray microanalysis of the elemental content of platelets and by selected-area electron diffraction of platelet cores. Covalently bound sulphur content decreased during cleavage and the content of different inorganic ions changed, whereas the structure of crystalline core remained constant. Morphological changes found in the amorphous cortex of yolk platelets were due to their utilization. Stereological measurements indicated that utilization during cleavage increased, but only the initial phases of yolk platelet degradation were seen. The volume of the cortex did not decrease and the crystalline core did not fragment.  相似文献   

5.
《The Journal of cell biology》1993,123(6):1373-1387
We have used an in vitro fusion assay to study the mechanisms of transport from early to late endosomes. Our data show that the late endosomes share with the early endosomes a high capacity to undergo homotypic fusion in vitro. However, direct fusion of early with late endosomes does not occur. We have purified vesicles which are intermediates during transport from early to late endosomes in vivo, and analyzed their protein composition in two-dimensional gels. In contrast to either early or late endosomes, these vesicles do not appear to contain unique proteins. Moreover, these vesicles undergo fusion with late endosomes in vitro, but not with each other or back with early endosomes. In vitro, fusion of these endosomal vesicles with late endosomes is stimulated by polymerized microtubules, consistent with the known role of microtubules during early to late endosome transport in vivo. In contrast, homotypic fusion of early or late endosomes is microtubule-independent. Finally, this stimulation by microtubules depends on microtubule-associated proteins and requires the presence of the minus-end directed motor cytoplasmic dynein, but not the plus-end directed motor kinesin, in agreement with the microtubule organization in vivo. Our data strongly suggest that early and late endosomes are separate, highly dynamic organelles, which are connected by a microtubule-dependent vesicular transport step.  相似文献   

6.
During embryogenesis in grass shrimp the capacity to scavenge oxyradicals increased as measured by the Total Oxyradical Scavenging Capacity (TOSC) assay. The increase in TOSC during embryogenesis was associated with increasing concentrations of a number of antioxidants, including coenzyme Q (ubiquinone), alpha-tocopherol and reduced glutathione. Glutathione concentrations ranged from 0.004 to 0.005 nmol/embryo in early embryo stages and reached concentrations between 0.16 to 0.23 nmol/embryo in late embryo stages. Ascorbate remained essentially constant (0.16-0.20 nmol/embryo) throughout embryogenesis and may provide the preponderance of TOSC during early embryo development. Carotenoids were associated with yolk lipovitellin and these antioxidants decreased as yolk was absorbed during embryogenesis. Astaxanthin and beta-carotene were identified in embryos with astaxanthin always the principal carotenoid. In early embryo stages there are maternally derived antioxidants but as embryogenesis proceeds there is an assembly of a complex antioxidant system by newly formed cells and tissues.  相似文献   

7.
Relations between lysosomes and yolk platelets of amphibian eggs have been suggested. This work demonstrates the presence of acid hydrolases in oocytes induced to ovulate in vitro. About 40% of the acid hydrolases are found in a sedimentable fraction, and, in accordance with the lysosomal concept, they display structural latency. Biochemical data did not indicate any association between lysosomal enzymes and yolk platelets. The mechanism of yolk resorption is discussed and it is suggested that the fusion of lysosomes and yolk platelets might be one of the mechanisms involved in yolk digestion.  相似文献   

8.
Relations between lysosomes and yolk platelets of amphibian eggs have been suggested. This work demonstrates the presence of acid hydrolases in oocytes induced to ovulate in vitro. About 40% of the acid hydrolases are found in a sedimentable fraction, and, in accordance with the lysosomal concept, they display structural latency. Biochemical data did not indicate any association between lysosomal enzymes and yolk platelets. The mechanism of yolk resorption is discussed and it is suggested that the fusion of lysosomes and yolk platelets might be one of the mechanisms involved in yolk digestion.  相似文献   

9.
The precise function of the yolk platelets of sea urchin embryos during early development is unknown. We have shown previously that the chemical composition of the yolk platelets remains unchanged in terms of phospholipid, triglyceride, hexose, sialic acid, RNA, and total protein content after fertilization and early development. However, the platelet is not entirely static because the major 160-kD yolk glycoprotein YP-160 undergoes limited, step-wise proteolytic cleavage during early development. Based on previous studies by us and others, it has been postulated that yolk platelets become acidified during development, leading to the activation of a cathepsin B-like yolk proteinase that is believed to be responsible for the degradation of the major yolk glycoprotein. To investigate this possibility, we studied the effect of addition of chloroquine, which prevents acidification of lysosomes. Consistent with the postulated requirement for acidification, it was found that chloroquine blocked YP-160 breakdown but had no effect on embryonic development. To directly test the possibility that acidification of the yolk platelets over the course of development temporally correlated with YP-160 proteolysis, we added 3-(2,4-dinitroanilo)-3-amino-N-methyldipropylamine (DAMP) to eggs or embryos. This compound localizes to acidic organelles and can be detected in these organelles by EM. The results of these studies revealed that yolk platelets did, in fact, become transiently acidified during development. This acidification occurred at the same time as yolk protein proteolysis, i.e., at 6 h after fertilization (64-cell stage) in Strongylocentrotus purpuratus and at 48 h after fertilization (late gastrula) in L. pictus. Furthermore, the pH value at the point of maximal acidification of the yolk platelets in vivo was equal to the pH optimum of the enzyme measured in vitro, indicating that this acidification is sufficient to activate the enzyme. For both S. purpuratus and Lytechinus pictus, the observed decrease in the pH was approximately 0.8 U, from 7.0 to 6.2. The trypsin inhibitor benzamidine was found to inhibit the yolk proteinase in vivo. By virtue of the fact that this inhibitor was reversible we established that the activity of the yolk proteinase is developmentally regulated even though the enzyme is present throughout the course of development. These findings indicate that acidification of yolk platelets is a developmentally regulated process that is a prerequisite to initiation of the catabolism of the major yolk glycoprotein.  相似文献   

10.
The role of primordial yolk platelets (PYPs) in the transport of the yolk precursor vitellogenin to the yolk platelets in Xenopus laevis oocytes has been demonstrated by electron microscopic autoradiography. Within 20 min after exposure of the oocyte to 3H-labeled-vitellogenin, silver grains are associated with small PYPs which are formed by the fusion of endosomes. At 40 min after incorporation of 3H-labeled vitellogenin, autoradiographic silver grains are associated with larger PYPs and with the superficial layer of yolk platelets. Thus, the results demonstrate that PYPs are an intermediate in the transport of vitellogenin from endosomes to yolk platelets. These observations are consonant with the general hypothesis that vitellogenin first associates (binds?) with the plasma membrane, then is incorporated by endocytosis into endosomes which fuse to form PYPs, and finally the contents of the PYPs are eventually deposited into yolk platelets.  相似文献   

11.
Uchiumi T  Uemura I  Okamoto T 《Planta》2007,226(3):581-589
In vitro fertilization (IVF) systems using isolated male and female gametes have been utilized to dissect fertilization-induced events in angiosperms, such as egg activation, zygote development and early embryogenesis, as the female gametophytes of plants are deeply embedded within ovaries. In this study, a rice IVF system was established to take advantage of the abundant resources stemming from rice research for investigations into the mechanisms of fertilization and early embryogenesis. Fusion of gametes was performed using a modified electrofusion method, and the fusion product, a zygote, formed cell wall and an additional nucleolus. The zygote divided into a two-celled embryo 15–24 h after fusion, and developed into a globular-like embryo consisting of an average of 15–16 cells by 48 h after fusion. Comparison of the developmental processes of zygotes produced by IVF with those of zygotes generated in planta suggested that zygotes produced by IVF develop and grow into early globular stage embryos in a highly similar manner to those in planta. Although the IVF-produced globular embryos did not develop into late globular-stage or differentiated embryos, but into irregularly shaped cell masses, fertile plants were regenerated from the cell masses and the seeds harvested from these plants germinated normally. The rice IVF system reported here will be a powerful tool for studying the molecular mechanisms involved in the early embryogenesis of angiosperms and for making new cultivars.  相似文献   

12.
Inorganic 35S-sulfate was injected into Xenopus laevis embryos before first cleavage to study incorporation of the label into the yolk platelets in order to localize glycosaminoglycan synthesis. Electron microscope autoradiography of embryonic thin sections from blastulae and gastrulae revealed that the primary site of label incorporation is at the edge of the yolk platelets, and, to a lesser extent, in their interiors. Autoradiography of isolated yolk platelets, lacking unit membranes, indicated the absence of label. Thus, edge associated label comes from the yolk platelets membrane, and interior label is solubilized in the glycerol-water gradient during yolk platelets isolation. Ruthenium red staining of yolk platelet in situ shows haavy deposits of the dye on the yolk platelet membrane surface facing the cytoplasmic surface. The crystalline main body of isolated yolk platelets does not take up the dye. It appears that continuous synthesis or sulfation of glycosaminoglycan occurs primarily at the outer surface yolk platelet membranes during early development, providing a novel site for this process.  相似文献   

13.
The prawn Macrobrachium borellii has lecithotrophic eggs with highly-abbreviated development. The major yolk component is lipovitellin (LV), a lipoprotein with 30% lipids (by weight). LV consumption during embryogenesis was followed by ELISA and Western blot analysis using an anti-LV polyclonal antibody. No cross-reacting proteins were observed and LV-like lipoproteins were strongly recognized by the antibody in hemolymph (vitellogenin), yolk (LV) and embryos (LVe), as determined by Western Blot analysis. LV decreased significantly along development from 9.4 to 1.1 microg/mg egg. Consumption rate of LV was slow in early embryogenesis, followed by a rapid utilization in late embryonic stages. Significant LVe amounts were still present at hatching. LV apolipoproteins were selectively degraded during embryo development, being the highest molecular weight subunit the most affected. Comparison among in vitro, in vivo and theoretical proteolysis suggested that trypsin may be involved in LV degradation during late embryogenesis. Embryo lipoprotein (HDLe) synthesis was first detected at stage 6. HDLe shared the same density, MW and subunit composition as adult hemolymph HDL(1) and did not cross-react with LV-like lipoproteins. Though expressed at low concentration, it fulfilled embryo needs for lipid transport among organs.  相似文献   

14.
An analysis of carp blastoderm development was carried out in culture after isolation from the yolk cell and its yolk syncytial layer (YSL). The blastoderms were separated from the YSL at four different stages of embryogenesis: the blastula, early epiboly, early gastrula and late gastrula stages. Absence of the YSL in explants was checked by scanning electron microscopy. From observations of living embryos and histological examination of tissues which were formed in explants from all stages studied it was observed that they contained notochordal, muscle and neural tissue as signs of dorsal types of differentiation. Only in explants from the early and late gastrula stages were histotypical tissues organized in an embryonic-like body pattern. The data indicate that mesoderm differentiation in fish embryos is independent from the YSL, contrary to normal pattern formation which needs the presence of the YSL before the onset of gastrulation.  相似文献   

15.
16.
The acid hydrolases of Drosophila are of maternal origin and appear subjected to differentiated control during embryogenesis. The enzymes are found associated with yolk granules. This association decreases during embryogenesis, in parallel with yolk degradation. As suggested before (Medina et al. Arch. Biochem. Biophys., 263 , 355–363) the acid proteinase seems to be involved in the degradation of the yolk protein. The developmental profile of activity of the proteinase fits rather well with its involvement in the degradation of yolk granules. We have isolated intermediates of degradation of these subcellular structures. The intermediates have acid hydrolase activity and decrease in buoyant density during embryogenesis, in parallel with yolk degradation. The electron microscopic analysis has revealed that they are morphologically heterogenuous. A population of yolk granules appears to store mitochondria in their interior. The mitochondrial marker cytochrome oxidase is detected in density gradients associated with the intermediates of degradation, also supporting the storage of mitochondria in yolk granules in early development. The fact that the acid hydrolases are of maternal origin suggests that they have a role during embryogenesis. We propose that acid hydrolase(s) are involved in yolk degradation.  相似文献   

17.
Inorganic 35S-sulfate was injected into Xenopus laevis embryos before first cleavage to study incorporation of the label into the yolk platelets in order to localize glycosaminoglycan synthesis. Electron microscope autoradiography of embryonic thin sections from blastulae and gastrulae revealed that the primary site of label incorporation is at the edge of the yolk platelets, and, to a lesser extent, in their interiors. Autoradiography of isolated yolk platelets, lacking unit membranes, indicated the absence of label. Thus, edge associated label comes from the yolk platelets membrane, and interior label is solubilized in the glycerol-water gradient during yolk platelets isolation.
Ruthenium red staining of yolk platelet in situ shows heavy deposits of the dye on the yolk platelet membrane surface facing the cytoplasmic surface. The crystalline main body of isolated yolk platelets does not take up the dye.
It appears that continuous synthesis or sulfation of glycosaminoglycan occurs primarily at the outer surface yolk platelet membranes during early development, providing a novel site for this process.  相似文献   

18.
During embryogenesis, organisms with lecithotrophic indirect development usually accumulate large quantities of energetic reserves in the form of yolk that are necessary for larval survival. Since all sponges have lecithotrophic development, yolk formation is an ineludible step of their embryogenesis. Sponge yolk platelets have a wide range of morphological forms, from entirely lipid or protein platelets to a combined platelet showing both lipids and proteins and even glycogen. So far, there are no comparative studies on the nature and content of yolk in congeneric species of sponges inhabiting contrasting environments, which could have putative effects on the larval adaptation to environmental conditions. Here, we have taken advantage of the worldwide distribution of the sponge genus Mycale, in order to compare the embryogenesis and yolk formation in two species inhabiting contrasting latitudinal areas: M. acerata from Antarctic waters and M. laevis from the Caribbean. We have compared their brooded embryos and larvae using scanning and transmission electron microscopy, and calculated their energetic signatures based on the nature of their yolk. While the general morphological feature of embryos and larvae of both species were very similar, the main difference resided in the yolk nature. The Antarctic species, M. acerata, showed exclusively lipid yolk, whereas the Caribbean species, M. laevis, showed combined platelets of lipids and proteins and less frequently protein yolk platelets. The larvae of M. acerata were estimated to possess a two-fold energetic signature compared to that of M. laevis, which may have important ecological implications for their survival and for maintaining large population densities in the cold waters of the Southern Ocean.  相似文献   

19.
In silkworms, yolk proteins comprise vitellin, egg-specific protein and 30K proteins, which are sequentially degraded by endogenous proteases strictly regulated during embryogenesis. Although the process has been extensively investigated, there is still a gap in the knowledge about the degradation of silkworm yolk proteins on the last two days of embryonic development. In the present study, we isolated and purified a gut serine protease P-IIc, which demonstrated optimal activity at 25 °C and pH 11. Semi-quantitative RT-PCR combined with western blotting showed that P-IIc was actively expressed and significantly accumulated in the gut on the last two days of embryogenesis. When natural yolk proteins were incubated with P-IIc in vitro, vitellin and ESP were selectively degraded. P-IIc also demonstrated activity towards 30K proteins as evidenced by rapid and complete digestion of BmLP1 and partial digestion of BmLP2 and BmLP3. Furthermore, RNAi knockdown of P-IIc in silkworm embryos significantly reduced the degradation rate of residual yolk proteins on embryonic day 10. Taken together, our results indicate that P-IIc represents an embryonic gut protease with a relatively broad substrate specificity, which plays an important role in the degradation of yolk proteins at the late stage of silkworm embryogenesis.  相似文献   

20.
Using indirect immunofluorescence microscopy on semithin cryosections of maturing ovarian tissue, eggs, and developing embryos, we have mapped the cellular distribution and dynamic redistribution of spectrin in oogenesis and early embryogenesis. During oogenesis, spectrin is initially found in the cortex of oogonia and previtellogenic oocytes, and later accumulates in the cytoplasm of vitellogenic oocytes on the surfaces of cortical granules, pigment granules/acidic vesicles, and yolk platelets. Following egg activation, spectrin undergoes a rapid redistribution coincident with three major developmental events including: (1) restructuring of the cell surface, (2) translocation of pigment granules/acidic vesicles to the cortex during the first cell cycle, and (3) amplification of the embryo's surface during the rapid cleavage phase of early embryogenesis. The synthesis and storage of spectrin during oogenesis appears to prime the egg with a preestablished pool of membrane-cytoskeletal precursor for use during embryogenesis. Results from this study support the hypothesis that spectrin may function as a key integrator and modulator of multiple membrane-cytoskeletal functions during embryonic growth and cellular differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号