首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
2.
Genetically transformed plants of Cymbidium were regenerated after cocultivating protocorm-like bodies (PLB) with Agrobacterium tumefaciens strain EHA101 (pIG121Hm) that harbored genes for β-glucuronidase (gus), hygromycin phosphotransferase (hpt) and neomycin phosphotransferase II (nptII). PLB of three genotypes maintained in liquid new Dogashima medium (NDM), were subjected to transformation experiments. The PLB inoculated with Agrobacterium produced secondary PLB, 4 weeks after transfer onto 2.5 g L−1 gellan gum-solidified NDM containing 10 g L−1 sucrose, 20 mg L−1 hygromycin and 40 mg L−1 meropenem. Transformation efficiency was affected by genotype and the presence of acetosyringone during cocultivation. The highest transformation efficiency was obtained when PLB from the genotype L4 were infected and cocultivated with Agrobacterium on medium containing 100 μM acetosyringone. Transformation of the hygromycin-resistant plantlets regenerated from different sites of inoculated PLB was confirmed by histochemical GUS assay, PCR analysis and Southern blot hybridization.  相似文献   

3.
A system for the production of transgenic plants was developed for the Oriental hybrid lily, Lilium cv. Acapulco, by Agrobacterium-mediated genetic transformation. Filament-derived calli were co-cultivated with A. tumefaciens strain EHA101/pIG121Hm, which harbored a binary vector carrying the neomycin phosphotransferase II, hygromycin phosphotransferase, and intron-containing -glucuronidase genes in the T-DNA region. Six hygromycin-resistant (Hygr) culture lines were obtained from 200 calli by scratching them with sandpaper prior to inoculation and using NH4NO3-free medium for co-cultivation and a hygromycin-containing regeneration medium for selection. Hygr culture lines regenerated shoots, which developed into plantlets following transfer to a plant growth regulator-free medium. All of these plantlets were verified to be transgenic by GUS histochemical assay and inverse PCR analysis.Abbreviations AS Acetosyringone (3,5-dimethoxy-4-hydroxy-acetophenone) - BA Benzyladenine - CaMV Cauliflower mosaic virus - GUS -Glucuronidase - HPT Hygromycin phosphotransferase - Hygr Hygromycin-resistant - NOS Nopaline synthase - NPTII Neomycin phosphotransferase II - PGR Plant growth regulator - PIC Picloram (4-amino-3,5,6-trichloropicolinic acid)Communicated by H. Ebinuma  相似文献   

4.
Five different varieties of Brassica napus (Cyclone, Dunkled, Oscar, Rainbow and KS75) were tested for their regeneration response. Cyclone showed a very high frequency of regeneration (92%). The use of silver nitrate was a pre-requisite for efficient shoot regeneration. Hypocotyls were selected as the starting material for transformation experiments on the basis of high transient GUS expression. Explants were co-cultivated with Agrobacterium strain EHA101 harboring a binary vector pIG121Hm containing neomycin phosphotransferase II (NPTII) gene, conferring resistance to kanamycin, hygromycin phosphotransferase (HPT) gene, conferring resistance to hygromycin as selectable markers and -glucuronidase (GUS) gene as a reporter. Acetosyringone promoted the transformation but was not an absolute requirement. A pre-selection period of 7 days after co-cultivation was essential for successful transformation. Kanamycin was efficient selective agent for selection and maximum transformation efficiency was 24%. GUS activity was evident in leaf tissues. All the transgenic plants have an expected band of 0.43 kb fragment by PCR analysis confirming the presence of foreign DNA into plant genome.  相似文献   

5.
An efficient system for Agrobacterium-mediated transformation of Lilium × formolongi was established by preventing the drastic drop of pH in the co-cultivation medium with MES. Meristematic nodular calli were inoculated with an overnight culture of A. tumefaciens strain EHA101 containing the plasmid pIG121-Hm which harbored intron-containing β-glucuronidase (GUS), hygromycin phosphotransferase (HPT), and neomycin phosphotransfease II (NPTII) genes. After three days of co-cultivation on 2 g/l gellan gum-solidified MS medium containing 100 μM acetosyringone, 30 g/l sucrose, 1 mg/l picloram and different concentrations of MES, they were cultured on the same medium containing 12.5 mg/l meropenem to eliminate Agrobacterium for 2 weeks and then transferred onto medium containing the same concentration of meropenem and 25 mg/l hygromycin for selecting putative transgenic calli. Transient GUS expression was only observed by adding MES to co-cultivation medium. Hygromycin-resistant transgenic calli were obtained only when MES was added to the co-cultivation medium especially at 10 mM. The hygromycin-resistant calli were successfully regenerated into plantlets after transferring onto picloram-free medium. Transformation of plants was confirmed by histochemical GUS assay, PCR analysis and Southern blot analysis.  相似文献   

6.
Embryogenic cell suspension cultures were established using the ovule culture of an interspecific cross, Alstroemeria pelegrina var. rosea × A. magenta. Ovules harvested 14 days after pollination were cultured on Murashige and Skoog (MS) medium without plant growth regulators (PGRs); calli were produced on the hypocotyl surface in germinating zygotic embryos. Suspension cells were induced from the calli by using liquid MS media containing 2,4-dichlorophenoxyacetic acid or 4-amino-3,5,6-trichloropyridine-2-carboxylic acid (picloram). Adventitious embryos developed from the suspension cells on half-strength MS medium supplemented with 0.5 mg l−1 of both α-naphthaleneacetic acid and N6-benzylaminopurine; they grew into plantlets on the same medium. The plantlets formed rhizomes following transfer to half-strength MS medium without PGRs, and acclimatized plants were easily established. Subsequently, Agrobacterium-mediated transformation system was applied. The suspension cells were co-cultivated with A. tumefaciens strain EHA101/pIG121Hm or LBA4404/pTOK233, both of which contain neomycin phosphotransferase II, hygromycin phosphotransferase and intron-containing ?-glucuronidase (intron-GUS) genes. Seven days after co-cultivation, the cells were subjected to GUS assay; staining was most pronounced in the cells subcultured in a picloram-containing liquid medium and co-cultivated with EHA101/pIG121Hm. The co-cultivated cells were transferred to the MS medium containing picloram and 20 mg l−1 hygromycin; 1 month later, several hygromycin-resistant callus lines showing GUS activity were obtained. Transgenic plants were obtained through our plant regeneration system, and foreign gene insertion into the regenerated plants was confirmed by polymerase chain reaction.  相似文献   

7.
Transgenic plant production mediated by Agrobacterium in Indica rice   总被引:3,自引:0,他引:3  
Summary A reproducible system has been developed for the production of transgenic plants in indica rice using Agrobacterium-mediated gene transfer. Three-week-old scutella calli served as an excellent starting material. These were infected with an Agrobacterium tumefaciens strain EHA101 carrying a plasmid pIG121Hm containing genes for -glucuronidase (GUS) and hygromycin resistnace (HygR). Hygromycin (50 mg/l) was used as a selectable agent. Inclusion of acetosyringone (50M) in the Agrobacterium suspension and co-culture media proved to be indispensable for successful transformation. Transformation efficiency of Basmati 370 was 22% which was as high as reported in japonica rice and dicots. A large number of morphologically normal, fertile transgenic plants were obtained. Integration of foreign genes into the genome of transgenic plants was confirmed by Southern blot analysis. GUS and HygR genes were inherited and expressed in R1 progeny. Mendelian segregation was observed in some R1 progeny.Abbreviations GUS ß-glucuronidase - HygR hygromycin-resistance - AS acetosyringone  相似文献   

8.
A highly efficient transformation procedure was developed for Lobelia erinus. Leaf or cotyledon discs were inoculated with Agrobacterium tumefaciens strain EHA105 harboring the binary vector plasmid pIG121Hm, which contains a -glucuronidase gene with an intron as a reporter gene and both the neomycin phosphotransferase II and hygromycin phosphotransferase genes as selectable markers. The hygromycin-resistant calli produced on the selection medium were transferred to MS medium supplemented with 0.5 mg/l benzyladenine and 0.2 mg/l indole-3-acetic acid for regeneration of adventitious shoots. Transgenic plants were obtained as a result of the high regeneration rate of the transformed calli, which was as high as 83%. In contrast, no transgenic plant was obtained by the procedure of direct shoot formation following inoculation with A. tumefaciens. Transgenic plants flowered 3–4 months after transformation. Integration of the transgenes was detected using PCR and Southern blot analysis, which revealed that one to several copies were integrated into the genomes of the host plants. The transformation frequency at the stage of whole plants was very high—45% per inoculated disc.Abbreviations BA: 6-Benzyladenine - 2,4-D: 2,4-Dichlorophenoxyacetic acid - GUS: -Glucuronidase - IAA: Indole-3-acetic acidCommunicated by G.C. Phillips  相似文献   

9.
A transformation procedure for phalaenopsis orchid established by using immature protocorms for Agrobacterium infection was aimed at the introduction of target genes into individuals with divergent genetic backgrounds. Protocorms obtained after 21 days of culture on liquid New Dogashima medium were inoculated with Agrobacterium strain EHA101(pIG121Hm) harboring both -glucuronidase (GUS) and hygromycin resistance genes. Subculture of the protocorms on acetosyringone-containing medium 2 days before Agrobacterium inoculation gave the highest transformation efficiencies (1.3–1.9%) based on the frequency of hygromycin-resistant plants produced. Surviving protocorms obtained 2 months after Agrobacterium infection on selection medium containing 20 mg l–1 hygromycin were cut transversely into two pieces before transferring to recovery medium without hygromycin. Protocorm-like bodies (PLBs) proliferated from pieces of protocorms during a 1-month culture on recovery medium followed by transfer to selection medium. Hygromycin-resistant phalaenopsis plants that regenerated after the re-selection culture of PLBs showed histochemical blue staining due to GUS. Transgene integration of the hygromycin-resistant plants was confirmed by Southern blot analysis. A total of 88 transgenic plants, each derived from an independent protocorm, was obtained from ca. 12,500 mature seeds 6 months after infection with Agrobacterium. Due to the convenient protocol for Agrobacterium infection and rapid production of transgenic plants, the present procedure could be utilized to assess expression of transgenes under different genetic backgrounds, and for the molecular breeding of phalaenopsis.  相似文献   

10.
An improved rice transformation system using the biolistic method   总被引:38,自引:0,他引:38  
Immature embryos and embryogenic calli of rice, both japonica and indica subspecies, were bombarded with tungsten particles coated with plasmid DNA that contained a gene encoding hygromycin phosphotransferase (HPH, conferring hygromycin resistance) driven by the CaMV 35S promoter or Agrobactenum tumefaciens NOS promoter. Putatively transformed cell clusters were identified from the bombarded tissues 2 weeks after selection on hygromycin B. By separating these cell clusters from each other, and by stringent selection not only at the callus growth stage but also during regeneration and plantlet growth, the overall transformation and selection efficiencies were substantially improved over those previously reported. From the most responsive cultivar used in these studies, an average of one transgenic plant was produced from 1.3 immature embryos or from 5 pieces of embryogenic calli bombarded. Integration of the introduced gene into the plant genome, and inheritance to the offspring were demonstrated. By using this procedure, we have produced several hundred transgenic plants. The procedure described here provides a simple method for improving transformation and selection efficiencies in rice and may be applicable to other monocots.Abbreviations bp base pairs - CaMV cauliflower mosaic virus - GUS -glucuronidase - HPH hygromycin phosphotransferase - hyg B hygromycin B - hygr hygromycin resistance - NOS Agrobactenum tumefaciens nopaline synthase - PCR polymerase chain reaction - X-Gluc 5-bromo-4-chloro-3-indolyl--D-glucuronide  相似文献   

11.
We developed an efficient gene transfer method mediated by Agrobacterium tumefaciens for introgression of new rice for Africa (NERICA) cultivars, which are derivatives of interspecific hybrids between Oryza glaberrima Steud. and O. sativa L. Freshly isolated immature embryos were inoculated with A. tumefaciens LBA4404 that harbored binary vector pBIG-ubi::GUS or pIG121Hm, which each carried a hygromycin-resistance gene and a GUS gene. Growth medium supplemented with 500 mg/l cefotaxime and 20 mg/l hygromycin was suitable for elimination of bacteria and selection of transformed cells. Shoots regenerated from the selected cells on MS medium containing 20 g/l sucrose, 30 g/l sorbitol, 2 g/l casamino acids, 0.25 mg/l naphthaleneacetic acid, 2.5 mg/l kinetin, 250 mg/l cefotaxime, and 20 mg/l hygromycin. The shoots developed roots on hormone-free MS medium containing 30 mg/l hygromycin. Integration and expression of the transgenes were confirmed by PCR, Southern blot analysis, and histochemical GUS assay. Stable integration, expression, inheritance, and segregation of the transgenes were demonstrated by molecular and genetic analyses in the T0 and T1 generations. Most plants were normal in morphology and fertile. The transformation protocol produced stable transformants from 16 NERICA cultivars. We also obtained transformed plants by inoculation of calluses derived from mature seeds, but the frequency of transformation was lower and sterility was more frequent.  相似文献   

12.
Agrobacterium tumefaciens-mediated genetic transformation and the regeneration of transgenic plants was achieved in Hevea brasiliensis. Immature anther-derived calli were used to develop transgenic plants. These calli were co-cultured with A. tumefaciens harboring a plasmid vector containing the H. brasiliensis superoxide dismutase gene (HbSOD) under the control of the CaMV 35S promoter. The -glucuronidase gene (uidA) was used for screening and the neomycin phosphotransferase gene (nptII) was used for selection of the transformed calli. Factors such as co-cultivation time, co-cultivation media and kanamycin concentration were assessed to establish optimal conditions for the selection of transformed callus lines. Transformed calli surviving on medium containing 300 mg l-1 kanamycin showed a strong GUS-positive reaction. Somatic embryos were then regenerated from these transgenic calli on MS2 medium containing 2.0 mg l-1 spermine and 0.1 mg l-1 abscisic acid. Mature embryos were germinated and developed into plantlets on MS4 medium supplemented with 0.2 mg l-1 gibberellic acid, 0.2 mg l-1 kinetin (KIN) and 0.1 mg l-1 indole-3-acetic acid. A transformation frequency of 4% was achieved. The morphology of the transgenic plants was similar to that of untransformed plants. Histochemical GUS assay revealed the expression of the uidA gene in embryos as well as leaves of transgenic plants. The presence of the uidA, nptII and HbSOD genes in the Hevea genome was confirmed by polymerase chain reaction amplification and genomic Southern blot hybridization analyses.Communicated by L. Peña  相似文献   

13.
Seedling hypocotyls of Lithospermum erythrorhizon were infected with Agrobacterium rhizogenes (strain 15834) harboring a binary vector with an intron-bearing the β-glucuronidase (GUS) gene driven by cauliflower mosaic virus (CaMV) 35S promoter as well as the hygromycin phosphotransferase (HPT) gene as the selection marker. About 20% of the hairy roots isolated were hygromycin resistant and had co-integrated GUS and HPT genes in their Lithospermum genomic DNA. Because GUS activity was detected in almost all the hygromycin-resistant root tissues, the CaMV 35S promoter seems to be ubiquitously active in L. erythrorhizon hairy roots. In pigment production medium M9, the hairy root cultures had shikonin productivity similar to that of cell suspension cultures of Lithospermum. They also showed light-dependent inhibition of shikonin biosynthesis similar to that of Lithospermum cell cultures. These findings suggest that this hairy root system transformable with A. rhizogenes is a suitable model system for molecular characterization of shikonin biosynthesis via reverse genetics. Received: 2 March 1998 / Revision received: 25 May 1998 / Accepted: 8 July 1998  相似文献   

14.
Stable transformation of soybean (Glycine max (L.) Merr.) protoplasts isolated from immature cotyledons was achieved following electroporation with plasmid DNA carrying chimeric genes encoding ß-glucuronidase (GUS) and hygromycin phosphotransferase (HPT) under the control of the cauliflower mosaic virus (CaMV) 35S promoter. Transformed colonies were stringently selected by growing 15-day-old protoplast-derived cells in the presence of 40 g/ml of hygromycin-B for 6 weeks. Over 93% of the resistant cells and colonies exhibited GUS activity, indicating that the two marker genes borne on a single plasmid were co-introduced and co-expressed at a very high freguency. This transformation procedure reproducibly yields transformants at frequencies of 2.9–6.8 × 10–4 (based on the number of protoplasts electroporated) or 23.0% (based on the number of control microcalli formed) counted after 6 weeks of selection. After repeated subculturing on regeneration medium, shoots were induced from 8.0% of the transformed calli. Southern hybridization confirmed the presence of both the GUS and hygromycin genes in the transformed calli and shoots.  相似文献   

15.
A reproducible plant regeneration and an Agrobacterium tumefaciens-mediated genetic transformation protocol were developed for Perilla frutescens (perilla). The largest number of adventitious shoots were induced directly without an intervening callus phase from hypocotyl explants on MS medium supplemented with 3.0 mg/l 6-benzylaminopurine (BA). The effects of preculture and extent of cocultivation were examined by assaying -glucuronidase (GUS) activity in explants infected with A. tumefaciens strain EHA105 harboring the plasmid pIG121-Hm. The highest number of GUS-positive explants were obtained from hypocotyl explants cocultured for 3 days with Agrobacterium without precultivation. Transgenic perilla plants were regenerated and selected on MS basal medium supplemented with 3.0 mg/l BA, 125 mg/l kanamycin, and 500 mg/l carbenicillin. The transformants were confirmed by PCR of the neomycin phosphotransferase II gene and genomic Southern hybridization analysis of the hygromycin phosphotransferase gene. The frequency of transformation from hypocotyls was about 1.4%, and the transformants showed normal growth and sexual compatibility by producing progenies.  相似文献   

16.
 Embryogenic calli were induced from leaf explants of coffee (Coffea canephora) on McCown's woody plant medium (WPM) supplemented with 5 μM N6–(2-isopentenyl)-adenosine (2-iP). These calli were co-cultured with Agrobacterium tumefaciens EHA101 harboring pIG121-Hm, containing β-glucuronidase (GUS), hygromycin phosphotransferase (HPT), and neomycin phosphotransferase II genes. Selection of putative transgenic callus was performed by gradual increase in hygromycin concentration (5, 50, 100 mg/l). The embryogenic calli surviving on medium containing 100 mg/l hygromycin showed a strong GUS-positive reaction with X-Gluc solution. Somatic embryos were formed from these putative transgenic calli and germinated on WPM medium with 5 μM 2-iP. Regenerated small plantlets with shoots and roots were transferred to medium containing both 100 mg/l hygromycin and 100 mg/l kanamycin for final selection of transgenic plants. The selected plantlets exhibited strong GUS activity in leaves and roots as indicated by a deep blue color. GUS and HPT genes were confirmed to be stably integrated into the genome of the coffee plants by the polymerase chain reaction. Received: 14 December 1998 / Revision received: 12 March 1999 / Accepted: 24 March 1999  相似文献   

17.
Transformation of tomato (Lycopersicon esculentum Mill.) was carried out using disarmed Agrobacterium tumefaciens strain EHA 105 harboring a binary vector pBIG-HYG-bspA. The plasmid contains the bspA (boiling stable protein of aspen) gene under the control of a CaMV35S promoter and nopaline synthase (NOS) terminator, hygromycin phosphotransferase gene (hpt) driven by nopaline synthase promoter and polyadenylation signal of Agrobacterium gene7 as terminator and a promoterless gus gene. Very strong β-glucuronidase (GUS) expression was observed in transformed tomato plants but never in non-transformed (control). Since GUS expression was observed only in transformed plants, the possibility of the presence of endogenous GUS enzymes was ruled out. Possibility of false GUS positives was also ruled out because the GUS positive explants reacted positively to polymerase chain reaction (PCR) and PCR-Southern tests carried out for the presence of bspA gene, which indicated the integration of T-DNA in tomato genome. The promoterless GUS expression was hypothesized either due to leaky NOS termination signal of bspA gene or due to different cryptic promoters of plant origin. It was concluded that GUS expression was observed in the putative transgenics either due to the read through mechanism by the strong CaMV35S promoter or due to several cryptic promoters driving the gus gene in different transgenic lines.  相似文献   

18.
Summary An analysis of the progeny of primary transgenic pea plants in terms of transmission of the transferred DNA, fertility and morphology is presented. A transformation system developed for pea that allows the regeneration of fertile transgenic pea plants from calli selected for antibiotic resistance was used. Expiants from axenic shoot cultures were co-cultivated with a nononcogenic Agrobacterium tumefaciens strain carrying a gene encoding hygromycin phosphotransferase as selectable marker, and transformed callus could be selected on callus-inducing media containing 15 mg/l hygromycin. After several passages on regeneration medium, shoot organogenesis could be reproducibly induced on the hygromycin resistant calli, and the regenerated shoots could subsequently be rooted and transferred to the greenhouse, where they proceeded to flower and set seed. The transmission of the introduced gene into the progeny of the regenerated transgenic plants was studied over two generations, and stable transmission was shown to take place. The transgenic nature of the calli and regenerated plants and their progeny was confirmed by DNA and RNA analysis. The DNA and ploidy levels of the progeny plants and primary regenerants were studied by chromosome analysis, and the offspring of the primary transformants were evaluated morphologically.Abbreviations 2,4-D 2,4-Dichlorophenoxyacetic acid - BA 6-ben-zyladenine - hpt hygromycin phosphotransferase gene - IAA indole acetic acid, kin, kinetin - NAA -naphtalene acetic acid - picloram 4-amino-3,5,6-trichloropicolinic acid  相似文献   

19.
Summary Cultivated tomato was genetically transformed using two procedures. In the first procedure, punctured cotyledons were infected with disarmed Agrobacterium tumefaciens strain LBA4404 or with A. rhizogenes strain A4, each containing the binary vector pARC8. The chimeric neomycin phosphotransferase (NPT II) gene on pARC8 conferred on transformed plant cells the ability to grow on medium containing kanamycin. Transformation reproducible yielded kanamycin-resistant transformants in different tomato genotypes. NPT II activity was detected in transformed calli and in transgenic plants. All of these plants were phenotypically normal, fertile and set seeds. Using the second procedure, inverted cotyledons, we recovered transformed tomato plants from A. rhizogenes-induced hairy roots. In this case, all of the transgenic plants exhibited phenotypes similar to hairy root-derived plants reported for other species. Southern blot analysis on these plants revealed that the plant DNA hybridized with both probes representing pARC8-T-DNA, and the T-DNAs of the A4 Ri-plasmid. However, southern analysis on those phenotypically normal transgenic plants from the first procedure revealed that only the pARC8-T-DNA was present in the plant genome, thus indicating that the pARC8-T-DNA integrated into the plant genome independently of the pRi A4-T-DNA. Genetic analysis of these phenotypically normal transgenic plants for the kanamycin-resistance trait showed Mendelian ratios, 31 and 11, for selfed (R1) and in crossed progeny, respectively.  相似文献   

20.
Transgenic forage-type Italian ryegrass (Lolium multiflorum Lam.) plants have been obtained by microprojectile bombardment of embryogenic suspension cells using a chimeric hygromycin phosphotransferase (hph) gene construct driven by riceActl 5 regulatory sequences. Parameters for the bombardment of embryogenic suspension cultures with the particle inflow gun were partially optimized using transient expression assays of a chimeric-glucuronidase (gusA) gene driven by the maizeUbi1 promoter. Stably transformed clones were recovered with a selection scheme using hygromycin in liquid medium followed by a plate selection. Plants were regenerated from 33% of the hygromycin-resistant calli. The transgenic nature of the regenerated plants was demonstrated by Southern hybridization analysis. Expression of the transgene in transformed adult Italian ryegrass plants was confirmed by northern analysis and a hygromycin phosphotransferase enzyme assay.Abbreviations 2,4-D 2,4 Dichlorophenoxyacetic acid - GUS Glucuronidase - Hm Hygromycin - HPH Hygromycin phosphotransferase - MS medium Murashige and Skoog medium - PCR Polymerase chain reaction - X-Gluc 5-Bromo-4-chloro--indolyl--D-glucuronic acid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号