首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 385 毫秒
1.
丙酮酸高产菌株的选育及中试研究   总被引:10,自引:1,他引:9  
对T.glabrata WSH-IP12进行EMS诱变,挑选以NH4Cl为唯一氮源的平板上透明圈较大的菌株,经初筛和复筛后,发现T.glabrata WSH-IP303生产丙酮酸的能力强且稳定。以NH4Cl为唯一氮源摇瓶培养48h,其丙酮酸产量(35.1g/L)比出发菌株(21.4g/L)提高了64%。采用该菌株在300L罐上进行了4批发酵试验,丙酮酸产量最高可达58.4g/L,对葡萄糖产率0.562g/g。  相似文献   

2.
从土壤中筛选到一株能够拆分外消旋的硫辛酸中间体6-羟基-8-氯辛酸乙酯的微生物菌株T4,并对其拆分反应条件进行了优化,确定了最适反应温度为30℃,最适pH为7.0,最适摇床转速为170r/min,确定了有效表面活性剂为CTAB,在此优化条件下反应8h,得到(R)-6-羟基-8-氯辛酸乙酯的对映体过量值(e.e.)为92.8%,产率为26.3%。该研究为(R)-硫辛酸的制备提供了一条可行的途径。  相似文献   

3.
微生物转化方法生产香草酸与香草醛的初步研究   总被引:7,自引:2,他引:5  
从实验室保藏的菌种中筛选到一株黑曲霉(Aspergillus niger)SW-33,能够将1g/L的阿魏酸底物转化为0.23g/L的香草酸,相应的摩尔转化率为29.35%;流加四次底物阿魏酸后,产物浓度达到1.11g/L,相应的摩尔转化率为44.9%。为了提高产物浓度,对培养基和发酵条件进行优化,使得该菌株能够将1g/l的阿魏酸底物转化为0.46g/L的香草酸,相应的摩尔转化率为57.81%。提取得到的香草酸,经HPLC测定,纯度为85.9%;提取收率为75.2%。用含香草酸的转化液,或者用提取的结晶香草酸,加入朱红密孔菌(Prcnporus cinnabarnus)SW-0203发酵培养液,可得到转化产物香草醛。  相似文献   

4.
利用耐受自身代谢产物的方法提高庆大霉素的发酵单位   总被引:3,自引:0,他引:3  
本实验根据抗生素产生菌解除自身产物反馈调节原理,对庆大霉素产生菌(降红小单孢)进行了摇瓶耐受高浓度庆大霉素实验,从耐受8,000u/ml庆大霉素的摇瓶中,筛得y-36120#菌株。该株在某厂经摇瓶和罐上的生产能力考察,其摇瓶和罐上的生产能力,分别比出发菌株提高22.8%和15.48%。实验表明,利用耐受自身产物的方法,选育抗生素的高产菌株,是提高抗生素发酵单位的一种简便、快速的途径。  相似文献   

5.
为提高肺炎克雷伯氏茵生产l,3-丙二醇的能力,使用一种新型的以氮气为工作气体的等离子体复合紫外的诱变系统(MPMS-UV)对菌种进行诱变.用含有90g/L~100g/L1,3-丙二醇的选择培养基进行筛选驯化,最终获得一株高产PDO且甘油利用率高的优良菌株k2.2L批式流加发酵结果表明,该菌株PDO产量为69.71 g/L,摩尔产率为0.57 mol/mol,比原始菌株分别提高了44.7%和21%.  相似文献   

6.
论文在摇瓶水平对产酸丙酸杆菌基本生长特性(温度、pH、摇床转速、接种量、种龄等)、碳源、氮源利用情况、产物抑制及5 L罐发酵动力学进行了研究。结果表明,该菌在32℃,初始pH 6.5,摇床转速150 r/min,接种24 h的种子液,接种量为5%条件下,产酸丙酸杆菌生长及产酸水平达最高值;该菌可利用碳源十分广泛,但对氮源要求比较高,只可利用有机氮源;在不同初始葡萄糖浓度下,产酸丙酸杆菌生长及产酸水平差异不大,无明显底物抑制现象;在2g/L的初始丙酸盐浓度下,该菌生长受到明显抑制;在5L发酵罐中,初始葡萄糖浓度为58.8 g/L,发酵72 h,葡萄糖消耗完全,丙酸终浓度达22.4 g/L,丙酸得率和产率分别达0.381 g/g和0.295 g/(L·h),丙酸占总酸比例达72.10%。  相似文献   

7.
本研究用具有苯丙氨酸生产抗反馈抑制基因pheAFR、aroFFR及温度敏感型阻遏基因CI857的质粒pSYl30—14和具有分配机能的低拷贝质粒pSYl6,重组构建了具有苯丙氨酸生产基因系统的质粒:psY200一14,然后使其转化到大肠杆菌AT2471中,育成了基因重组菌株AT247l/psY200—14。试验表明,该菌株质粒稳定性比原菌株AT2471/psYl30—14有较大的提高,当存在选择压时,在30~42℃范围内维持100%的高稳定性。应用此重组菌株,在2.5L通气搅拌罐进行发酵试验,在搅拌转速850rpm,通气速率1.Ovvm,38.5℃和pH7.O的条件下,发酵48h苯丙氨酸生成量达14.2g/L,比原株增产l1.8%。  相似文献   

8.
从实验室保藏的菌株中筛选获得Candida sp.PT2A,并通过18S rRNA鉴定为安大略假单胞菌Candida on-tarioensis。对C.ontarioensis不对称还原合成(R)-2-氯-1-(3-氯苯基)乙醇的发酵产酶条件和转化条件进行优化,确定了最适的发酵产酶条件和转化条件:温度30℃,初始pH 6.5,摇床转速180 r/min,菌体质量浓度200 g/L。采用2-氯-1-(3-氯苯基)乙酮质量浓度为10 g/L时,还原反应72 h,(R)-2-氯-1-(3-氯苯基)乙醇的e.e.值为99.9%,产率为99%;底物质量浓度提高至30 g/L时,产率下降为84.3%。采用十六烷基三甲基溴化铵(CTAB)对C.ontarioensis细胞进行通透性处理(CTAB g/L,4℃下处理20 min),在30 g/L底物下反应24 h,产物的e.e.和产率分别达到99.9%和97.5%。  相似文献   

9.
研究了溶氧对Brewibacterium lactofermentation分批发酵生产L-异亮氨酸(Ile)的影响,提出了前10h恒700d/min以维持溶氧在35%以上,10h后调至600r/min以维持溶氧在15%~20%的两阶段供氧控制模式。与对照相比,获得了较高的产率(0.094g/g)和糖耗速度(4.76/L·h),在较短时间内(52h)获得较高的Ile产量(23.3g/L),比结果最好的单一搅拌转速(600r/min)提高11.6%。生产强度(0.448d/L·h)比恒定搅拌转速(500、600、700、800r/min)控制下的过程分别提高了83.6%、28.7%、44.9%、35.7%。最后采用代谢通量分析对该结果产生的原因进行了定量解释。  相似文献   

10.
【背景】大肠杆菌由于生长性能优良、遗传背景清晰,常被用作苏氨酸生产菌。【目的】敲除大肠杆菌Escherichia coli THR苏氨酸合成途径的非必需基因,并异源表达苏氨酸合成必需的关键酶,构建一株苏氨酸高产菌株。【方法】利用FLP/FRT重组酶系统,敲除E. coli THR中lysC、pfkB和sstT,同时进行谷氨酸棒杆菌中lysC~(fbr)、thrE和丙酮丁醇梭菌中gapC的重组质粒构建并转化到宿主菌中。【结果】以E. coli THR为出发菌株,敲除其苏氨酸合成途径中表达天冬氨酸激酶Ⅲ (AKⅢ)的基因lysC、磷酸果糖激酶Ⅱ基因pfkB及苏氨酸吸收蛋白表达基因sstT,使菌株积累苏氨酸的产量达到75.64±0.35g/L,比出发菌株增加9.9%。随后异源表达谷氨酸棒杆菌中解除了反馈抑制的天冬氨酸激酶(lysC~(fbr))、苏氨酸分泌转运蛋白(thrE)及丙酮丁醇梭菌中由gapC编码的NADP+依赖型甘油醛-3-磷酸脱氢酶,获得重组菌株E. coli THR6菌株。该菌株积累苏氨酸的产量提高到105.3±0.5 g/L,糖酸转化率提高了43.20%,单位产酸能力提高到5.76 g/g DCW,最大生物量为18.26 g DCW/L。【结论】单独敲除某个基因或改造某个途径不能使苏氨酸大量合成和积累,对多个代谢途径共同改造是构建苏氨酸工程菌的最有效方法。  相似文献   

11.
A biotin-requiring coryneform bacterium which produces glutamic acid was mutated to adenine dependency. The adenine-requiring strain, which excreted insoine-5′-monophosphate (IMP), was further mutated to xanthine dependency. As expected, IMP was also excreted by this mutant. The mutant strain was reverted to xanthine independence in an attempt to obtain a culture with an altered IMP dehydrogenase which would be less sensitive to feedback inhibition by guanosine-5′-monophosphate (GMP). A revertant was obtained which produced GMP and IMP, each at 0.5 g per liter. The reversion to xanthine independence had resulted in a concomitant requirement for isoleucine, leucine, and valine. Further mutation to increased nutritional requirements led to culture MB-1802, which accumulated 1 g per liter each of GMP and IMP. Both nucleotides were isolated in pure form. The concentrations of GMP and IMP produced by MB-1802 were four times that of cytidylate, uridylate, or adenylate, indicating that the mechanism of GMP and IMP production was direct and not via ribonucleic acid breakdown.  相似文献   

12.
A biotin-requiring coryneform bacterium which produces glutamic acid was mutated to adenine dependency. The adenine-requiring strain, which excreted insoine-5′-monophosphate (IMP), was further mutated to xanthine dependency. As expected, IMP was also excreted by this mutant. The mutant strain was reverted to xanthine independence in an attempt to obtain a culture with an altered IMP dehydrogenase which would be less sensitive to feedback inhibition by guanosine-5′-monophosphate (GMP). A revertant was obtained which produced GMP and IMP, each at 0.5 g per liter. The reversion to xanthine independence had resulted in a concomitant requirement for isoleucine, leucine, and valine. Further mutation to increased nutritional requirements led to culture MB-1802, which accumulated 1 g per liter each of GMP and IMP. Both nucleotides were isolated in pure form. The concentrations of GMP and IMP produced by MB-1802 were four times that of cytidylate, uridylate, or adenylate, indicating that the mechanism of GMP and IMP production was direct and not via ribonucleic acid breakdown.  相似文献   

13.
As a gasoline substitute, butanol has advantages over traditional fuel ethanol in terms of energy density and hydroscopicity. However, solvent production appeared limited by butanol toxicity. The strain of Clostridium acetobutylicum was subjected to mutation by mutagen of N-methyl-N'-nitro-N-nitrosoguanidine for 0.5?h. Screening of mutants was done according to the individual resistance to butanol. A selected butanol-resistant mutant, strain 206, produced 50?% higher solvent concentrations than the wild-type strain when 60?g glucose/l was employed as substrate. The strain was also able to produce solvents of 23.47?g/l in 80?g/l glucose P2 medium after 70?h fermentation, including 5.41?g acetone/l, 15.05?g butanol/l and 3.02?g ethanol/l, resulting in an ABE yield and productivity of 0.32?g/g and 0.34?g/(l?h). Subsequently, Acetone-butanol-ethanol (ABE) production from enzymatic hydrolysate of NaOH-pretreated corn stover was investigated in this study. An ABE yield of 0.41 and a productivity of 0.21?g/(l?h) was obtained, compared to the yield of 0.33 and the productivity of 0.20?g/(l?h) in the control medium containing 52.47 mixed sugars. However, it is important to note that although strain 206 was able to utilize all the glucose rapidly in the hydrolysate, only 32.9?% xylose in the hydrolysate was used after fermentation stopped compared to 91.4?% xylose in the control medium. Strain 206 was shown to be a robust strain for ABE production from lignocellulosic materials and has a great potential for industrial application.  相似文献   

14.
For the derivation of an inosine-overproducing strain from the wild type microorganism, it is known that the addition of an adenine requirement, removal of purine nucleoside hydrolyzing activity, removal of the feedback inhibition, and repression of key enzymes in the purine nucleotides biosynthetic pathway are essential. Thus, the disruption of purA (adenine requirement), deoD (removal of purine nucleosides phosphorylase activity), purR (derepression of the regulation of purine nucleotides biosynthetic pathway), and the insensitivity of the feedback inhibition of phosphoribosylpyrophosphate (PRPP) amidotransferase by adenosine 5'-monophosphate (AMP) and guanosine 5'-monophosphate (GMP) were done in the Escherichia coli strain W3110, and then the inosine productivity was estimated. In the case of using a plasmid harboring the PRPP amidotransferase gene (purF) that encoded a desensitized PRPP amidotransferase, purF disrupted mutants were used as the host strains. It was found that the innovation of the four genotypes brought about a small amount of inosine accumulation. Furthermore, an adenine auxotrophic mutant of E. coli showed inappropriate adenine use because its growth could not respond efficiently to the concentration of adenine added. As the presence of adenosine deaminase is well known in E. coli and it is thought to be involved in adenine use, a mutant disrupted adenosine deaminase gene (add) was constructed and tested. The mutant, which is deficient in purF, purA, deoD, purR, and add genes, and harboring the desensitized purF as a plasmid, accumulated about 1 g of inosine per liter. Although we investigated the effects of purR disruption and purF gene improvement, unexpectedly an increase in the inosine productivity could not be found with this mutant.  相似文献   

15.
The effects of amino acids on IMP production were examined with a mutant strain, KY10895, derived from Corynebacterium ammoniagenes KY13374. l-Proline improved the productivity of IMP more than any other amino acid. The optimum concentration of l-proline for IMP production was 1–2% and the IMP productivity was about 70% more than that in the control medium. The effects of l-proline analogs on IMP production were also examined with the mutant KY10895. DL-3,4-Dehydroproline inhibited IMP production. Mutants resistant to growth inhibition by dl-3,4-dehydroproline were derived from strain KY10895. Among mutants thus obtained, strain H-7335 had the highest productivity. The intracellular concentrations of l-proline in strain H-7335 were higher than those of the parental strain, KY10895. These findings indicated that an increase in intracellular l-proline was linked with an increase of IMP productivity and strengthening the l-proline synthesis of a strain was an effective method for obtaining a hyper-producer of IMP.  相似文献   

16.
d ‐lactic acid is of great interest because of increasing demand for biobased poly‐lactic acid (PLA). Blending poly‐l ‐lactic acid with poly‐d ‐lactic acid greatly improves PLA's mechanical and physical properties. Corn stover and sorghum stalks treated with 1% sodium hydroxide were investigated as possible substrates for d ‐lactic acid production by both sequential saccharification and fermentation and simultaneous saccharification and cofermentation (SSCF). A commercial cellulase (Cellic CTec2) was used for hydrolysis of lignocellulosic biomass and an l ‐lactate‐deficient mutant strain Lactobacillus plantarum NCIMB 8826 ldhL1 and its derivative harboring a xylose assimilation plasmid (ΔldhL1‐pCU‐PxylAB) were used for fermentation. The SSCF process demonstrated the advantage of avoiding feedback inhibition of released sugars from lignocellulosic biomass, thus significantly improving d ‐lactic acid yield and productivity. d ‐lactic acid (27.3 g L?1) and productivity (0.75 g L?1 h?1) was obtained from corn stover and d ‐lactic acid (22.0 g L?1) and productivity (0.65 g L?1 h?1) was obtained from sorghum stalks using ΔldhL1‐pCU‐PxylAB via the SSCF process. The recombinant strain produced a higher concentration of d ‐lactic acid than the mutant strain by using the xylose present in lignocellulosic biomass. Our findings demonstrate the potential of using renewable lignocellulosic biomass as an alternative to conventional feedstocks with metabolically engineered lactic acid bacteria to produce d ‐lactic acid. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:271–278, 2016  相似文献   

17.
Summary The mutant strain Aureobasidium pullulans ICCF-68 was able to produce in batch fermentation on a glucose medium of 80 g/l, exopolysaccharide at high volumetric productivity and final concentration (1.05 g/l.h and 50.2 g/l, respectively). A specific pH pattern and very high oxygen requirement were shown.  相似文献   

18.
The effects of adenine and (or) guanosine concentration on the accumulation of inosine, xanthosine, adenosine and succino-adenosine were studied with various purine auxotrophs of Bacillus subtilis K strain. Genetical derepression of the common pathway enzymes resulted in increase in the accumulation of inosine, xanthosine and adenosine. Co-operative repression system of a common pathway enzyme, succino-AMP lyase with respect to adenine and guanosine, was confirmed under the condition of the accumulation test. From these and the relating other studies it was concluded that the synthesis of AMP was regulated mainly by the inhibition of PRPP amidotransferase by AMP and secondly by the repression of the common pathway enzymes by adenine and guanosine, that the synthesis of GMP was regulated mainly by the inhibition and repression of IMP dehydrogenase by guanine derivatives and that GMP was synthesized in preference to AMP at the branch point, IMP.  相似文献   

19.
Genetically switched d-lactate production in Escherichia coli   总被引:2,自引:0,他引:2  
During a fermentation process, the formation of the desired product during the cell growth phase competes with the biomass for substrates or inhibits cell growth directly, which results in a decrease in production efficiency. A genetic switch is required to precisely separate growth from production and to simplify the fermentation process. The ldhA promoter, which encodes the fermentative d-lactate dehydrogenase (LDH) in the lactate producer Escherichia coli CICIM B0013-070 (ack-pta pps pflB dld poxB adhE frdA), was replaced with the λ p(R) and p(L) promoters (as a genetic switch) using genomic recombination and the thermo-controllable strain B0013-070B (B0013-070, ldhAp::kan-cI(ts)857-p(R)-p(L)), which could produce two-fold higher LDH activity at 42°C than the B0013-070 strain, was created. When the genetic switch was turned off at 33°C, strain B0013-070B produced 10% more biomass aerobically than strain B0013-070 and produced only trace levels of lactate which could reduce the growth inhibition caused by oxygen insufficiency in large scale fermentation. However, 42°C is the most efficient temperature for switching on lactate production. The volumetric productivity of B0013-070B improved by 9% compared to that of strain B0013-070 when it was grown aerobically at 33°C with a short thermo-induction at 42°C and then switched to the production phase at 42°C. In a bioreactor experiment using scaled-up conditions that were optimized in a shake flask experiment, strain B0013-070B produced 122.8g/l d-lactate with an increased oxygen-limited productivity of 0.89g/g·h. The results revealed the effectiveness of using a genetic switch to regulate cell growth and the production of a metabolic compound.  相似文献   

20.
In this study, after screening of eight fungal strains for their ability to produce calcium malate, it was found that Penicillium viticola 152 isolated from marine algae among them could produce the highest titer of calcium malate. At the same time, it was found that corn steep liquor (CSL) could stimulate calcium malate production and 0.5 % (v/v) CSL was the most suitable for calcium malate production. Under the optimal conditions, a titer of calcium malate in the supernatant was 132 g/l at flask level. During a 10-l fermentation, a titer of 168 g/l, a yield of 1.28 g/g of glucose, and a productivity of 1.75 g/l/h were reached within 96 h of the fermentation, and 93.4 % of the sugar was used for calcium malate production and cell growth, demonstrating that the titer, yield, and productivity of calcium malate by this fungal strain were very high and the fermentation period was very short. After analysis of the partially purified product with high-performance liquid chromatography, it was found that the main product was calcium malate. The results demonstrated that P. viticola 152 obtained in this study was the most suitable for developing a novel one-step fermentation process for calcium malate production from glucose on a large scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号