首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 601 毫秒
1.
F9 embryonal mouse teratocarcinoma cells were differentiated to a primitive endoderm-like phenotype by retinoic acid and to a parietal endoderm-like phenotype by retinoic acid in combination with dibutyryl cyclic AMP. The secretion of tissue plasminogen activator (tPA) is a characteristic of the cells displaying the differentiated phenotypes. The fundamental question of whether tPA secretion is regulated acutely by G-protein-mediated transmembrane signaling was explored. Cells differentiated to primitive and parietal endoderm demonstrated a rapid tPA response to stimulation by beta-adrenergic agonist (isoproterenol). Adenylyl cyclase activity in response to isoproterenol and GTP, but not forskolin, was greater in primitive and parietal endoderm than F9 stem cells. Both primitive and parietal endoderm cells, but not F9 stem cells, displayed beta-adrenergic stimulation of cyclic AMP accumulation. Retinoic acid induced F9 stem cells to the primitive endoderm phenotype and increased beta-adrenergic receptor levels 3-fold. Gi alpha 2 levels declined, G beta-subunits increased, and Gs alpha levels were unchanged following differentiation to primitive endoderm. In parietal endoderm cells beta-adrenergic receptors increased 2-fold over F9 stem cells, Gi alpha 2 levels declined even further than in primitive endoderm, G beta-subunits increased compared to F9 stem cells, and Gs alpha levels again were unchanged. The marked potentiation of short-term stimulation of tPA secretion in the differentiated state may be best explained by the retinoic acid-induced increase in expression of beta-adrenergic receptors coupled with a decline in Gi alpha 2 levels. Short-term regulation by G-protein-linked receptors represents a novel mode for the control of tPA secretion.  相似文献   

2.
Cell interactions have been implicated in the differentiation of visceral and parietal endoderm in the developing mouse embryo. Embryoid bodies formed from F9 embryonal carcinoma cells have been useful in characterizing the events which lead to endoderm formation. As part of our effort to specify the interactions which may be involved in this process we have isolated visceral endoderm-like cells (VE) from F9 embryoid bodies and cultured them under various conditions. Using a combination of immunoprecipitation and enzyme-linked immunosorbent assay, we demonstrate that monolayer culture of these cells on a number of different substrates leads to a dramatic decrease in the level of alphafetoprotein (AFP), a VE-specific marker. Northern blot analysis of AFP mRNA indicates very low levels of this message are present after 48 hr in monolayer culture. Coincident with the drop in AFP levels is an increase in the levels of the cytokeratin Endo C and tissue plasminogen activator, both markers for parietal endoderm (PE). Morphological evidence at the ultrastructural level supports a transition from VE to PE. In contrast, the VE phenotype can be maintained in vitro by interaction with aggregates, but not monolayers, of stem cells. In addition, culturing the cells on the curved surface of gelatin-coated dextran beads, but not on a flat gelatin surface facilitates AFP expression and the cells are morphologically intermediate between VE and PE cells. The potential role of junctional complexes and cell shape are discussed.  相似文献   

3.
Embryoid bodies formed from teratocarcinoma stem cells differentiate an outer layer consisting of parietal and visceral endoderm or of visceral endoderm exclusively. We have previously shown that when these embryoid bodies are plated on collagen-coated substrates a parietal endoderm-like cell migrates onto the substrate, whereas all of the visceral endoderm remains associated with the stem cell mass, suggesting a role for substrate contact in parietal endoderm differentiation. We now identify fibronectin as the migration-promoting component in these cultures, and note that laminin and collagen type IV are 10-fold less effective at promoting both attachment and endoderm outgrowth. The RGDS tetrapeptide (arg-gly-asp-ser) from the cell attachment domain of fibronectin can specifically block attachment and outgrowth on both fibronectin- and laminin-coated substrates. In addition, the involvement of the 140-kD fibronectin receptor is demonstrated using an antibody directed against this molecule.  相似文献   

4.
Calcitonin gene-related peptide (CGRP), expressed predominantly in F9 embryonal carcinoma cells, is both a potent chemotactic agent and an autocrine growth factor for these cells. We analyzed the effect of retinoic acid (RA)-induced differentiation of F9 cells into primitive parietal endoderm-like cells, on CGRP production and the CGRP responsiveness of these cells. Poly(A) RNA extracted from F9 cells and analysed by Northern blotting and hybridization with a CGRP probe showed a specific band of about 1200 bases corresponding to mature CGRP mRNA. This band was not detected in F9 cells treated for 6 days with RA (differentiated primitive parietal endoderm-like cells) or in PYS cells (established parietal endoderm-like cell line). During RA-induced differentiation of F9 cells, CGRP mRNA levels fell within 24 h after treatment and were almost undetectable after 2 days. RA treatment also reduced CGRP secretion by F9 cells; the effect was maximal at 3 days and remained stable thereafter. Similarly, RA rapidly reduced adenylate cyclase responsiveness to chicken CGRP (cCGRP) and human CGRP (hCGRP). An 80% fall in cAMP release into the culture medium in the presence of CGRP was observed after 24 h of RA treatment. These results demonstrate that RA rapidly abolishes the CGRP autocrine system involved in the proliferation of F9 cells, at the same time inducing their differentiation into primitive parietal endoderm. They point to the interaction between retinoic acid and growth factors in the regulation of cell proliferation and differentiation. J. Cell. Biochem. 64:447–457. © 1997 Wiley-Liss, Inc.  相似文献   

5.
Teratocarcinoma stem cells can be used to study certain events occurring during early mouse embryogenesis. We report that the outgrowth of parietal endoderm from teratocarcinoma stem-cell embryoid bodies in vitro is analogous to the same process in vivo in terms of the spatial distribution of endoderm types: only parietal endoderm migrates away from the aggregate, whereas visceral endoderm remains associated with the embryoid body. The outgrowths generated on a substrate of type-I collagen from PSA-1 and retinoic-acid-treated F 9 embryoid bodies were found to be comparable, even though these aggregates express different endoderm types. We demonstrated that retinoic-acid-treated F 9 embryoid bodies that contain essentially only visceral endoderm in suspension culture can nonetheless generate parietal-endoderm outgrowth when plated on type-I collagen, suggesting that substrate interaction plays an important role in inducing parietal-endoderm differentiation. These data indicate the usefulness and relevance of studying endoderm differentiation and outgrowth in vitro employing the teratocarcinoma model system.  相似文献   

6.
The differentiation of retinoic acid-treated F9 cells (primitive endoderm-like F9 cells) into parietal endoderm-like F9 cells induced by dibutyryl cAMP was studied as a culture model of the morphogenesis of early mouse embryo. For this purpose, 6 cDNA clones coding for mRNAs specifically expressed in parietal endoderm-like F9 cells were selected. Northern hybridization of RNA extracted from variously treated F9 cells to nick-translated plasmid DNA of these clones demonstrated the reversible expression of many mRNAs depending on the presence of dibutyryl cAMP in the culture medium. This result suggested that the differentiated state of parietal endoderm, which is formed from primitive endoderm at a position adjacent to the trophectoderm in mouse embryo, can be reversed if the local signal is removed. One of the selected clones, pLAM, hybridized to an mRNA of 6.3 kb and selected mRNA producing a laminin B subunit in an in vitro translation system. This clone has an inserted sequence of 3.1 kb. Among the restriction sites in this sequence, six were consistent with those in a 1.7 kb inserted sequence of pPE 49 and pPE 386, which were isolated by Barlow et al. as laminin B1 clones. An XbaI site found in both pPE 49 and pPE 386 was, however, not found at the corresponding position of pLAM. Dot hybridization of RNA with pLAM showed that expression of laminin B in F9 cells is stimulated more than 100-fold during differentiation of F9 stem cells into parietal endoderm-like F9 cells.  相似文献   

7.
F9 teratocarcinoma cells can be grown as monolayers or aggregates, and upon treatment with retinoic acid they will differentiate into parietal or visceral endoderm, respectively. Visceral endoderm specifically synthesizes alpha-fetoprotein and albumin mRNAs, which are not found in parietal endoderm. In contrast, both endoderms produce enhanced levels of the major histocompatibility antigen (H2) mRNA compared with F9 cells. F9 cells contain highly methylated DNA as judged by restriction enzyme digestion. However, upon differentiation into visceral endoderm, there is a genome-wide loss of methylation in induced, silent, and constitutively expressed genes. Experiments in which methylation loss is induced via the methyltransferase inhibitor 5-azacytidine result in no induction of alpha-fetoprotein mRNA and no morphological differentiation, suggesting that methylation loss alone is not sufficient to induce the visceral endoderm phenotype. Likewise, 5-azacytidine treatment of differentiated cells does not result in enhanced expression of alpha-fetoprotein mRNA. However, the patterns of loss of DNA methylation at all sites examined after differentiation or 5-azacytidine treatment were remarkably similar, suggesting that the two occur by a similar mechanism, the inhibition of DNA methyltransferase activity. These results argue that the specificity for methylation loss at a given site is an inherent property of aggregated F9 cell chromatin. This system provides a model for studying a tissue-specific change in DNA methylation upon differentiation.  相似文献   

8.
Plasminogen activators are believed to play an important role in tissue remodeling and cell migration. During mouse embryogenesis, visceral endoderm secretes urokinase-type plasminogen activator (uPA) whereas parietal endoderm secretes tissue-type plasminogen activator (tPA). Visceral endoderm from F9 embryoid bodies can transdifferentiate into parietal endoderm under the appropriate culture conditions. We have examined at the protein and mRNA levels the type of plasminogen activator expressed in whole embryoid bodies, visceral endoderm and its parietal endoderm derivatives. Our experiments show that the visceral endoderm on F9 embryoid bodies synthesizes and secretes substantial amounts of both tPA and uPA. In contrast, the parietal endoderm derived directly from the visceral endoderm secretes dramatically increased levels of tPA and decreases production of uPA to low or below detectable levels. These data support the finding that visceral endoderm can transdifferentiate to parietal endoderm. In addition, this transition provides an excellent model for studying the molecular basis of the coincident down- and upregulation of the two plasminogen activators as well as their potential function during embryogenesis.  相似文献   

9.
Adhesion-defective EC cells were isolated from a population of mutagenized F9 cells by serial transfer of cells that did not adhere to gelatin-coated dishes. The variant cells grew in suspension as multicellular clusters of loosely aggregated cells. The cells adhered to, but did not flatten on, fibroblast monolayers and extracellular matrix produced by parietal-like endoderm. Two different mutant cell lines exhibited increased sensitivity to the lectin abrin and decreased sensitivity to wheat germ agglutinin, suggesting that changes in cell surface glycosylation are associated with the mutant phenotype. These adhesion-defective mutants were used to study the relationship between cell-cell adhesion and endodermal differentiation. Unlike wild-type cells, when cultured with low concentrations of retinoic acid (RA) in suspension culture, the mutant cells did not form embryoid bodies but remained as loosely adhering strings of cells. Electron microscopic examination revealed that most of the differentiated variant cells resembled parietal endoderm, and this was confirmed by immunofluorescent staining for TROMA-3 marker. The levels of some of the markers that characterize the differentiative pathways were examined by immunoprecipitation and by enzyme-linked immunosorbent assay (ELISA). The variant line produced higher levels of laminin and type IV collagen compared to the wild-type cells. alpha-Fetoprotein (AFP) was produced at a significantly lower level by the variant compared to wild-type F9 cells during the differentiative process. The results show that variant cells differentiated toward parietal endoderm but have a very much restricted ability to differentiate to visceral endoderm. We conclude that aggregation and/or compaction provide some essential signals during the differentiation of F9 cells into epithelial layers of visceral endoderm.  相似文献   

10.
Abstract. We document the time of appearance and the levels of two markers of differentiation during the formation of embryoid bodies by two embryonal carcinoma (EC) cell lines. Neither of these markers has been described before for EC cells differentiating in aggregate culture, and they further extend the identification and characterization of new cell types. Both F9 and PC13 EC cell lines form embryoid bodies (so-called because they resemble early mouse embryos) with an outer epithelial layer of visceral endoderm cells, after suspension culture in the presence of retinoic acid. However, the two cell lines differ in the procedures needed to initiate the differentiation process. Once floating aggregate cultures have been formed, the time course of the appearance of epidermal growth factor (EGF) receptors and of the secretion of transferrin are similar in both cell lines, although the levels differ. EGF receptors and transferrin are quantified by 125I-EGF binding assays and enzyme-linked immunosorbent assays (ELISA) using specific antibodies, respectively. The expression of EGF receptors increases about two fold while that of transferrin increases up to 40 fold after treating F9 aggregates with retinoic acid. The EGF receptors reach a maximum 4 days after adding retinoic acid and then decline, while transferrin only increases later from a low but detectable level. For PCI 3 cells, EGF receptors increase tenfold, and transferrin synthetic rate increases 40 fold during the time-course. Interestingly, unstimulated F9 cells in monolayer cultures also express low levels of these markers, while the levels in PC13 EC cells are barely detectable above background. A variety of other teratocarcinoma EC cell lines either do not express these markers at detectable levels or express very low levels. One explanation of our finding is that F9 cells, unlike most other EC cell lines, are already partially differentiated along the pathway to endoderm.  相似文献   

11.
12.
F9 embryonal carcinoma cells can differentiate into endoderm-like cells   总被引:10,自引:0,他引:10  
The mouse teratocarcinoma cell line, F9, has been used in many laboratories as the epitome of the “nullipotent” embryonal carcinoma cell line. However, careful inspection of F9 cultures reveals the presence of small numbers of cells which possess several properties of endoderm, particularly parietal endoderm, and which can be shown to derive from the embryonal carcinoma component. Furthermore, tumors of F9 cells include isolated patches of endoderm-like cells surrounded by a thick secretion resembling Reichert's membrane. The proportion of endoderm-like cells in F9 cultures can be increased to varying degrees by causing the cells to form aggregates and/or maintaining them at high density for several days, although the endoderm-like cells produced in these ways contribute very little to the formation of subcutaneous tumors from the resultant mixed cultures. Differentiated cell types other than endoderm are rarely observed in F9 monolayer or aggregate cultures, even after several weeks. Cloning studies support the view that most, if not all, F9 cells can differentiate, albeit at very low incidence.  相似文献   

13.
Treatment of F9 teratocarcinoma cells with all trans retinoic acid (RA) causes them to differentiate into two or three morphologically distinct cell types. Whereas the majority of these retinoid-derived cells exhibit properties resembling parietal endoderm, a small percentage of this differentiated cell population manifests properties distinct from the parietal endoderm cell type. The isolation and partial characterization of such a non-parietal endoderm cell line (Dif 5) derived from F9 cells following prolonged (44 days) exposure to 1 μM retinoic acid are described.Unlike the retinoid-induced parietal endoderm-like cell population, which exhibits a dramatic, characteristic morphological change upon treatment with 8-bromo cAMP, Dif 5 cells do not show any morphological change with exposure to this cAMP analog. Dif 5 cells synthesize and deposit an extracellular matrix consisting of several components of Reichert's membrane (fibronectin, laminin, and type IV collagen). This new cell line does not synthesize α-fetoprotein but does secrete plasminogen activator.An interesting property of these cells is their ability to grow in the absence of serum or other hormonal supplements. Yet the Dif 5 cells do exhibit density-dependent inhibition of growth. Unlike the parent F9 cells or parietal yolk sac (PYS-2) cells, these cells do possess specific cell surface receptors for epidermal growth factor (EGF). The growth-arrested Dif 5 cells can be reinitiated to proliferate by the addition of fetal calf serum (FCS) or EGF.The properties of Dif 5 cells determined fail to fulfill all the characteristics described for either parietal or visceral endodermal cells. This raises the possibility that Dif 5 cells might represent an endodermal cell type which is intermediate in differentiation to either parietal or visceral endoderm but which lacks the biochemical signal to complete this stage of differentiation. This new Dif 5 cell line should be of considerable value in studying the modulation of growth requirements and extracellular matrix formation during early embryonic development.  相似文献   

14.
Rabbit antiserum raised against teratocarcinoma embryoid bodies reacts with two extracellular, collagenase-resistant glycoproteins, PYS A and B, with molecular weights of approximately 350,000 and 220,000 daltons. The 220,000-dalton protein is distinguishable from fibronectin. The two proteins are synthesized and secreted into the medium in large amounts by the teratocarcinoma-derived parietal endoderm line PYS-1, and by normal parietal endoderm cells from the 10.5-day embryo. There was no detectable synthesis of PYS A and B by normal visceral endoderm cells isolated from the 10.5-day embryo, and only trace amounts of PYS A were synthesized by the teratocarcinoma-derived visceral endoderm line PSA5E and by mesodermal cells isolated from the visceral yolk sac. The two proteins therefore seem to be good biochemical markers for distinguishing parietal from visceral endoderm cells. Synthesis and secretion of PYS A and B could not be detected in undifferentiated embryonal carcinoma cells or in endoderm cells derived from them in the presence of retinoic acid.  相似文献   

15.
16.
We document the time of appearance and the levels of two markers of differentiation during the formation of embryoid bodies by two embryonal carcinoma (EC) cell lines. Neither of these markers has been described before for EC cells differentiating in aggregate culture, and they further extend the identification and characterization of new cell types. Both F9 and PC13 EC cell lines form embryoid bodies (so-called because they resemble early mouse embryos) with an outer epithelial layer of visceral endoderm cells, after suspension culture in the presence of retinoic acid. However, the two cell lines differ in the procedures needed to initiate the differentiation process. Once floating aggregate cultures have been formed, the time course of the appearance of epidermal growth factor (EGF) receptors and of the secretion of transferrin are similar in both cell lines, although the levels differ. EGF receptors and transferrin are quantified by 125I-EGF binding assays and enzyme-linked immunosorbent assays (ELISA) using specific antibodies, respectively. The expression of EGF receptors increases about two fold while that of transferrin increases up to 40 fold after treating F9 aggregates with retinoic acid. The EGF receptors reach a maximum 4 days after adding retinoic acid and then decline, while transferrin only increases later from a low but detectable level. For PC13 cells, EGF receptors increase tenfold, and transferrin synthetic rate increases 40 fold during the time-course. Interestingly, unstimulated F9 cells in monolayer cultures also express low levels of these markers, while the levels in PC13 EC cells are barely detectable above background.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
18.
The ontogeny of expression of mouse metallothionein was studied by RNA dot and Northern blot hybridization using a cloned cDNA probe. In some instances the synthesis of metallothionein was analyzed by cell-free translation of RNA as well as pulse-labeling of proteins in short-term organ cultures followed by polyacrylamide gel electrophoresis. Interesting parallels between metallothionein and alpha-fetoprotein gene expression during development were noted. Like alpha-fetoprotein mRNA ( Dziadek and Andrews, 1983), metallothionein mRNA was found to be abundant in developing liver as well as in visceral yolk sac endoderm. In addition, metallothionein mRNA was abundant in parietal yolk sac. During liver development metallothionein and alpha-fetoprotein mRNAs were abundant by Day 12 of gestation, increasing to maximal levels on Day 16 and decreasing during late fetal and neonatal life to basal levels in adult. Metallothionein mRNA increased in maternal liver and was also abundant in certain hepatomas. Synthesis of metallothionein and levels of metallothionein mRNA in visceral yolk sac increased from Day 9 of gestation to maximal levels on Days 11-12 and then decreased abruptly after Day 15. RNA from differentiated teratocarcinoma cells with primitive, parietal or visceral endoderm characteristics each contained high levels of metallothionein mRNA, whereas, levels of this mRNA varied widely among embryonal carcinoma stem cell lines. alpha-Fetoprotein mRNA was not detected in embryonal carcinoma cells but was expressed in visceral endoderm-like differentiated cells. These results indicate that parietal and visceral endoderm cells actively express the metallothionein gene and further suggest that expression may be initiated at the earlier stage of primitive endoderm.  相似文献   

19.
The present study was carried out to determine if an insulin-like growth factor (IGF) type activity might be produced by embryonal carcinoma-derived cells. The cell line used to condition growth medium for the isolation of secreted growth factors was a newly established Dif 5 cell type. Dif 5 cells are a differentiated endoderm-like cell type derived from F9 embryonal carcinoma cells (which possess properties similar to mouse embryonic stem cells) following extensive exposure to retinoic acid. When growth medium conditioned by Dif 5 cells is chromatographed on Sephadex G-75 in 1 M acetic acid two peaks of activity are observed which compete for specific [125I]iodo multiplication stimulating activity (MSA) binding to PYS cells. MSA is the rat homologue of human IGF-II. The high molecular weight fraction (Mr approximately 60K) apparently corresponds to IGF-binding protein as determined by its ability to bind [125I]iodo-MSA. The low molecular weight fraction (Mr approximately 8K) is biologically active as this fraction stimulates [3H]thymidine incorporation into serum-starved chick embryo fibroblasts. Radioimmunoassay data indicate that the IGF-like activity produced by Dif 5 cells is more closely related to IGF-II than to IGF-I. Undifferentiated embryonal carcinoma stem cell lines (F9, Nulli, and PCC4) produced little of this MSA-like activity, while PYS-2 (parietal endoderm-like) cells produced about 16 ng MSA/10(6) cells/24 hr as determined by radioimmunoassay. Dif 5 and PSA-5E (visceral endoderm-like) cells, are found to secrete significant amounts of MSA into the growth medium (30-50 ng MSA/10(6) cells/24 hr). These findings offer further support to a proposal that MSA (IGF-II) produced by endoderm cells, particularly visceral endoderm, may serve as an early embryonic growth factor.  相似文献   

20.
F9 teratocarcinoma stem cells treated with retinoic acid (RA) and dibutyryl cAMP (but2 cAMP) differentiate into embryonic parietal endoderm. Using heparin-affinity chromatography, endothelial cell proliferation assays, immunoprecipitation, and Western analysis with antibodies specific for acidic and basic fibroblast growth factors (FGFs), we detected biologically active FGF in F9 cells only after differentiation. A bovine basic FGF cDNA probe hybridized to 2.2-kb mRNAs in both F9 stem and parietal endoderm cells and to a 3.8-kb mRNA in F9 stem cells. A genomic DNA probe for acidic FGF hybridized to a 5.8-6.0-kb mRNA in both F9 stem and parietal endoderm cells, and to a 6.0-6.3-kb mRNA only in parietal endoderm cells. Although these FGF mRNAs were present in the stem cells, we could find no evidence that F9 stem cells synthesized FGFs, whereas differentiated F9 cells synthesized both acidic and basic FGF-like proteins. We conclude that biologically active factors with properties characteristic of acidic and basic FGF are expressed by F9 parietal endoderm cells after differentiation. Differentiating embryonic parietal endoderm thus may serve as a source of FGF molecules in the developing blastocyst, where these factors appear to play a central role in subsequent embryogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号