首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
  • 1.1. Today, fish in the environment are inevitably exposed to chemical pollution. Although most hazardous substances are present at concentrations far below the lethal level, they may still cause serious damage to the life processes of these animals.
  • 2.2. Fish depend on an intact nervous system, including their sense organs, for mediating relevant behaviour such as food search, predator recognition, communication and orientation.
  • 3.3. Unfortunately, the nervous system is most vulnerable and injuries to its elements may dramatically change the behaviour and consequently the survival of fish.
  • 4.4. Heavy metals are well known pollutants in the aquatic environment. Their interaction with relevant chemical stimuli may interfere with the communication between fish and environment.
  • 5.5. The affinity for a number of ligands and macromolecules makes heavy metals most potent neurotoxins.
  • 6.6. The present Mini-Review highlights some aspects of how trace concentrations of mercury, copper and lead affect the integrity of the fish nervous system; structurally, physiologically and biochemically.
  相似文献   

2.
Fishes show remarkably diverse aggressive behaviour. Aggression is expressed to secure resources; adjusting aggression levels according to context is key to avoid negative consequences for fitness and survival. Nonetheless, despite its importance, the physiological basis of aggression in fishes is still poorly understood. Several reports suggest hormonal modulation of aggression, particularly by androgens, but contradictory studies have been published. Studies exploring the role of chemical communication in aggressive behaviour are also scant, and the pheromones involved remain to be unequivocally characterized. This is surprising as chemical communication is the most ancient form of information exchange and plays a variety of other roles in fishes. Furthermore, the study of chemical communication and aggression is relevant at the evolutionary, ecological and economic levels. A few pioneering studies support the hypothesis that aggressive behaviour, at least in some teleosts, is modulated by “dominance pheromones” that reflect the social status of the sender, but there is little information on the identity of the compounds involved. This review aims to provide a global view of aggressive behaviour in fishes and its underlying physiological mechanisms including the involvement of chemical communication, and discusses the potential use of dominance pheromones to improve fish welfare. Methodological considerations and future research directions are also outlined.  相似文献   

3.
The number of reports concerning the chemical toxicology of metals which are released in the environment by natural as well as anthropogenic sources, have been increasing constantly. Lead, cadmium, and manganese have found a variety of uses in industry, craft, and agriculture owing to their physical and chemical properties. The environmental burden of heavy metals has been rising substantially by smelter emission in air and waste sewage in water. Further, organic compounds of lead and manganese used as antiknock substances in gasoline are emitted into the atmosphere by automobile exhaustion. Such environmental contamination of air, water, soil, and food is a serious threat to all living kinds. Although these metals are known to produce their toxic effects on a variety of body systems, much emphasis has been placed on their effects on the nervous system owing to apparent association of relatively low or "subclinical" levels of metallic exposure with behavioral and psychological disorders. Clinical and animal data on environmental exposure show that while lead and manganese are most toxic to the nervous system, cadmium exerts profound adverse effects on kidney and the male reproductive system. It appears that the consequences of exposure to lead in adults are less severe than the types of exposure associated with hyperactivity in neonates. Except for a few reports, hyperactivity has indeed been observed in animals exposed to either of these three metals. Experimental work has also shown that these metals produce behavioral changes by altering the metabolism of brain neurotransmitters, especially catecholamines. Recently, it is hypothesized that these metals exert their toxic effect by damaging biological defences which exist in the body to serve as protective mechanisms against exogenous toxins. A voluminous publication list with diverse opinions on the biological effects of metals is available and there is an urgent need to compile assessment of the existing literature to identify the future theme of research work. The problem of metal toxicity becomes even more complex owing to simultaneous or successive exposure of the general population to different physical, chemical, biological, and psychological factors in the environment. The net toxic manifestations produced by multiple exposure should, therefore, be different from those produced by a single factor as the result of their additive, synergistic or antagonistic action. Even though a metal may not exist in sufficient amounts to cause any disability, the toxicity could result when a second factor is also present.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
夏继刚  刘香  黄艳 《生态学报》2019,39(17):6425-6432
化学通讯是水生动物最原始、最普遍和最主要的通讯方式之一。对捕食风险源的回避可以使猎物减少被捕食风险,但如果出现的化学信息并不代表真正的威胁,那么就会导致猎物减少觅食或求偶的机会,从而降低适合度。因此基于能量代价-生态收益的权衡可能导致动物行为决策与化学通讯模式的分化。"个性"行为(Personality)已被证实与动物的行为决定有关,然而,有关鱼类化学预警通讯与"个性"行为关联的研究至今鲜见报道。推测:"个性"行为是鱼类的化学通讯模式多样化的重要内因。采捕了广泛分布于我国淡水水域的野生高体鳑鲏(Rhodeus ocellatus)并于半自然状态下探究了:(1)实验鱼对不同化学信息(池水对照组、柠檬新奇信息组、高浓度和低浓度化学预警信息(Chemical alarm cues,CAC)组)的行为响应,(2)实验鱼在新异环境(被转入新栖息地)、新异刺激(新异物理刺激)、新异食物资源下的"个性"行为及其与化学预警响应的关联。结果发现:(1)不同溶液化学信息对实验鱼静止时间与爆发游泳的变化以及摄食个体的比例等参数均有显著影响(P < 0.05)。其中,柠檬组(未知"假风险")与对照组相比无显著差异(P > 0.05),实验鱼对不同浓度CAC(已知"真风险")表现出不同程度的行为响应,高浓度和低浓度CAC均导致摄食个体比例下降(P < 0.05),但只有高浓度CAC导致静止时间和爆发游泳的变化增加(P < 0.05)。可见,实验鱼对外源化学信息有准确高效的行为应答。(2)实验鱼静止时间比对不同溶液化学预警响应的变化与新异刺激下的活跃性显著负相关(P < 0.05),但与新异环境下的活跃性无关(P > 0.05),提示"个性"行为与化学预警响应有关但这种关联可能又有一定的环境依赖性(例如测试环境的稳定性与可预测性)。  相似文献   

5.
The aim of the present study was to demonstrate the usefulness of fish scales as a bioindicator reflecting the concentrations of heavy metals in the environment as compared to typical recognized bioindicators such as the liver or kidney. Heavy metal (Zn, Mn, Cu, Cd, Fe, Ni, Pb) concentration analysis (with the atomic absorption technique) was performed in different annuli on the fish scale to characterize the metals’ accumulation in the consecutive years of the fish's life corresponding to individual scale increments. The results confirmed the usefulness of fish scales as a bioindicative tissue reflecting the condition of the environment in subsequent growing seasons. The results of the present study demonstrated that fish scales are more sensitive to the accumulation of Mn, Ni, and Pb, whose concentrations in different parts of the scales were even 10 times higher than in soft tissues, and significantly correlated with their levels in liver or kidney. In light of this finding, further studies involving controlled exposure of fish to different metals could be performed. Their results could allow for obtaining an excellent tool for monitoring the environment inhabited by fish in the present and past without the need to kill the animals.  相似文献   

6.
An element or compound in a natural water system is usually distributed between a variety of physico-chemical forms, both dissolved and particulate. The distribution is determined by the properties of the ion or molecule in question and by a number of major variables, including ionic strength, the nature and concentrations of major dissolved elements, particulate matter and organic complexing material, pH and the electron activity (pE); it may thus vary widely between different environments. The design of experiments to study sublethal effects of pollutants in sea water ideally requires that the test medium is closely matched to the environment for which information is needed, with respect to the ranges of concentration and activity, and the chemical speciation, of the pollutant and of any other constituents which may influence its effects. This in turn requires either that the pollutant can be added in the appropriate forms, implying a knowledge of the existing speciation, or that the added material rapidly exchanges with the forms already present. The implications of these requirements are most apparent for those pollutants that show complex chemical behaviour in sea water. This account concentrates on metals of toxicological significance. Consideration of particulate associations, redox speciation, and complex formation in the dissolved state with inorganic and organic ligands, suggests that physicochemical factors limit the usefulness, in terms of environmental predictions, of experimental studies of biological effects of metals, both inherently and through inadequate knowledge of environmental speciation and the mechanisms and rates of interconversion between species. Of particular importance are non-equilibrium features in speciation, such as the presence of thermodynamically unstable oxidation states and of kinetically non-labile associations. Interpretation of the nature of these associations is complicated by the presence of colloidal and organic macromolecular material in dissolved fractions as conventionally defined. While the chemical behaviour of some substances in sea water is considerably less complicated than that of the trace metals, there is a need with all types of pollutants for greater attention to physico-chemical factors in both the design and interpretation of experiments to investigate biological effects.  相似文献   

7.
Parasites are attracting increasing interest from parasite ecologists as potential indicators of environmental quality due to the variety of ways in which they respond to anthropogenic pollution. In environmental impact studies certain organisms provide valuable information about the chemical state of their environment not through their presence or absence but instead through their ability to concentrate environmental toxins within their tissues. Free living invertebrates, notably bivalve molluscs, are commonly employed in this role as `sentinel organisms' to monitor the concentrations of bioavailable metals in aquatic ecosystems. Also certain parasites, particularly intestinal acanthocephalans of fish, can accumulate heavy metals to concentrations orders of magnitude higher than those in the host tissues or the environment. The comparison of metal accumulation capacities between acanthocephalans and established free living sentinel organisms revealed significantly higher concentrations of several elements in Acanthocephalus lucii (Müller) than in the Zebra mussel Dreissena polymorpha (Pallas) which is a commonly used bioindicating organism in Europe. In contrast to the high heavy metal concentrations recorded in adult acanthocephalans, the larval stages in their respective crustacean intermediate hosts show little tendency to accumulate metals. A number of experimental studies demonstrate a clear time dependent accumulation of lead for acanthocephalans in their final hosts. These investigations provide evidence that the extremely high metal concentrations in intestinal acanthocephalans of fish are not the result of a slow process of accumulation but instead a relatively rapid uptake to a steady-state level. Thus, metal concentrations in adult acanthocephalans respond rapidly to changes in environmental exposure of their hosts. The value of parasites for environmental monitoring will be discussed in detail in the present article.  相似文献   

8.
Contamination of freshwater bodies and consequently freshwater fish with toxic heavy metals is a serious environmental issue. The trophic transfer of potentially toxic heavy metals in the human food chains, especially in fish has important implications for human health. The present research study was designed to assess the concentrations of the heavy metals Cr, Ni, Cd, and Pb in the water, sediments, and different freshwater fish species of River Kabul, Pakistan. The heavy metals were quantified in the samples with Atomic Absorption Spectrophotometer. Heavy metal contamination in fish muscles was characterized in terms of metal pollution index and biota-sediments accumulation factor, while human health risk was assessed through calculation of estimated weekly intake. The average concentrations of Cr, Ni, Cd, and Pb in muscle samples of the analyzed fish species at different sampling sites of the river ranged from 12.3 to 33.0, 33.2 to 109.2, 0.98 to 1.5, and 13.9 to 29.6 mg kg?1 wet weight, respectively. Based on the current study data, consumption of the analyzed freshwater fish species from River Kabul was generally safe in terms of potential risk from Cd and Pb but the observed Ni accumulation may pose a potential health risk to regular/excessive fish consumers.  相似文献   

9.
A review of chemical communication in freshwater fish   总被引:4,自引:0,他引:4  
Since communication between individuals of a species of fish by chemical agents (pheromones) was first demonstrated in 1932, such a process has been suggested in many aspects of fish behavidïo'ur and development. This review describes observations on such mechanisms in shoaling behaviour and beneficial conditioning of water, homing of migratory fish, communication of alarm, 'crowding factor' (which adversely affects growth, survival and fecundity in dense populations), pair formation and spawning, and a range of other social interactions. Some of the chemicals involved have been isolated and identified, but most are indicated by behavioural observations. Pheromones are of great significance in fish behaviour and ecology, and are likely to be an important factor in culture operations.  相似文献   

10.
It is well established that changes to the chemical environment can impair development, physiology and reproductive biology; by contrast, impacts on communication have not been widely reported. This is surprising given that chemical communication is the most widely used sensory modality in nature, and that variation in the chemical composition of the environment is the rule, not the exception. Here, we show that chemically mediated species recognition in a swordtail fish, Xiphophorus birchmanni, can be hindered by anthropogenic disturbance to the signalling environment. Females have a strong preference for conspecific male chemical cues, yet they hybridize in nature with the congener X. malinche. Wild-caught females showed a strong preference for conspecifics when tested in clean water, but failed to show a preference when tested in stream water subject to sewage effluent and agricultural runoff. We hypothesized that this was due to the interaction between chemical communication systems and humic acid (HA), a ubiquitous, natural product elevated to high levels by anthropogenic processes. When exposed to elevated concentrations of HA, female X. birchmanni again lost their preference for conspecific male chemical cues, while visual mating preferences and motivation to mate were retained. Sub-lethal concentrations of seemingly benign substances can thus have a drastic effect on natural populations through their specific impact on communication systems.  相似文献   

11.
Abstract

The chemical fractionation of lead, cobalt, chromium, nickel, zinc, cadmium and copper in soils around Lakwa oil field, Assam, India was studied using a sequential extraction method. It is evident from the study that the residual fraction is the most important phase for the seven heavy metals under study. Among non-residual fractions metals are mostly associated with the Fe–Mn oxides fraction. The association of heavy metals with organic matter was observed in the following order: copper> cadmium> zinc> lead. The concentration of Pb in the carbonate fraction for both the seasons is higher compared with other metals, which may pose environmental problems due to its highly toxic nature. The comparatively low concentration of metals in the exchangeable fraction indicates low bioavailability. Correlations between physicochemical parameters and metal fractions of soil do not show consistent behaviour. The local mean values of metals when compared with the accepted values of normal abundance and geochemical background, indicates two to four fold increases in this area. However, the values are within the range of normal abundance. As well as from natural soil geochemical behaviour, anthropogenic influence might have a close bearing on the association of metals with the soil system in the studied area.  相似文献   

12.
Parasitism poses a serious threat to hosts under certain circumstances, while the well-being of organisms is also negatively affected by environmental pollution. Little information is available on the simultaneous effects of parasites and pollutants on the physiological homeostasis of organisms. The present paper demonstrates that parasites: (i) may influence the metabolism of pollutants in infected hosts, (ii) interact with pollution in synergistic or antagonistic ways, and (iii) may induce physiological reactions in hosts which were thought to be pollutant-induced. Experimental studies on the uptake and accumulation of metals by fish reveal that fish infected with acanthocephalans have lower metal levels than uninfected hosts; e.g. Pomphorhynchus laevis reduces lead levels in fish bile, thereby diminishing or impeding the hepatic intestinal cycling of lead, which may reduce the quantity of metals available for fish. Alterations in pollutant uptake and accumulation in different intermediate and final hosts due to parasites are thus very important in the field of ecotoxicology. In addition to such alterations, there is a close interaction between the effects of pollutants and parasites which seems to be mediated at least partly by the endocrine system, which itself is closely related to the immune system in fish. Laboratory studies on eels experimentally infected with the swimbladder nematode Anguillicola crassus reveal that toxic chemicals such as polychlorinated biphenyls produce immunosuppressive effects which facilitate parasite infection. Similarly, an increase in serum cortisol concentration in eels due to chemical exposure and infection is correlated with decreasing levels of anti-A. crassus antibodies. Furthermore, parasites are able to elicit physiological changes which are attributed to chemicals with endocrine disrupting activity, e.g. the cestode Ligula intestinalis is known to suppress gonad development in roach. The most thoroughly documented examples of endocrine disruption in wild fish are in roach, and it is conceivable that this disruption is not only due to chemical activity but also to parasites such as L. intestinalis or species of the phylum Microspora.  相似文献   

13.
This study was designed to: (1) evaluate the ecological status of acid-sensitive and non acid-sensitive Maryland coastal plain streams using biological (Index of biotic Integrity [IBI] for fish), chemical and physical habitat conditions; (2) determine if a low IBI for coastal plain stream fish can be related to stream sensitivity from acidic inputs and (3) correlate land use activities and watershed size in the coastal plain streams with biological, chemical and physical conditions. IBI values obtained using 12 community metrics for Maryland coastal plain stream fish demonstrated that there were no significant differences in these values when acid-sensitive and non-acid-sensitive streams were compared. However, other complementary data in acid-sensitive streams such as absence of the acid-sensitive species, blacknose dace and higher numbers and biomass of tolerant species suggested that these streams may be impacted. IBI values were also found to be negatively correlated with various trace metals in acid-sensitive streams but not in non-acid-sensitive areas. Chemical conditions such as trace metals and nutrients were associated with land use activities. Highest concentrations of trace metals (chromium, nickel, and cadmium) were found in streams with the highest percentage of low residential housing. Nitrate concentrations were significantly higher in streams found in agricultural areas than in forested areas. Agriculturally dominated streams with highest nitrate concentrations (> 10 mg l-1) also contained the highest percentage of livestock feeding operations. The mean IBI score for streams draining agricultural land was higher than the mean value for forested streams when all streams were compared. However, when several streams that were only marginally forested (< 50%) were removed from the analysis, the IBI scores did not differ significantly by land use. Two physical habitat indices exhibited a strong associated with each other. Each habitat index also correlated with IBI values.  相似文献   

14.
15.
The trace metals are frequently encountered as mixtures of essential and non-essential elements. Therefore, evaluation of their toxic effects individually does not offer a realistic estimate of their impact on biological processes. We studied effects of a mixture of four essential and toxic metals (Cu, Cd, Fe and Ni) on biochemical and morphological characteristics of the gills of a biomarker freshwater fish Channa punctata (Bloch) using environmentally relevant concentrations. Fish were exposed to metal mixture through tank water for 7, 15 and 30 days. Biochemical studies as well as light microscopy (LM) and scanning electron microscopy (SEM) revealed significant metal exposure-induced alterations in gills. Besides ultastructural changes, activities of antioxidant enzymes such catalase (CAT), glutathione S-transferase (GST) and superoxide dismutase (SOD) were significantly altered in the gills of exposed fish. The reduced glutathione (GSH) was significantly (p<0.001) decreased, while lipid peroxidation (LPO) was significantly (p<0.001) increased. The main alterations in general morphology of fish gills included spiking and fusion of secondary lamellae, formation of club-shaped filaments, and vacuolization and necrosis of filament epithelium in the interlamellar regions. SEM studies showed gradual increase of the density and apical surface area of the chloride cells and transformation of the surface structure of the pavement cells. The results of this study indicate adaptive as well a toxic responses in fish gills exposed to mixture of trace metals. Low concentrations of trace metal appear to compromise the antioxidant defense of gills. Lesions in the gill morphology caused by the effect of low concentrations of trace metals could lead to functional alterations and interference with fundamental processes such as maintenance of osmoregulation, gas exchange and xenobiotic metabolism in the exposed fish populations.  相似文献   

16.
Summary 1. The uptake of heavy metals via the alimentary tract can be an important factor for the metal budget of fish. 2. Concepts such as biomagnification, bioaccumulation, biotransference, or concentration factors, convey little information about the real threat originating from heavy metals in an aquatic food chain. 3. In polluted aquatic ecosystems the transfer of metals through food chains can be high enough to bring about harmful concentrations in the tissues of fish. This relationship is called the food chain effect. 4. Two kinds of ecological factors influence the food chain effect: firstly, high levels of contamination of the food, and, secondly, the reduction of species diversity. When susceptible species are eliminated, metal-tolerant food organisms may become dominant. Their tolerance may be based either on their ability to accumulate excessive amounts of metals or to exclude heavy metals from the tissues. These two strategies represent feedback mechanisms which may enhance or weaken the food chain effect. 5. It is concluded that future investigations on transference of heavy metals to fish must take into more careful consideration the specific ecological situation of a given environment.  相似文献   

17.
Osteoglossiformes are an order of “bony tongue” fish considered the most primitive living order of teleosts. This review seeks to consolidate known hypotheses and identify gaps in the literature regarding the adaptive significance of diverse reproductive traits and behaviour of osteoglossiforms within the context of sperm competition and the wider lens of sexual selection. Many of the unusual traits observed in osteoglossiforms indicate low levels of sperm competition; most species have unpaired gonads, and mormyroids are the only known vertebrate species with aflagellate sperm. Several osteoglossiform families have reproductive anatomy associated with internal fertilization but perform external fertilization, which may be representative of the evolutionary transition from external to internal fertilization and putative trade-offs between sperm competition and the environment. They also employ every type of parental care seen in vertebrates. Geographically widespread and basally situated within teleosts, osteoglossiforms present an effective study system for understanding how sperm competition and sexual selection have shaped the evolution of teleost reproductive behaviour, sperm and gonad morphology, fertilization strategies, courtship and paternal care, and sexual conflict. The authors suggest that the patterns seen in osteoglossiform reproduction are a microcosm of teleost reproductive diversity, potentially signifying the genetic plasticity that contributed to the adaptive radiation of teleost fishes.  相似文献   

18.
Courtship behaviour in Lutzomyia longipalpis Lutz and Neiva (Diptera: Psychodidae) was examined to determine the sequence of behaviours that occur prior to copulation. Courtship consisted of a series of male and female touching and wing-flapping behaviours, with males performing a greater variety of wing-flapping behaviours than previously described. Occurrence of male approach-flapping, semi-circling and female stationary-flapping were all predictors of eventual copulation, and may coincide with the dispersal of pheromones or the production of auditory signals important to courtship. Touching occurred in the majority of observations, with contact most often made with the tips of the legs and antennae. This behaviour, not previously described in sandflies, was initiated by males and females, and may indicate the use of contact pheromones, a form of communication previously overlooked in L. longipalpis. Future studies are required to separate the auditory and chemical signals associated with wing-flapping, and to confirm whether L. longipalpis possesses cuticular hydrocarbons capable of inducing behavioural responses. The identification of signals that inhibit sexual behaviour during courtship may be particularly relevant to developing mating disruption techniques against L. longipalpis.  相似文献   

19.
Triatoma patagonica Del Ponte (Hemiptera: Reduviidae), a vector of Chagas' disease, is widely distributed in Argentina and is found in sylvatic and peridomiciliary ecotopes, as well as occasionally in human dwellings after the chemical control of Triatoma infestans. Anti-cholinesteratic products can be applied in peridomiciliary areas and thus knowledge of cholinesterase activity during embryonic development in this species might contribute further information relevant to effective chemical control. Cholinesterase activity was characterized by reactions to eserine 10(-5) m, to increasing concentrations of substrate and to varying centrifugal speeds. Acetylcholinesterase activity was detected on day 4 and was significant from day 5. A reduction in cholinesterase activity towards acetylthiocholine (ATC) was observed on days 9 and 10 of development. Cholinesterase activity towards ATC and butyrylthiocholine (BTC) in homogenates of eggs was inhibited by eserine 10(-5) m. The shape of the curve indicating levels of inhibition at different concentrations of ATC was typical of acetylcholinesterase. Activity towards BTC did not appear to be inhibited by excess substrate, which parallels the behaviour of butyrylcholinesterases. Cholinesterase activity towards ATC was reduced in supernatant centrifuged at 15 000 g compared with supernatant centrifuged at 1100 g. The cholinesterase system that hydrolyzes mainly ATC seems to belong to the nervous system, as indicated by its behaviour towards the substrates assayed, its greater insolubility and the fact that it evolves parallel to the development of the nervous system. Knowledge of biochemical changes associated with the development and maturation of the nervous system during embryonic development would contribute to the better understanding of anti-cholinesteratic compounds with ovicidal action that might be used in control campaigns against vectors of Chagas' disease.  相似文献   

20.
Ecto-enzymes capable of hydrolyzing ATP and ADP (NTPDase) are present in the central nervous system of various species. In the present investigation we studied the synaptosomal NTPDase (ATP diphosphohydrolase, apyrase, E.C. 3.6.1.5) from fish, chicken and rats under different conditions and in the presence of several classical inhibitors. The cation concentration required for maximal activity was 0.5 mM for fish, 1.0 mM for chickens and 1.5 mM for rats with both substrates. The results showed that the pH optimum for all animal preparations was close to 8.0. The temperature used was 25–27°C for fish and 35–37°C for chicken and rat preparations. The inhibitors azide and fluoride only inhibited the preparation at high concentrations (10 mM). Lanthanum (0.1–0.4 mM), N-ethylmaleimide (0.4–3.0 mM) and ouabain (0.5–3.0 mM) had no effect on NTPDase activity from fish, chickens or rats. Orthovanadate (0.1–0.3 mM) only inhibited fish synaptosomal NTPDase. Trifluoperazine (0.05–0.2 mM) and suramin (0.03–0.3 mM) inhibited NTPDase at all concentrations tested. Suramin was the most potent compound in causing inhibition, presenting inhibition at 30 μM. Our results demonstrate that the synaptosomal NTPDase response to several factors is similar in fish, chickens and rats, and that the enzyme presents functional homology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号