首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Soylu S 《Mycopathologia》2004,158(4):457-464
In this study transmission electron microscopy (TEM) was used to examine details of the host–pathogen interface in Arabidopsis thaliana cotyledons infected by Albugo candida, causal agent of white blister. After successful entry through stomatal pores, the pathogen developed a substomatal vesicle and subsequently produced intercellular hyphae. TEM observations revealed that coenocytic intercellular hyphae ramified and spread intercellularly throughout the host tissue forming several haustoria in host mesophyll cells. Intracellular haustoria were spherical and 4.5 μm in diameter. Each haustorium was connected to intercellular hyphae by a narrow, slender haustorium neck. The cytoplasm of the haustorium included the organelles characteristic of the pathogen. No obvious response was observed in host cells following formation of haustoria. Most of the mesophyll cells contained normal haustoria and the host cytoplasm displayed a high degree of structural integrity. Absence of host cell wall alteration and cell death in penetrated host cells suggest that the pathogen exerts considerable control over basic cellular processes and in this respect, response to this biotrophic Oomycete differs considerably from responses to other pathogens such as necrotrophs. Modification of the host plasma membrane (PM) along the cell wall and around the haustoria, was detected by applying the periodic acid-chromic acid-phosphotungstic acid (PACP) staining technique. After staining with PACP, the host PM was found to be intensely electron dense where it was adjacent to the host cell wall and the distal region of the haustorial neck. By contrast, the extrahaustorial membrane, where the host PM surrounded the haustorium, was consistently very lightly stained.  相似文献   

2.
The fine structure of the intercellular hyphae of the obligate parasite Albugo candida infecting radish does not differ markedly from that described previously for cells of Peronospora manshurica. The stalked, capitate haustoria do not contain nuclei and are packed with mitochondria and lomasomes. The fungal plasma membrane and cell wall are continuous from the intercellular hypha throughout the haustorium except that there is no evidence of fungal cell wall around a portion of the haustorial stalk proximal to the haustorial head. Within the vacuolate host mesophyll cell, the haustorium is always surrounded by host plasma membrane and with at least a thin layer of host cytoplasm. The host cell wall invaginates at the point of haustorial penetration to form a short sheath around the region of penetration, but normally there is no host cell wall around the balance of the haustorium. About 1% of the haustoria observed were necrotic, and these were invariably walled-off completely from host cytoplasm by host cell wall. An amorphous, moderately electron-dense encapsulation lies between the haustorium proper and the host plasma membrane and extends into the penetration region between the sheath and the fungal cell wall. Invaded host cells contain more ribosomal-rich ground cytoplasm than uninfected cells. Glandular-like systems of tubules and connecting vesicles are often numerous in host cytoplasm in the vicinity of haustorial heads. These tubules open into the encapsulation, their limiting unit membranes being continuous with the host plasma membrane. We suggest that these represent a secretory mechanism of the host specifically induced by the parasite.  相似文献   

3.
本文对梨胶锈菌性子期和锈子期菌丝吸器的形成方式、吸器及其与寄主细胞界面的超微结构进行了研究。观察结果表明:梨胶锈菌性子期和锈子期寄主胞间菌丝吸器的形成方式有两种:一种是由寄主胞间菌丝直接形成吸器;另一种是由寄主胞间菌丝先形成吸器母细胞,然后由吸器母细胞形成吸器。吸器在开始形成时只是一个乳头状的侵入楔,以后逐渐形成囊状、镰刀状、指状及其它不规则形状的吸器。多数吸器分化为颈和吸器主体两部分,在颈部及部分吸器主体外有一个由类似寄主细胞壁物质形成的领圈。吸器内部的超微结构与寄主胞间菌丝基本相同,但吸器壁比胞间菌丝或吸器母细胞的壁薄。吸器鞘的厚度随着吸器伸长膨大 而逐渐增厚。  相似文献   

4.
Ehrlich , H. G., and Mary A. Ehrlich . (Duquesne U., Pittsburgh, Pa.) Electron microscopy of the host-parasite relationships in stem rust of wheat.—Amer. Jour. Bot. 50(2): 123–130. Illus. 1963.—A series of micrographs showing intercellular dikaryotic mycelium, haustorial mother cells, stages in haustorial formation, and haustoria within host cells are presented in the present report. Of special interest and potential significance in a study of obligate parasitism is an encapsulation ranging from 800 to 3400 A in thickness which surrounds the haustorium, but which is not present around the intercellular hyphae. The encapsulation completely encases the haustorium proper; it is bounded on the inside by the cell wall of the haustorium, and its thin membranous outer margin abuts directly on the protoplast of the host cell. The nature of the material composing the encapsulation is uncertain, but it appears to originate from the haustorial protoplast, and at least a portion of it may be fungal cytoplasm. This newly described structure represents the actual interface between the host and pathogen. Small vesicles which seem to originate from the outer margin of the encapsulation are sometimes found in the host cytoplasm surrounding apparently vigorous haustoria. The vesicles are bounded by a membrane and contain particulate material.  相似文献   

5.
Baka ZA 《Mycopathologia》2002,156(3):215-221
The ultrastructure of intercellular hyphae and dikaryotic haustoria of Uromyces euphorbiae, and the host response to haustorial invasion was investigated. The intercellular hyphae share common characteristics with those of other uredinial stages of rust fungi. Three types of septa were recognized inside the intercellular hypha. This study showed that the extrahaustorial membrane was possibly formed before the development of the haustorium. The periodic acid-thiocharbohydrazide-silver proteinate technique showed that the haustorial mother cell wall at the penetration site, and the haustorial wall contained more carbohydrates than other fungal structures. In addition, the neckband, present around the haustorial neck, contains different material from those of the rest of the haustorial neck wall. The close associations of host organelles, such as the nucleus, chloroplasts, mitochondria, endoplasmic reticulum and microtubules, with the haustorium, is described.  相似文献   

6.
Entomosporium mespili appears to be a hemibiotroph on infected Photinia leaves. This fungal pathogen produced distinctive haustoria in living host cells in young lesions. Each haustorium possessed a long slender neck with a single septum and an enlarged distal body that contained a single nucleus. A collar of host cell wall material was associated with the haustorial neck. Intact haustoria also were found in necrotic cells of older lesions. However, by this stage of disease development, the pathogen also possessed an extensive system of branched, septate hyphae that grew indiscriminately between and through dead and dying host cells. These hyphae eventually gave rise to a subcutaneous layer of sporogenous cells that formed conidia.  相似文献   

7.
Summary An examination was made of the ultrastructure of haustoria or intracellular hyphae in four fungi: an obligate parasite (Puccinia hordei), a facultative parasite (Exobasidium japonicum) and two facultative saprophytes (Phytophthora palmivora and Sclerotinia fructigena). P. hordei haustoria showed the typical ultrastructure and host-parasite interface of most of the obligate parasites already studied. Connections between the host endoplasmic reticulum and host plasmalemma were observed at the encapsulation site. Tubules connecting the haustorial cytoplasm with the encapsulation, through the haustorial wall were occasionally seen. The host cell remained alive in the presence of the parasite. E. japonicum haustoria lacked a neck and encapsulation and were irregularly shaped, with branches which appeared to be partly surrounded by a sheath. Some of these branches showed cytoplasmic connections between the parasite and the host through the sheath. All the observed haustoria of E. japonicum were anucleate and contained only a few mitochondria and sparse membranes. The host cell was dead and its organelles disorganized. P. palmivora haustoria were simple with nucleus, endoplasmic reticulum, mitochondria and Golgi bodies. Neither sheath nor encapsulation was observed, and the host cell was also dead and disorganized. S. fructigena did not produce haustoria of any kind, the intercellular hyphae became intracellular by the degradation of the host cell walls, and the host cells were killed in advance of the growing hyphae.It is suggested that a new definition of haustorium is required to include all these intermediate haustorial bodies which cannot be included within the present concept of haustorium.  相似文献   

8.
以马铃薯晚疫病水平抗性品种LBr-12和感病品种费乌瑞它为材料,采用普通光学和电子显微镜技术,系统研究了马铃薯与晚疫病菌(致病疫霉)互作的组织细胞学反应特征。观察结果显示:(1)接种后,水平抗性材料LBr-12出现过敏反应,病菌被限制在侵染点的几个细胞中,菌丝产生较少的分支和吸器。(2)感病品种费乌瑞它被侵染细胞呈蔓延趋势,菌丝产生较多的分支和吸器。(3)电镜观察发现,抗病品种上病菌的胞间菌丝、吸器母细胞、吸器在细胞和亚细胞水平均发生了一系列异常变化,包括原生质的电子致密度加深、液泡增多变大、菌丝细胞壁不规则增厚、细胞器排列紊乱及解体、吸器母细胞及吸器形态异常、病菌最终畸形坏死,同时发现抗病品种受病菌侵染时可迅速产生结构防卫反应,形成的细胞壁沉积物使胞壁极度增厚或细胞膜上产生乳突状结构。  相似文献   

9.
Peyton , G. A., and c. c . Bowen . (Iowa State U., Ames.) The host-parasite interface of Peronospora manshurica on Glycine max. Amer. Jour. Bot. 50(8): 787-797. Illus. 1983.—The fine structure of the vegetative intercellular hyphae, intracellular haustoria, and invaded host cells is described. Perinuclear Golgi apparatus and extensive lomasomes are characteristic of the hyphae and haustoria of this fungus. The invading haustoria do not penetrate the plasma membrane of the host. Except for a sheath near the point of penetration, there is no evidence of true host wall around the haustorium. However, a “zone of apposition,” with staining properties different from those of normal host cell wall, forms around the haustorial wall between the host and parasite plasma membranes. Special modifications of the host cytoplasm in the vicinity of haustoria are described, including formation of “secretory bodies” and their apparent discharge through the host plasma membrane into the zone of apposition. This phenomenon, together with an apparent increase in the number of ribosomes in the host, suggests highly specific reactions of the host cytoplasm to the invading haustorium.  相似文献   

10.
Baka ZA 《Mycopathologia》1996,134(3):143-150
This study demonstrates morphological differences between aecial and telial stages of the autoecious rust Puccinia tuyutensis. The aeciospores possess verrucose ornamentation while the teliospores have smooth surfaces. The aecial and telial haustoria of this rust produced in the mesophyll of Cressa cretica differ morphologically in the following respects:(1) the haustorial mother cell of telial haustorium is more differentiated than that of aecial haustorium and its wall at the penetration site is composed of 4 layers; (2) the aecial haustorium is filamentous in appearance and slightly constricted at the point of entry into the host cell, while the telial haustorium is clavate and possesses a narrow neck with a densely staining neckband and swollen body; (3) the neck of the telial haustorium is always associated with numerous vesicles while that of the aecial haustorium is not. Vascular tissue of host leaves is heavily invaded by aecial haustoria but not by telial haustoria.  相似文献   

11.
本研究采用电镜技术研究了种衣剂17号对小麦条锈菌发育的影响。观察结果表明,该种衣剂引起病菌和寄主细胞内发生了一系列变化。病菌菌丝和吸器内脂肪粒和液泡明显增加;菌丝壁和吸器壁呈不规则加厚;菌丝分枝处无隔膜产生或隔膜畸形;有的吸器母细胞产生的畸形入侵栓,大都不能穿透寄主细胞壁,初生吸器外间质内沉积有染色较深的物质,次生吸器可产生多个不规则分枝,但不能扩张膨大;菌丝外渗的物质可能引起寄主细胞的坏死;大多数受侵寄主细胞可分泌形成较大的胼胝质,有时寄主细胞分泌的物质可将吸器体完全包围起来。上述结果表明,种衣剂17号不仅可直接作用于条锈菌,而且也可通过影响寄主而间接地影响病菌。  相似文献   

12.
The cytoskeleton in plant cells is a dynamic structure that can rapidly respond to extracellular stimuli. Alteration of the organization of microtubules and actin microfilaments was examined in mesophyll cells of flax, Linum usitatissimum L., during attempted infection by the flax rust fungus, Melampsora lini (Ehrenb.) Lev. Flax leaves that had been inoculated with either a compatible (yielding a susceptible reaction) or an incompatible (yielding a resistant reaction) strain of M. lini were embedded in butyl-methylmethacrylate resin; sections of this material were immunofluorescently labelled with anti-tubulin or anti-actin and examined using confocal laser scanning microscopy. In uninfected leaves, microtubules in the mesophyll cells formed a transverse array in the cell cortex. Microfilaments radiated through the cytoplasm from the nucleus. In an incompatible interaction, microtubules and microfilaments were extensively reorganized in mesophyll cells that were in contact with fungal infection hyphae or haustorial mother cells before penetration of the cell by the infection peg. After the initiation of haustorium development, microtubules disappeared from the infected cells, and growth of the haustoria ceased. In an incompatible interaction, hypersensitive cell death occurred in more than 70% of infected cells but occurred in less than 20% of cells in compatible interactions. After the infected cell had undergone hypersensitive cell death, the cytoskeleton in neighbouring cells became focused on the walls shared with the necrotic cell. In compatible interactions, reorganization of the cytoskeleton was either not observed at all or was observed much less frequently up to 48 h after inoculation.Abbreviations FITC fluorescein isothiocyanate - WGA wheatgerm agglutinin We thank Dr. G.J. Lawrence for providing valuable discussions and materials.  相似文献   

13.
An exogenous chitinase from Streptomyces griseus was introduced into coleoptile epidermal cells of barley (Hordeum vulgare) by microinjection, and the effect of injected chitinase on the growth or development of the powdery mildew pathogen (Erysiphe graminis f. sp. hordei) was examined. Prior to microinjection, an enzymatic degradation of fungal haustorium, the organ taking nutrients from host plant cells, was examined by treating fixed coleoptile epidermis harboring haustoria with this enzyme. The result showed that haustoria were effectively digested by chitinase, suggesting the effectiveness of chitinase treatment for suppressing the fungal development. Microinjection of chitinase was conducted using living coleoptile tissues inoculated with the pathogen. Epidermal cells in which the haustorial primordia had been formed, or in which the haustoria had matured, were selected as targets for injection. The result clearly indicated that injection at the stage of primordium formation was effective in completely digesting haustoria and suppressing the subsequent formation of secondary hyphae of the pathogen. In microinjection after haustorial maturation, hyphal elongation was considerably suppressed though there was no detectable morphological change in the haustoria. Thus, the present study provides the experimental basis for genetically manipulating barley to produce transgenic plants resistant to the powdery mildew disease.  相似文献   

14.
Summary In the powdery mildew disease of barley,Erysiphe graminis f. sp.hordei forms an intimate relationship with compatible hosts, in which haustoria form in epidermal cells with no obvious detrimental effects on the host until late in the infection sequence. In incompatible interactions, by contrast, the deposition of papillae and localized host cell death have been correlated with the cessation of growth byE. g. hordei. With the advent of improved, low temperature methods of sample preparation, we felt that it was useful to reevaluate the structural details of interactions between barley andE. g. hordei by transmission electron microscopy. The haustoria that develop in susceptible barley lines appear highly metabolically active based on the occurrrence of abundant endoplasmic reticulum, Golgi-like cisternae, and vesicles. In comparison, haustoria found in the resistant barley line exhibited varying signs of degradation. A striking clearing of the matrix and loss of cristae were typical early changes in the haustorial mitochondria in incompatible interactions. The absence of distinct endoplasmic reticulum and Golgi-like cisternae, the formation of vacuoles, and the occurrence of a distended sheath were characteristic of intermediate stages of haustorial degeneration. At more advanced stages of degeneration, haustoria were dominated by large vacuoles containing membrane fragments. This process of degeneration was not observed in haustoria ofE. g. hordei developing in the susceptible barley line.Abbreviations b endoplasmic reticulum extension, blebbing - er endoplasmic reticulum - f fibrillar material - g Golgi-like structure - h haustorium - hb haustorial body - hcw haustorial cell wall - hcy haustorial cytoplasm - hf haustorial finger - hocw host cell wall - hocy host cytoplasm - 1 lipid-like droplet - m mitochondrion - mt microtubule - mve multivesicular body - n nucleus - p papilla - ph penetration site of an infection peg - pl plasma membrane - s sheath - sm extrahaustorial membrane - v vacuole - ve vesicle  相似文献   

15.
Summary. Transmission electron microscopy was used to examine details of the host–pathogen interface in daylily leaf cells infected by the rust fungus Puccinia hemerocallidis. Samples were prepared for study by high-pressure freezing followed by freeze substitution. The outstanding preservation of ultrastructural details afforded by this fixation protocol greatly facilitated the study of this host–pathogen interface. The extrahaustorial membrane that separated each dikaryotic haustorium from the cytoplasm of its host cell was especially well preserved and appeared almost completely smooth in profile. Large aggregations of tubular cytoplasmic elements were present near haustoria in infected host cells. Many of these tubular elements were found to be continuous with the extrahaustorial membrane and conspicuous electron-dense deposits present in the extrahaustorial matrix extended into these elements. The use of gold-conjugated wheat germ agglutinin for labeling of chitin revealed that these deposits were not part of the haustorial wall. Portions of many of the tubular elements associated with haustoria were conspicuously beaded in appearance. Some tubular elements were found to be continuous with flattened cisternae that in turn bore short beaded chains. Distinctive tubular-vesicular complexes previously reported only in cryofixed rust haustoria also were found in the haustoria of P. hemerocallidis. Received July 6, 2001 Accepted October 3, 2001  相似文献   

16.
Investigations on the susceptibility and resistance of head lettuce (Lactuca sativa) to downy mildew (Bremia lactucae) II. Light and electron microscopic examinations of the host-parasite interface Infected leaves of lettuce varieties susceptible and incompletely resistant to Bremia lactucae were observed by light and electron microscopy. Primary infection structures in the epidermal cells as well as intercellular hyphae with the adjacent haustoria could be seen by differential interference contrast microscopy. The haustoria in host cells of susceptible varieties collapsed before degeneration of the invaded host cell. On the contrary, host cells of incompletely resistant varieties died before the haustoria in these cells showed any sign of degeneration. Electron microscopic investigations confirmed the observations with light microscopy. In incompletely resistant varieties, an electron transparent sheath enveloped the haustorium. In the sheath fragments of membranes are localized. These membrane particles as seen by using the goniometer in electron microscopic work were flat faced. The sheath material consists of transformed host cell wall material and involves fragments of the host plasmalemma as well as fragments of the unit membrane separating the sheath from extrahaustorial matrix. The sheath has an important role as a special filter to prevent the passage of nutrients from the host cell into the haustorium. Thus the incomplete resistance is based not only on an impeded penetration of the parasite into the epidermal cells and their hypersensitive reactions in case of a successful penetration but also on hypersensitivity of mesophyll cells which does not necessarily lead to death of the parasite but does impede the absorption of nutrients.  相似文献   

17.
抗病品种中小麦条锈菌细胞的超微结构变化过程   总被引:4,自引:1,他引:3  
本文就寄主抗病性表达过程中,小麦条锈菌细胞的超微结构变化进行了系统地观察研究。结果表明:胞间菌丝的细胞壁染色逐渐加深,厚度加宽,结构疏松,形成小空洞,并逐渐解体;细胞质逐渐凝聚、脂肪粒的数量增多、有黑色颗粒状沉积物积累;细胞质中小囊泡数目增多并逐渐融合成大液泡,线粒体数目增多,并逐渐肿胀和解体。次生吸器畸形,初生吸器体呈圆球形。吸器壁加厚,染色加深;在吸器的中央,细胞质逐渐分解而形成空泡;线粒体数目增多,并逐渐肿胀和解体;吸器外质膜呈皱褶状,吸器外间质加宽,其中有大量的丝状或颗粒状内含物形成;吸器形态结构的变化均早于其胞间菌丝。  相似文献   

18.
Summary Ultrastructure of the association between the rust fungus, Melampsora lini, and a compatible variety of flax, Linum usitatissimum, was studied to clarify the structural relationships and interactions at the site of host penetration and at the host-parasite interface. Results of freeze-etching as well as a special section-staining procedure consisting of periodate-chromate-phosphotungstate (PACP) are shown with a host-parasite combination for the first time. The host plasma membrane is invaginated by the fungus and forms a continuous boundary around the fungal haustoria which penetrate the host cells. No morphological continuities are observed linking the protoplasts of host and fungus. With both freeze-etching and the PACP stain, the invaginated portion of the host plasma membrane at the host-parasite interface shows distinctive features that are not characteristic of the non-invaginated portion of the membrane. This localized specialization of host plasma membrane in response to the fungus appears as a significant and consistent feature of the host-parasite interaction. The host plasma membrane is separated from the haustorial wall by an amorphous layer of sheath material which covers the body but not the neck of the haustorium. This sheath provides the environment in which the haustorium exists and functions during the course of the host-parasite association. Occasionally, a collar of wall-like material derived from the host cell forms around the haustorial neck. The collar is continuous with the host wall and is distinct and discontinuous from the haustorial sheath. In fewer than 5% of the infected cells this wall material encases entire haustoria. The fungal wall is structurally specialized around the site of host penetration, and it becomes intimately associated with the host wall where the fungus penetrates into the lumen of the host cell. During penetration, the host and fungal walls appear to be fused so that the interface between them is not clearly delineated. The haustorial wall is continuous, via the haustorial neck, with the wall of the haustorial mother cell which lies outside the host cell. Different staining properties reveal this wall continuum to consist of several well-defined regions having different structure or composition. A ring of fungal wall material midway along the haustorial neck stains densely with lead citrate, but is preferentially etched away by periodic acid. The neck ring denotes a transition in the staining reaction of the fungal wall, from that present in the region of host penetration to that of the wall surrounding the haustorium. The findings demonstrate specialization of the fungal wall in the area of host penetration as well as specialization of the host plasma membrane at the host-parasite interface to a degree not previously realized from ultrastructural information.  相似文献   

19.
Adapted filamentous pathogens such as the oomycetes Hyaloperonospora arabidopsidis (Hpa) and Phytophthora infestans (Pi) project specialized hyphae, the haustoria, inside living host cells for the suppression of host defence and acquisition of nutrients. Accommodation of haustoria requires reorganization of the host cell and the biogenesis of a novel host cell membrane, the extrahaustorial membrane (EHM), which envelops the haustorium separating the host cell from the pathogen. Here, we applied live-cell imaging of fluorescent-tagged proteins labelling a variety of membrane compartments and investigated the subcellular changes associated with accommodating oomycete haustoria in Arabidopsis and N. benthamiana. Plasma membrane-resident proteins differentially localized to the EHM. Likewise, secretory vesicles and endosomal compartments surrounded Hpa and Pi haustoria revealing differences between these two oomycetes, and suggesting a role for vesicle trafficking pathways for the pathogen-controlled biogenesis of the EHM. The latter is supported by enhanced susceptibility of mutants in endosome-mediated trafficking regulators. These observations point at host subcellular defences and specialization of the EHM in a pathogen-specific manner. Defence-associated haustorial encasements, a double-layered membrane that grows around mature haustoria, were frequently observed in Hpa interactions. Intriguingly, all tested plant proteins accumulated at Hpa haustorial encasements suggesting the general recruitment of default vesicle trafficking pathways to defend pathogen access. Altogether, our results show common requirements of subcellular changes associated with oomycete biotrophy, and highlight differences between two oomycete pathogens in reprogramming host cell vesicle trafficking for haustoria accommodation. This provides a framework for further dissection of the pathogen-triggered reprogramming of host subcellular changes.  相似文献   

20.
The ultrastructure of intercellular hyphae and D-hati-storia of P. recondita f.sp. tritici, and the host response to haustorial invasion, was investigated. The intercellular hyphae share common characteristics with those of other uredial stage rust fungi. Anastomosis was observed between intercellular hyphae. Two nucleoli were frequently observed in a single nucleus in the haustorium, indicating possible nuclear fusion between the two nuclei in D-haustoria of this fungus. The close association of host organelles, such as the nucleus, Golgi bodies, endo-plasmic reticulum, vesicles and mitochondria, with the developing haustorium, is described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号