首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High β- N -acetylhexosaminidase (EC.3.2.1.52) activity was detected during autolysis of Penicillium oxalicum . Purification of the enzyme to homogeneity yielded an enzyme with a molecular weight of 132 000 Da by gel filtration and 71 900 Da by SDS polyacrylamide gel electrophoresis, suggesting a dimeric structure. The enzyme is an acidic protein with a pl of 5.0. Optimal activity was at pH 4.0 and 40°C, with a K m of 0.80 mmol 1-1 for p -nitrophenyl-β- N -acetylglucosaminide and 1.03 mmol 1-1 for p -nitrophenyl-β- N -acetylgalactosaminide. The K i with the competitive inhibitor O-(2-acetamido-2-deoxy-D-glucopyranosylidene) amino- N -phenylcarbamate was 1 μmol 1-1. Hg2+, Ag+ and Fe3+ were effective inhibitors. β- N -acetylhexosaminidase hydrolysed chitobiose, chitotriose, chitotetrose and chitopentose to monomer to an extent of 92, 74, 44 and 17% respectively in 40 min. This enzyme, in conjunction with a purified endochitinase from P. oxalicum , hydrolysed a cell-wall chitin fraction isolated from this fungus, with the production of N -acetylglucosamine.  相似文献   

2.
Abstract A chitinase was purified from the cytosolic fraction of the anaerobic rumen fungus Piromyces communis OTS1 by affinity chromatography using regenerated chitin, gel filtration and chromatofocusing. The chitinase was most active at pH 6.2 and at 60 °C in a 20-min assay. The molecular mass of the purified protein was estimated by SDS-PAGE to be 42 kDa and its pI was 4.9. The enzyme activity, which was of the 'endo' type, was inhibited by A+, Hg2+ and allosamidin. N -Acetyl- β -glucosaminidase and 'exo' type chitinase activity were absent from the purified preparation.  相似文献   

3.
Exo-polygalacturonase (exo-PGase, EC 3.2.1.67) activity has been detected in a culture filtrate of cell suspension cultures of carrot ( Daucus carota L. cv. Kintoki). The extracellular exo-PGase was purified to electrophoretic homogeneity using DEAE-Sephadex A-50 ion-exchange chromatography, Sephadex G-150 gel filtration, and preparative polyacrylamide gel electrophoresis (PAGE). The molecular mass of the purified enzyme was calculated to be 48 kDa from Sephadex G-200 gel filtration, and 50 kDa from sodium dodecyl sulfate (SDS)-PAGE after treatment with SDS and 2-mercaptoethanol. The isoelectric point was at pH 6.2. The Km and Vmax values for polygalacturonate (degree of polymerization: 52) were 14.4 μ M and 25.6 μmol (mg protein)−1 h−1, respectively. The optimal activity in McIlvaine's buffer occurred at pH 4.6. The enzyme activity was inhibited by Ba2+, Cu2+, Mn2+ and Hg2+. The enzyme was involved in ca 15% hydrolysis of the acidic polymer purified from carrot pectic polysaccharides, and connected with the release of galacturonic acid. Even after an exhaustive reaction the enzyme had, however, little or no effect on cell walls from carrot cell cultures.  相似文献   

4.
M.E.FÁREZ-VIDAL, A. FERNÁNDEZ-VIVAS, F. GONZÁLEZ AND J.M. ARIAS. 1995. The extracellular amylase activity from Myxococcus coralloides D was purified by Sephacryl S-200 gel filtration and by ion-exchange chromatography on DEAE-Sephadex A-25. The molecular weight was estimated by SDS-PAGE and by gel filtration as 22.5 kDa. The optimum temperature was 45°C. The pH range of high activity was between 6.5 and 8.5, with an optimum at pH 8.0. Activity was strongly inhibited by Hg2+, Zn2+, Cu2+, Ag+, Pb2+, Fe2+ and Fe3+, EDTA and glutardialdehyde, but was less affected by Ni2+ and Cd2+. Li+, Mg2+, Ba2+, Ca2+, N -ethylmaleimide, carbodiimide and phenyl methyl sulphonyl fluoride had almost no affect. The K m (45°C, pH 8) for starch hydrolysis was 2.0 times 10-3 gl-1. Comparison of the blue value-reducing curves with the time of appearance of maltose identified the enzyme produced by M. coralloides D as an α-amylase.  相似文献   

5.
A new alginate lyase-producing micro-organism, designated as Bacillus sp. strain ATB-1015, was effectively isolated from soil samples pretreated for 3 months with a substrate of the enzyme, sodium alginate. Alginate lyase activity was assayed by the degrading activity of biofilm on Teflon sheet discs, which was formed by a mucoid strain of Pseudomonas aeruginosa PAM3 selected from clinical isolates. The extracellular alginate lyase was precipitated with ammonium sulphate from the culture broth, and purified by gel filtration and anion exchange chromatography. The molecular weight of the lyase was estimated to be 41 kDa by SDS polyacrylamide gel electrophoresis and Sephacryl S-200 HR column chromatography. The optimum pH and temperature for the enzyme activity were around 7·5 and 37 °C, respectively, and the Km value was 0·17% with the substrate, sodium alginate. The lyase activity was completely inhibited by treatment with 1 mmol l−1 of EDTA and the decreased activity was almost completely recovered by the addition of 2 mmol l−1 of CaCl2. The activity was not affected by treatment with the protein denaturants, 0·01 mol l−1 of SDS or 1 mmol l−1 of urea. The lyase had substrate specificity for both the poly-guluronate and poly-mannuronate units in the alginate molecule.  相似文献   

6.
An extracellular β-glucosidase enzyme was purified from the fungus Aspergillus niger strain 322 . The molecular mass of the enzyme was estimated to be 64 kDa by SDS gel electrophoresis. Optimal pH and temperature for β-glucosidase were 5·5 and 50 °C, respectively. Purified enzyme was stable up to 50 °C and pH between 2·0 and 5·5. The Km was 0·1 mmol l−1 for cellobiose. Enzyme activity was inhibited by several divalent metal ions.  相似文献   

7.
Galacto-oligosaccharide-producing β-galactosidase from Sirobasidium magnum CBS6803 was purified to homogeneity with a yield of 60% by DEAE–toyopearl, butyl–toyopearl, p -aminobenzyl 1-thio-β- d -galactopyranoside–agarose and concanavalin A–agarose columns, from a solubilized cell wall preparation. The isoelectric point (pI) of purified β-galactosidase was 3·8, and the relative molecular mass was 67 000 as estimated by SDS gel electrophoresis, and 135 000 as estimated by gel filtration. Optimal β-galactosidase activity was observed at a temperature and pH of 65°C and pH 4·5–5·5, respectively. The K m values for o -nitrophenyl-β- d -galactopyranoside and lactose were 14·3 and 5·5 mmol l−1, respectively, and the V max values for these substrates were 33·4 and 94·5 μmol min−1 mg of protein−1, respectively. In addition this enzyme possessed a high level of transgalactosylation activity, and 72 mg ml−1 galacto-oligosaccharide was produced from 200 mg ml−1 lactose.  相似文献   

8.
A mitochondrial serine hydroxymethyltransferase (EC 2.1.2.1) has for the first time been purified close to homogeneity from a photosynthetically active tissue, spinach ( Spinacea oleracea L. cv Viking II) leaves. The specific activity of the enzyme was 7.8 μmol (mg protein)−1 min−1 using L-serine as substrate. The enzyme was stable for at least 8 weeks at 4°C in the presence of folate. The pH optimum was at pH 8.5 where the enzyme had a Km for L-serine of 0.9 m M . Carboxymethoxylamine was a strong competitive inhibitor with a K1 of 1.4 μM. An absorption spectrum taken of the enzyme in the presence of glycine and tetrahydrofolate showed a peak at 492 nm, probably originating from a substrate-enzyme complex. The molecular weight obtained by gel filtration was 209 kDa. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis of the purified enzyme showed that the apparent molecular weight of the subunit was 53 kDa, indicating four subunits.  相似文献   

9.
A halophilic bacterium was isolated from fermented anchovy sauce and identified as Bacillus species. An extracellular leucine aminopeptidase from Bacillus sp. N2 was purified to homogeneity using four successive purification steps. The enzyme has a native molecular mass of about 57 000 Da using FPLC gel filtration analysis and a molecular mass of 58 000 Da using SDS-polyacrylamide gel electrophoresis. This monomeric leucine aminopeptidase showed maximum enzyme activity at pH 9·5. The optimum temperature was 50 °C when L -Leu- p -nitroanilide was the substrate. The leucine aminopeptidase was inactivated by 1,10-phenanthroline, dithiothreitol and sodium dodecyl sulphate. Enzyme activity was increased by addition of Co2+. It is likely that Co2+ plays an important role in the catalysis or stability of the Bacillus sp. N2 leucine aminopeptidase. Sodium chloride (0–4·5 mol l−1) increased the hydrolytic activity towards L -Leu- p -nitroanilide. The N-terminal amino acid sequence was Glu-Arg-Glu-Leu-Pro-Phe-Lys-Ala-Lys-His-Ala-Tyr-Ser-Thr-Ile. The purified enzyme had a high specificity for L -Leu- p -nitroanilide.  相似文献   

10.
Shikimate dehydrogenase (SKDH, EC 1.1.1.25) was extracted from seedlings of pepper ( Capsicum annuum L.) and purified 347-fold. The purification procedure included precipitation with ammonium sulphate and chromatography in columns of Reactive Red-agarose, Q-Sepharose and Sephadex G-100. Pepper SKDH isozymes are separable only using PAGE. The purified enzyme has a relative molecular mass of 67 000 as estimated by gel filtration. The optimum pH of enzyme activity is 10.5 and the optimum temperature is 50°C, but the enzyme is quickly inactivated at temperatures higher than 40°C. The purified enzyme exhibited typical Michaelis-Menten kinetics and Km values are 0.087 m M for shikimic acid and 0.017 m M for NADP. The mechanism of reaction is sequential considering NADP as a cosubstrate. Ions such as Ca2+, Mg2+ and Mn2+ activate the enzyme, but Zn2+ and Cu2+ are strong inhibitors. Some phenolic compounds such as guaiacol, protocatechuic acid and 2,4-D are competitive inhibitors of pepper SKDH, showing Ki values of 0.38 m M , 0.27 m M and 0.16 m M , respectively.  相似文献   

11.
Konno, H., Yamasaki, Y. and Katoh, K. 1987. Purification of an α-L-arabinofurano-sidase from carrot cell cultures and its involvement in arabinose-rich polymer degradation.
An α-L-arabinofuranosidase (α-L-arabinofuranoside arabinofuranohydrolase, EC 3.2.1.55) was isolated from a homogenate of cell suspension cultures of carrot ( Daucus carota L. cv. Kintoki). The buffer-soluble enzyme was purified to homogeneity by a procedure involving ammonium sulfate fractionation, chromatography on DEAE-Sephadex A-50, Sephadex G-150, Con A-Sepharose 4B and CM-Sephadex C-50, and preparative polyacrylamide gel electrophoresis. The size of this enzyme as determined by polyacrylamide gel electrophoresis in the presence of sodium laurylsulfate and by Sephadex G-200 gel filtration was 94 and 110 kDa, respectively. The isoelectric point was at pH 4.7. The Km and Vmax values for p-nitrophenyl α-L-arabinofuranoside were 1.33 mM and 20.2 μimol (mg protein)-1 h-1, respectively. The optimal activity occurred at pH 4.2 with Mcllvaine buffer. The enzyme was stimulated by Ca2+ and Zn2+, whereas it was strongly inhibited by Cu2+, Ag2+, Hg2+, p-chloromercuri-benzoate and L-arabono-l,4-lactone. The enzyme acted on beet arabinan in an exo-fashion. Furthermore, the enzyme was partially involved in the hydrolysis of the ara-binogalactan and pectic polymer purified from carrot cell walls.  相似文献   

12.
The yeast Torulaspora delbrueckii IFO 1255 was selected as the strain fermenting melibiose from 35 strains of Torulaspora species. The strain IFO 1255 produced extracellular and cell-associated forms of α-galactosidase when grown on either melibiose or galactose as the sole carbon source. Most of the enzyme was located outside of the cell membrane: the periplasmic space, or cell walls, or both. α-Galactosidase was purified to homogeneity from the cell-free extract of the strain IFO 1255 by acid treatment and column chromatography on DEAE-Toyopearl 650M and Butyl-Toyopearl 650M. The molecular weight of the purified enzyme was estimated to be 88 000 by SDS-polyacrylamide gel electrophoresis and 530 000 by gel filtration. The enzyme contained 50% of its molecular weight as carbohydrate. Optimum pH and temperature were 4.5–5.5 and 55°C, respectively. The enzyme was inhibited strongly by Ag2+, Hg2+ and Cu2+ each at 1 mmol 1-1. The K m (μmol 1-1) for p -, o -, m -nitrophenyl α-D-galactopyranoside, melibiose, raffinose and stachyose were 2.8, 1.3, 2.8, 4.2, 170 and 230, respectively, and V max (μmol min-1 mg protein-1) for those substrates were 310, 140, 21, 22, 30 and 44, respectively. The properties of α-galactosidase from T. delbrueckii IFO 1255 were similar to those from the related species, Saccharomyces cerevisiae.  相似文献   

13.
Amylase activity extracted from tulip ( Tulipa gesneriana L. cv. Apeldoorn) bulbs that had been stored for 6 weeks at 4°C was resolved to 3 peaks by anion-exchange chromatography on diethylaminoethyl-Sephacel. These 3 amylases exhibited different relative mobilities during non-denaturing polyacrylamide gel electrophoresis (PAGE). The most abundant amylase form (amylase I) was purified to apparent homogeneity using hydrophobic interaction chromatography, gel filtration and chromatofocusing. The apparent molecular mass of the purified amylase was estimated to be 51 kDa by sodium dodecyl sulfate-PAGE and 45 kDa by gel filtration chromatography. The purified amylase was determined to be an endoamylase (EC 3.2.1.1) based on substrate specificity and end-product analysis. The enzyme had a pH optimum of 6.0 and a temperature optimum of 55°C. The apparent Km value with soluble starch (potato) was 1.28 mg ml−1. The presence of Ca2+ increased the activity and thermal stability of the enzyme. The presence of dithiothreitol enhanced the activity, while β -mercaptoethanol and reduced glutathione had no significant effect. When pre-incubated in the absence of the substrate, N-ethylmaleimide and 5,5'-dithiobis-(2-nitrobenzoic acid) partially inhibited the enzyme. α -cyclodextrins or β -cyclodextrins had no effect on enzyme activity up to 10 m M . In addition to CaCl2, CoCl2 slightly enhanced activity, while MgCl2 and MnCl2 had no significant effect at a concentration of 2 m M . ZnCl2, CuSO4, AgNO3 and EDTA partially inhibited enzyme activity, while AgNO3 and HgCl2 completely inhibited it at 2.0 m M .  相似文献   

14.
Abstract β-d-Xylosidase production was maximal for Humicola grisea var. thermoidea grown on xylan as the sole carbon source. The main β-d-xylosidase activity was localised in the periplasm. β-Xylosidase was purified from crude extracts by heat treatment, ammonium sulfate precipitation and chromatography on DEAE-cellulose and Sephadex G-100. The purified enzyme was a monomer of molecular mass estimated to be 43 kDa by SDS-PAGE and gel filtration. Optima of pH and temperature were 6.0 and 50 °C, respectively. The enzyme activity was stimulated by Ca2+, Fe2+, and Mg2+. The purified β-xylosidase did not exhibit xylanase, carboxymethylcelullase, galactosidase, glucosidase, fucosidase or arabinosidase activities. The purified β-xylosidase hydrolysed xylobiose and xylo-oligosaccharides of up to five monosaccharide units. The enzyme had a K m of 0.49 mM for p -nitrophenyl- β -d-xylopyranoside and was not inhibited by its product, xylose.  相似文献   

15.
Abstract A lectin specific for α-methyl-d-mannoside was purified from the membrane extract of Giardia lamblia by a combination of gel filtration chromatography on Sephadex G-75 and Superose 6-HR 10/30. The homogeneity of the lectin was established by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The molecular mass of the native protein was 148 kDa. The lectin agglutinated rabbit erythrocytes in the presence of Ca2+ at 37 °C and pH 7.O. The maximum activity of the lectin was obtained after trypsin treatment. The inhibition study clearly suggests that the binding site of the lectin recognizes α-methyl-d-mannoside as the immunodominant sugar.  相似文献   

16.
Abstract β-xylosidase (EC 3.2.1.37) has been purified from Aspergillus nidulans mycelium grown on oat-spelt xylan as sole carbon source. Its pH optimum for activity was found to be 5.0 and the optimum temperature was 50 °C. Its molecular mass was estimated by gel filtration to be 180000. Using p-nitrophenyl-β-d-xylopyranoside as substrate, the K m and V max values have been found to be 1.1 mM and 25.6 μmol min−1(mg protein)−1, respectively. Enzyme activity was inhibited by Hg2+, Ag2+, and Cu2+ at a concentration of 1 × 10−3 M. The synthesis of β-xylosidase in A. nidulans is strongly induced by arabinose and xylose and is subject to carbon catabolite repression mediated by the cre A gene product.  相似文献   

17.
Abstract The Neurospora crassa exo -1 mutant produced maximum extracellular glucoamylase activity in media supplemented with starch as the sole carbon source. The apparent molecular mass of the enzyme was 82 kDa (SDS-PAGE and gel filtration). The enzyme was a glycoprotein with 5.1 % carbohydrate content and exhibited a temperature optimum of 60 °C. The pH optima were 5.4 and 5.0 for glucoamylase and maltase activities, respectively. Cu2+ inhibited maltase activity while Mn2+ stimulated glucoamylase activity. The purified enzyme hydrolyzed branched substrates more efficiently than linear substrates. Starch was the best substrate utilized and amylose was hydrolyzed faster than maltose. Kinetic experiments suggested that maltose and starch were hydrolyzed at the same catalytic site.  相似文献   

18.
Abstract Enteropathogenic strains of faecal Escherichia coli produced significantly ( P < 0.01) more maltase than the non-pathogenic strains of the organism. The enzyme was induced by maltose but repressed by glucose and fructose. The maltase was partially purified by ammonium sulphate precipitation, followed by dialysis and gel permeation chromatography. The partially purified maltase had an M r of 144500 and an apparent K m of approx. 7.6 mM for maltose. The enzyme was stimulated by Ca2+, inhibited by Cu2+, Hg2+, Uo2+, IAA and EDTA, and exhibited optimum activity at pH 6.5 at 30°C.  相似文献   

19.
Extracellular amylase from Lactobacillus plantarum A6 was purified by fractionated precipitation with ammonium sulphate and by anion exchange chromatography. The homogeneity of the purified fraction was tested by polyacrylamide gel electrophoresis and showed multiple amylase forms. A major form had an estimated molecular weight of 50 kDa. It was identified as an α-amylase, with an optimum pH of 5.5, an optimum temperature of 65°C and K m value of 2.38 g l-1 with soluble starch substrate. The enzyme was inhibited by N -bromosuccinimide, iodine and acetic acid. The enzyme activation energy was 30.9 kJ mol-1.  相似文献   

20.
A senescence-specific protease accounting for almost 70% of the total peptide hydrolytic activity of protein extracts, was isolated from detached wheat leaves induced to senescence by incubation in the dark for 72 h. Purification to apparent homogeneity was performed by ammonium sulphate precipitation, ion exchange chromatography and gel filtration chromatography. The enzymatic activity was followed by its ability to hydrolyse the synthetic peptide Suc-AAPF-pNA. SDS/PAGE and gel filtration analysis indicated that the enzyme was a dimer composed of two identical subunits of 59 kDa. The apparent K m and V max for the peptide were 1.18 m m and 2.27 mmol pNA mg−1 h−1, respectively. The enzyme was active at pH values above 8.0 and remained active after heat treatment at 60°C for 10 min. It was inhibited by chymostatin, indicating that the enzyme possesses a chymotrypsin-like activity. Rubisco was readily hydrolysed by the purified protease. A sequenced internal fragment of 17 amino acids showed a high level of similarity (65–75% identity) with a highly conserved region of several plant subtilisin-like serine proteases. The absence of this enzymatic activity in fractionated extracts from non-senescent tissues suggests that it might play a role in the senescing process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号