首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The structure of an acidic O-specific polysaccharide from the marine bacterium Cellulophaga baltica was established by chemical methods and NMR spectroscopy. The polysaccharide was shown to consist of repeating tetrasaccharide units containing two mannose residues, one N-acetyl-D-glucosamine residue, and one D-glucuronic acid residue. An O-acetyl group was also found in the polysaccharide in nonstoichiometric amount. The polysaccharide had the following structure:
  相似文献   

2.
A phosphorylated O-specific polysaccharide was obtained by mild acidic degradation of the lipopolysaccharide from the enteric bacterium Escherichia coli O130 and characterized by the methods of chemical analysis, including dephosphorylation and 1H and 13C NMR spectroscopy. The polysaccharide was shown to be composed of branched tetrasaccharide repeating units containing two N-acetyl-D-galactosamine residues, D-galactose, D-glucose, and glycerophosphate residues (one of each). The polysaccharide has the following structure, which is unique among the known bacterial polysaccharides:
  相似文献   

3.
4.
A polysaccharide was isolated from the opportunistic human pathogen Providencia alcalifaciens O45:H26 by extraction with aqueous phenol and studied by sugar and methylation analyses along with 1H and 13C NMR spectroscopy, including two-dimensional ROESY and H-detected 1H,13C HSQC experiments. The polysaccharide contains N-acetylglu-cosamine and N-acetylmuramic acid (D-GlcpNAc3Rlac) amidated with L-alanine and has the following structure:
$\to 4) - \beta - D - GlcpNAc - (1 \to 4) - \beta - D - GlcpNAc3(Rlac - L - Ala) - (1 \to .$
The polysaccharide possesses a remarkable structural similarity to the bacterial cell wall peptidoglycan. It is not unique to the strain studied but is common to strains of at least four P. alcalifaciens O-serogroups (O3, O24, O38, and O45). No evidence was obtained that the polysaccharide is associated with the LPS, and hence it might represent a bacterial capsule component.
  相似文献   

5.
We have demonstrated that Bifidobacterium animalis subsp. lactis LKM512 had some probiotic properties in vivo and in vitro. To further understand their mechanisms, the chemical structure of the extracellular polysaccharide that constructs the cell envelope was determined. The strain was anaerobically cultured in MRS broth at 37 °C for 20 h, then the bacterial cells were harvested by centrifugation and washed. The cell wall-associated polysaccharide (CPS) was prepared from the cell wall component digested by lysozyme. The results of anion exchange and gel filtration chromatography showed that the polysaccharide was negatively charged and had a high molecular mass. The CPS was found to compose of galactopyranosyl, galactofuranosyl, glucopyranosyl and rhamnopyranosyl residues in the molar ratio of 1:1:1:3 by using methylation analysis with GC-MS and HPLC profiling. From the results of the structural characterization by 1 dimensional and 2 dimensional NMR spectroscopy, the polysaccharide was established to be a hexasaccharide repeating unit with the following structure:   相似文献   

6.
A water-soluble polysaccharide isolated from the aqueous extract of the corm of Amorphophallus campanulatus was found to contain d-galactose, d-glucose, 4-O-acyl-d-methyl galacturonate, and l-arabinose in a molar ratio 2:1:1:1. Structural investigation of the polysaccharide was carried out using acid hydrolysis, methylation analysis, periodate oxidation study, and NMR studies (1H, 13C, DQF-COSY, TOCSY, NOESY, ROESY, HMQC, and HMBC). On the basis of the above-mentioned experiments the structure of the repeating unit of the polysaccharide was established as:This molecule showed splenocyte activation.  相似文献   

7.
A polysaccharide was isolated by GPC after mild acid treatment of the lipopolysaccharide of Vibrio vulnificus CECT4602 and found to contain l-Rha, d-GlcpNAc and 2-acetamido-2,3,6-trideoxy-3-(3-hydroxybutanoylamino)-l-mannose (l-RhaNAc3NHb). GLC analysis of the trifluoroacetylated (S)-2-octyl esters derived by full acid hydrolysis of the polysaccharide showed that ∼80% of the 3-hydroxybutanoic acid has the S configuration and ∼20% the R configuration. The following structure of the polysaccharide was established by 1H and 13C NMR spectroscopies, including 2D ROESY and 1H/13C HMBC experiments:   相似文献   

8.
The earlier established structures of the acidic O-specific polysaccharides from two typical strains of the Shigella dysenteriae bacterium were revised using modern NMR spectroscopy techniques. In particular, the configurations of the glycosidic linkages of GlcNAc (S. dysenteriae type 4) and mannose (S. dysenteriae type 5) residues were corrected. In addition, the location of the sites of non-stoichiometric O-acetylation in S. dysenteriae type 4 was determined: the lateral fucose residue was shown to be occasionally O-acetylated; also, theposition of the O-acetyl group present at the stoichiometric quantity in S. dysenteriae type 5 was corrected. The revised structures of the polysaccharides studied are shown below. The known identity of the O-specific polysaccharide structures of S. dysenteriae type 5 and Escherichia coli O58 was confirmed by 13C NMR spectroscopy and, hence, the structure of the E. coli O58 polysaccharide should be revised in the same manner.
where L-Rhap3Rlac2Ac is 2-O-acetyl-3-O-[(R-1-carboxyethyl]-L-rhamnose
  相似文献   

9.
The intracellular expression of the K5 lyase enzyme, which degrades the K5 polysaccharide, decreased cell surface expression of the Escherichia coli K5 capsule. This indicates that biosynthesis of K5 polysaccharide in the cytoplasm is accessible to the action of K5 lyase and is not synthesized within a protected cytoplasmic compartment.The polysaccharide capsules of bacteria have been studied in most detail in Escherichia coli (13). E. coli has over 80 chemically and serologically distinct polysaccharide capsules, which are designated K antigens and classified into four groups (13). Group 2 polysaccharide capsules, of which K1 and K5 have been most studied (12, 13), are commonly expressed in pathogenic extraintestinal E. coli (1, 3, 7) and closely resemble the capsules of Neisseria meningitidis and Haemophilus influenzae (13). Group 2 capsule gene clusters have a conserved genetic organization comprising three regions. Regions 1 and 3 are common to all group 2 capsule gene clusters and encode the Kps proteins involved in polysaccharide export across the inner membrane, periplasm, and outer membrane. Region 2, flanked by regions 1 and 3, contains the highly variable serotype-specific genes involved in the biosynthesis of the particular polysaccharide (12, 13). In the case of the K5 capsule gene cluster, this involves the kfiABCD genes (9).The biosynthesis of the K5 polysaccharide occurs through the sequential addition of GlcA and GlcNAc residues to the nonreducing end of the polysaccharide chain catalyzed by two glycosyltransferases, KfiA and KfiC (4, 6). Polysaccharide biosynthesis occurs at the cytoplasmic face of the inner membrane and involves a hetero-oligomeric complex, consisting of proteins involved in both biosynthesis and export, that is localized at the pole of the cell (8). Such a complex would facilitate a linkage between polysaccharide synthesis and export, although at this stage the mechanism by which synthesis and export are linked is unclear. A recent paper in which the K1-specific endosialidase was expressed in the cytoplasm of a K1-expressing strain indicated that K1 polysaccharide synthesis may occur within a protected cytoplasmic compartment that is inaccessible to endosialidase cleavage (10). To test whether this was also true for the synthesis of the K5 polysaccharide, we expressed the K5-specific lyase, an enzyme that specifically degrades K5 and is associated with the tail spike of K5-specific bacteriophage (2, 5), in the cytoplasm of a K5-encoding strain. In contrast to the situation with K1, we found that expression of the K5 lyase in the cytoplasm reduced the cell surface expression of K5 polysaccharide, suggesting that unlike K1 polysaccharide synthesis, K5 polysaccharide is not synthesized within a protected cytoplasmic compartment.  相似文献   

10.
Xanthan gum, the extracellular polysaccharide from Xanthomonas campestris, has been reinvestigated by methylation analysis, and by uronic acid degradation followed by oxidation and elimination of the oxidized residue. The polysaccharide is composed of pentasaccharide repeating-units with the following structure:
  相似文献   

11.
12.
The polysaccharide secreted by Klebsiella aerogenes type 54 strain A3 was isolated, methylated, the ester carboxyl-reduced, and the product partially hydrolyzed. The resulting, partially O-methylated oligosaccharides were reduced and ethylated, and the mixture of products was fractionated by l.c. The l.c. fractions containing per-O-alkylated oligosaccharide-alditols were analyzed by e.i.-m.s. Pure per-O-alkylated oligosaccharide-alditols were also analyzed by 1H-n.m.r. spectroscopy. The products obtained by base-catalyzed degradation and subsequent ethylation of the per-O-methylated polysaccharide were fractionated by l.c. The main product isolated was analyzed by e.i.-m.s., c.i.-m.s., and 1H-n.m.r. spectroscopy. The results of these studies, in conjunction with results of analytical methods commonly used in the elucidation of polysaccharide structures, unambiguously characterized the primary glycosyl structure of the polysaccharide. Base-labile substituents, previously reported to be present in the polysaccharide, were not studied. Structure 1 revises, and complements, previously reported structures.
  相似文献   

13.
Plesiomonas shigelloides O17 LPS contains the same O-antigenic polysaccharide chain as a causative agent of dysentery, Shigella sonnei. This polysaccharide can be used as a component of a vaccine against dysentery. Core part of the P. shigelloides O17 LPS was studied using NMR and mass spectrometry and the following structure was proposed: Significant similarity of the P. shigelloides O17 LPS core with the structure of the P. shigelloides O54 core was observed.  相似文献   

14.
The structure of gellan gum, a polysaccharide of potential commercial usefulness elaborated by Pseudomonas elodea, has been investigated. It is concluded that the polysaccharide is composed of tetrasaccharide repeating-units having the following structure.
Of the repeating units, ~25% contain an O-acetyl group linked to C-6 of one of the β-d-glucopyranosyl residues.  相似文献   

15.
The structure of the Klebsiella type 37 capsular polysaccharide has been investigated. Methylation analysis, various specific degradations, and n.m.r. spectroscopy were the principal methods used. It is concluded that the polysaccharide is composed of tetrasaccharide repeating-units having the structure 4-O-Lac-d-GlcA  4-O-[(S)-1-carboxyethyl]-d-glucuronic acid:
  相似文献   

16.
The structure of the extracellular polysaccharide of Rhizobium trifolii has been investigated. Methylation analysis, sequential degradations by oxidation and elimination of oxidized residues, uronic acid degradation, and degradation by oxidation of the acetylated polysaccharide with chromium trioxide in acetic acid were the main methods used. It is proposed that the polysaccharide is composed of heptasaccharide repeating-units having the following structure:
An unusual feature is that some of the repeating units are incomplete and lack the terminal β-d-galactopyranosyl group. The polysaccharide contains O-acetyl groups (somewhat more than 1 mol. per unit), linked to O-2 and O-3 of 4-O-substituted d-glucopyranosyl chain-residues. A previous finding that the polysaccharide contains 2-deoxy-d-arabino-hexose (2-deoxy-d-glucose) residues is erroneous.  相似文献   

17.
18.
《Carbohydrate research》1994,262(2):311-322
NMR spectroscopy was performed on the depyruvated capsular antigen of E. coli K103 and on the oligosaccharide obtained by depolymerisation of the native polysaccharide with a viral-borne endoglycanase. This capsular polysaccharide is the only one to be co-expressed with O group 101 and joins a small group of unusual capsular polysaccharides which possess pyruvic acid as the only acidic function. The primary structure was shown to be composed of the repeating unit:
  相似文献   

19.
The structure of the Pneumococcus type 19A (57) capsular polysaccharide has been reinvestigated by using methylation analysis and n.m.r. spectroscopy. It is composed of residues of 2-acetamido-2-deoxy-d-mannose, d-glucose, l-rhamnose, and phosphate in the molar ratios of 1:1:1:1. The polysaccharide is linear, and is composed of these components in a repeating unit of the following structure.
The type 19A polysaccharide (Na+ salt) was depolymerized by heating it in water at 100°, conditions that also hydrolyzed the newly formed phosphoric monoesters.  相似文献   

20.
The structure of the polysaccharide antigen produced by Eubacterium saburreum, strain L 32, has been investigated. The principal methods used were methylation analysis, graded hydrolysis with acid, and n.m.r. spectroscopy. The polysaccharide, which contains the unusual sugar 3,6-dideoxy-D-arabino-hexose (tyvelose, Tyv), is composed of trisaccharide repeating-units having the following structure:
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号