首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
T Yanase  H Nawata  K Higuchi  K Kato  H Ibayashi 《Life sciences》1984,35(18):1869-1875
The effect of dexamethasone on dispersed cells in primary monolayer culture from bovine adrenal medulla and human extramedullary pheochromocytoma was examined by estimating the level of catecholamines (CAs) and Methionine-enkephalin (Met-enk) in the medium and cells. In cultured bovine adrenal chromaffin cells, dexamethasone caused significant increase in Met-enk levels 18 hours after administration. There was no release of Met-enk and CAs in the medium 10 min after administration, although nicotine did cause a significant release of Met-enk and CAs. A dose response increase in the level of CAs and Met-enk in bovine adrenal chromaffin cells was obtained with doses varying between 0 and 10(-6)M dexamethasone 18 hours after administration. In cultured human extramedullary pheochromocytoma cells, dexamethasone significantly increased the levels of norepinephrine and Met-enk in a dose dependent manner 24 hours after administration. These results suggest that dexamethasone does not act as a secretagogue but may be related to the synthesis of Met-enk and CAs.  相似文献   

3.
Insulin-like growth factors (IGFs) stimulate proliferation and differentiation of PC12 rat pheochromocytoma cells and modulate catecholamine release in bovine adrenal medullary cells. Dexamethasone increases catecholamine synthesis in PC12 cells. We therefore studied the effects of IGFs and dexamethasone on catecholamine content in PC12 cells. Dopamine (DA) and norepinephrine (NE) content of PC12 cells were measured after incubation for 72 h with IGFs (100 ng/ml) and/or dexamethasone (500 nM). IGF-I (100 ng/ml) and IGF-II (100 ng/ml) decreased DA and NE content to approximately 35% and approximately 25% of control, respectively. [Leu27]IGF-II, which binds to the IGF-I receptor with markedly decreased affinity, did not reduce catecholamine levels, indicating that the effect is likely to be mediated by the IGF-I receptor. Dexamethasone (500 nM) increased levels of DA and NE to 173 +/- 20% and 331 +/- 48% of controls, respectively. Coincubation with IGFs did not significantly affect the stimulation of DA by dexamethasone, but abolished the rise in NE. Levels of tyrosine hydroxylase mRNA, protein and activity were increased following incubation with dexamethasone, but were unchanged by IGFs. These results indicate that IGFs decrease catecholamine content in PC12 cells via the IGF-I receptor. Complex regulation involving multiple synthetic and/or degradative steps is implicated in this process.  相似文献   

4.
Abstract: The catecholamine precursor l -3,4-dihydroxyphenylalanine ( l -DOPA) is used to augment striatal dopamine (DA), although its mechanism of altering neurotransmission is not well understood. We observed the effects of l -DOPA on catecholamine release in ventral midbrain neuron and PC12 pheochromocytoma cell line cultures. In ventral midbrain neuron cultures exposed to 40 m M potassium-containing media, l -DOPA (100 µ M for 1 h) increased DA release by >10-fold. The elevated extracellular DA levels were not significantly blocked by the DA/norepinephrine transport inhibitor nomifensine, demonstrating that reverse transport through catecholamine-uptake carriers plays little role in this release. In PC12 cells, where DA release from individual secretory vesicles can be observed, l -DOPA (50 µ M for 1 h) elevated DA release in high-potassium media by 370%. Amperometric measurements demonstrated that l -DOPA (50 µ M for 40–70 min) did not raise the frequency of vesicular exocytosis but increased the average size of quantal release to at least 250% of control levels. Together, these findings suggest that l -DOPA can increase stimulation-dependent transmitter release from DA cells by augmenting cytosolic neurotransmitter, leading to increased quantal size.  相似文献   

5.
Summary Normal postnatal rat chromaffin cells and rat pheochromocytoma cells are known to show extensive Nerve Growth Factor (NGF)-induced process outgrowth in culture, and this outgrowth from the postnatal chromaffin cells is abolished by the corticosteroid dexamethasone. To determine whether adult rat chromaffin cells respond to NGF and dexamethasone, dissociated adrenal medullary cells from 3-month-old rats were cultured for 30 days in the presence or absence of these agents. Such cultures contained typical chromaffin cells, chromaffin cells with processes, and neurons. Fewer than 2 % of normal adult chromaffin cells formed processes under any of the conditions studied, and statistically significant changes in this proportion were not detectable in the presence of NGF or dexamethasone. Adrenal medullary neurons, however, were observed only in the presence of NGF, in cultures with or without dexamethasone, and thus appear to be previously unreported NGF targets which require NGF for survival or process outgrowth. Dexamethasone markedly increased total catecholamine content, total content of epinephrine, and tyrosine hydroxylase activity in cultures with or without NGF. In contrast, postnatal rat chromaffin and rat pheochromocytoma cells which have been studied in culture do not produce epinephrine under any of these conditions. It is concluded that rat adrenal chromaffin cells undergo age-related changes in both structural and functional plasticity. The in vitro characteristics of rat pheochromocytoma cells more closely resemble those of postnatal than of adult rat chromaffin cells, but may not entirely reflect the properties of the majority of chromaffin cells in either age group.  相似文献   

6.
The inhibitory action of endogenous opioids on gonadotrophin release is now well documented. Since LHRH-producing neurons do not possess oestrogen-receptors, it is likely that some other compound mediates the negative feedback action of oestrogens on the gonadotrophin release in the male. To test the hypothesis that endogenous opioids are implicated in this negative feedback action in the human male, the opioid receptor antagonist naloxone (2 mg/h for 4 h) was infused into 7 normogonadotrophic oligozoospermic men before and after 6 weeks of treatment with the oestrogen-receptor antagonist tamoxifen (TAM) (10 mg twice daily) and 6 eugonadal transsexual males before and after 6 weeks of administration of ethinyloestradiol (EE) (10 micrograms three times a day). The effects of naloxone on TSH and prolactin (PRL) release were also studied. Naloxone administration resulted in a significant release of gonadotrophins, but not of TSH and PRL. Administration of oestrogen and anti-oestrogen did not significantly affect the response of gonadotrophins to naloxone infusion and no evidence of consistently antagonistic effects of oestrogen and anti-oestrogen on the naloxone-induced gonadotrophin release was obtained. This shows that endogenous opioids are probably not intermediary in the negative feedback control of oestrogens on gonadotrophin release in the human male. Surprisingly, in contrast to the eugonadal transsexual males, FSH levels in the oligozoospermic men did not respond to naloxone administration. As naloxone is thought to exert its action on gonadotrophin release via a disinhibition of endogenous LHRH release, this finding is unexpected. Exogenous LHRH administration leads to a normal response of FSH in normogonadotrophic oligozoospermic men. No plausible explanation for this finding can presently be offered.  相似文献   

7.
Neurotransmitter release by catecholaminergic cells is negatively regulated by prohormone cleavage products formed from plasmin-mediated proteolysis. Here, we investigated the expression and subcellular localization of Plg-R(KT), a novel plasminogen receptor, and its role in catecholaminergic cell plasminogen activation and regulation of catecholamine release. Prominent staining with anti-Plg-R(KT) mAb was observed in adrenal medullary chromaffin cells in murine and human tissue. In Western blotting, Plg-R(KT) was highly expressed in bovine adrenomedullary chromaffin cells, human pheochromocytoma tissue, PC12 pheochromocytoma cells, and murine hippocampus. Expression of Plg-R(KT) fused in-frame to GFP resulted in targeting of the GFP signal to the cell membrane. Phase partitioning, co-immunoprecipitation with urokinase-type plasminogen activator receptor (uPAR), and FACS analysis with antibody directed against the C terminus of Plg-R(KT) were consistent with Plg-R(KT) being an integral plasma membrane protein on the surface of catecholaminergic cells. Cells stably overexpressing Plg-R(KT) exhibited substantial enhancement of plasminogen activation, and antibody blockade of non-transfected PC12 cells suppressed plasminogen activation. In functional secretion assays, nicotine-evoked [(3)H]norepinephrine release from cells overexpressing Plg-R(KT) was markedly decreased (by 51 ± 2%, p < 0.001) when compared with control transfected cells, and antibody blockade increased [(3)H]norepinephrine release from non-transfected PC12 cells. In summary, Plg-R(KT) is present on the surface of catecholaminergic cells and functions to stimulate plasminogen activation and modulate catecholamine release. Plg-R(KT) thus represents a new mechanism and novel control point for regulating the interface between plasminogen activation and neurosecretory cell function.  相似文献   

8.
To examine the role of cyclic AMP in the process of catecholamine release experiments have been performed with cultures of PC12 pheochromocytoma cells. Elevated potassium (56 mM) and carbamylcholine (carbachol, 10(-4) M) cause rapid increases in cyclic AMP levels in the cultures that show a time course similar to that of evoked dopamine release. These secretogogue-induced increases in cyclic AMP levels are well correlated with release in terms of relative magnitude and calcium dependence. Forskolin (a direct activator of adenylate cyclase) causes dose-related increases in cyclic AMP levels in PC12 cell cultures that are synergistic with those caused by either elevated potassium or carbachol. At low concentrations forskolin significantly increases evoked release, whereas at higher concentrations it increases both spontaneous and evoked release. These results suggest that cyclic AMP may be involved in the process of dopamine release from PC12 cells in culture.  相似文献   

9.
Abstract: To investigate transsynaptic effects on peptides of adrenal chromaffin cells in the rat, presynaptic sympathetic terminals were destroyed by intravenous injection of monoclonal antibodies to acetylcholinesterase. At several times thereafter, neuropeptide Y (NPY)-like immunoreactivity (NPY-IR) and methionine-enkephalin-like immunoreactivity (Met-Enk-IR) were measured by radioimmunoassay. Within 2 days of antibody injection, adrenal Met-Enk-IR increased five- to 10-fold and NPY-IR increased 50%. These effects were accompanied by large increases in proenkephalin A mRNA assayed by polymerase chain reaction. The peptide responses could reflect either an acute activation, as presynaptic terminals degenerated, or a chronic synaptic inactivation after terminal degeneration. To test the possibilities, muscarinic and nicotinic receptors were inhibited by repeated injection of atropine (1 mg/kg) and chlorisondamine (5 mg/kg). Measurements of urinary free catecholamine excretion showed that this treatment prevented the paroxysmal release of norepinephrine and reduced the release of epinephrine that normally followed injection of acetylcholinesterase antibodies. When the drugs were given alone for 2 or 4 days, adrenal Met-Enk-IR increased modestly and NPY-IR remained steady or declined. When given together with acetylcholinesterase antibodies, the cholinergic antagonists blocked the increase of NPY-IR but not Met-Enk-IR. Adding naloxone (1 mg/kg) to the treatment regimen enhanced the blockade of epinephrine excretion and largely prevented the antibody-induced increase in Met-Enk-IR. These findings indicate that adrenal NPY and enkephalin are not regulated identically. Adrenal NPY behaves as though controlled by transsynaptic cholinergic input. On the other hand, adrenal enkephalin may be regulated by additional or different mechanisms, possibly involving peptidergic transmission or synaptic inactivation.  相似文献   

10.
Opioids exert a proapoptotic effect on several normal and tumoral cells. The aim of the present article was to examine the effect of opioids on the PC12 rat pheochromocytoma cell line, a model for the study of chromaffin cell apoptosis. These cells produce delta- and kappa-opioid agonists and their receptors. Our results were as follows: The kappa- and delta2-opioid receptor agonists had a rapid but transient effect on apoptosis at 3 h, whereas mu opioids did not. The effect of opioids was reversible by the opioid antagonists naloxone and nor-binaltorphimine. The effect of opioids was protective, suppressing serum deprivation-induced apoptosis to approximately 50% of controls. The protective effect of opioids on PC12 apoptosis was measurable only under serum deprivation. The effect of opioids was remarkably reproducible and highly constant in timing, which did not appear to depend on the duration of the preceding serum deprivation. Finally, opioids prevented the elevation of the Bcl-2 and Bak proteins following serum deprivation to the levels attained by serum supplementation. Our combined data suggest that opioids protect PC12 cells from entering a state of induced apoptosis following serum deprivation.  相似文献   

11.
Abstract— A clonal cell line (designated PC12) has been previously established from a transplantable rat adrenal medullary pheochromocytoma. Tissue cultures of PC12 cells synthesize, store, release and take up catecholamines. PC12 cells also respond to nerve growth factor (NGF) protein by cessation of mitosis and extension of neurites. The present studies concern the comparison of several aspects of catecholamine metabolism in PC12 cultures with that in normal noradrenergic tissues. One question was why the ratio of dopamine to norepinephrine in PC12 cultures (in contrast to that in normal noradrenergic tissue) is considerably more than one. The presence of exogenous reduced ascorbate (a cofactor for dopamine-β-monooxygenase) enhanced by 5–10-fold the rate at which PC12 cultures converted [3H]tyrosine to [3H]norepinephrine. Under such conditions, the rate of synthesis of [3H]do-pamine was unchanged. It was also found that the ratio of norepinephrine to dopamine increased by 10-fold when the cells were grown in vivo as tumors. Since tissue culture medium is essentially free of reduced ascorbate, it is likely that the absence of this cofactor is responsible for the low norepinephrine to dopamine ratio in PC12 cultures. Experiments were also carried out on short-term regulation of catecholamine synthesis in PC12 cultures. These studies revealed the following: (1) The rate of conversion of [3H]tyrosine to [3H]catechols was increased 2–3-fold (as compared with controls) in the presence of depolarizing levels of K+ (51.5 mM), and by 2-fold in the presence of 0.5–2 mM-dibutyryl cyclic adenosine 3′, 5’monophosphoric acid (db-cAMP). (2) Similar increases occurred in cultures which had been treated with (and had responded to) nerve growth factor. (3) The stimulatory effects of 51.5 mM-K+ rapidly returned toward control levels when the cultures were returned to control medium and (4) required the presence of Ca2+ in the extracellular medium. (5) Stimulation of catechol synthesis by 51.5 mM-K+ and db-cAMP also occurred in the presence of an inhibitor of DOPA decar-boxylase. Thus, the ultimate effects of these agents were probably at the level of conversion of tyrosine to dopa by tyrosine 3-monooxygenase. (6) Simultaneous exposure of cultures to 51.5 mM-K+ and mM-db-cAMP gave additive levels of stimulation. Such findings demonstrate that catecholamine synthesis in cultures of PC12 cells undergoes short-term regulation which is similar to that previously demonstrated in normal monoaminergic tissues. As a homogeneous tissue culture line, the PC12 bears certain advantages for studying the primary mechanisms of such effects.  相似文献   

12.
Adrenal chromaffin cells synthesize and secrete catecholamines and neuropeptides that may regulate hormonal and paracrine signaling in stress and also during inflammation. The aim of our work was to study the role of the cytokine interleukin-1β (IL-1β) on catecholamine release and synthesis from primary cell cultures of human adrenal chromaffin cells. The effect of IL-1β on neuropeptide Y (NPY) release and the intracellular pathways involved in catecholamine release evoked by IL-1β and NPY were also investigated. We observed that IL-1β increases the release of NPY, norepinephrine (NE), and epinephrine (EP) from human chromaffin cells. Moreover, the immunoneutralization of released NPY inhibits catecholamine release evoked by IL-1β. Moreover, IL-1β regulates catecholamine synthesis as the inhibition of tyrosine hydroxylase decreases IL-1β-evoked catecholamine release and the cytokine induces tyrosine hydroxylase Ser40 phosphorylation. Moreover, IL-1β induces catecholamine release by a mitogen-activated protein kinase (MAPK)-dependent mechanism, and by nitric oxide synthase activation. Furthermore, MAPK, protein kinase C (PKC), protein kinase A (PKA), and nitric oxide (NO) production are involved in catecholamine release evoked by NPY. Using human chromaffin cells, our data suggest that IL-1β, NPY, and nitric oxide (NO) may contribute to a regulatory loop between the immune and the adrenal systems, and this is relevant in pathological conditions such as infection, trauma, stress, or in hypertension.  相似文献   

13.
Epinephrine (E) and norepinephrine (NE) levels were measured simultaneously in the adrenal veins of 6 patients before and after stimulation with 0.25 mg beta 1-24 ACTH. In 1 patient with Cushing's syndrome, E and NE were also measured before and 30 min after dexamethasone. There was a significant increase in NE and E secretion (p less than 0.002) from both adrenal glands after ACTH stimulation. In the patient with Cushing's syndrome, there was also a slight increase in plasma E levels after dexamethasone. It is postulated that ACTH stimulated NE and E secretion by augmenting blood flow through the adrenals and by induction of tyrosine hydroxylase and dopamine beta-hydroxylase, although a direct effect of ACTH on NE and E secretion cannot be excluded. It is also possible that the increase in adrenal catecholamine secretion after ACTH may be due to ACTH augmentation of catecholamine secretion by endogenous opioids such as beta-endorphin.  相似文献   

14.
Effects of orexin on cultured porcine adrenal medullary and cortex cells   总被引:2,自引:0,他引:2  
New orexigenic peptides called orexins have recently been described in the neurons of the lateral hypothalamus and perifornical area. No orexins have been found in the adipose tissues or visceral organs, including the adrenal gland. However, expression of the orexin receptor (OXR) in the rat adrenal gland has been reported. With regard to the effects of orexins on peripheral organs, we previously reported that orexins suppress catecholamine synthesis and secretion in the rat pheochromocytoma cell line PC12. To further clarify the pharmacological effects of orexins on peripheral organs, we examined the effects of orexin-A on catecholamine, cortisol, and aldosterone secretion, using cultured porcine adrenal glands. We initially confirmed the expression of the orexin receptor (OXR-1) in cultured porcine adrenal medulla and cortex. Orexin-A (1000 nM) significantly increased the release of both epinephrine (E) and norepinephrine (NE) from porcine adrenal medullary cells. Similarly, orexin-A (> or = 100 nM) significantly increased the release of both cortisol and aldosterone from porcine adrenal cortex cells. Orexin-A (100 nM) significantly inhibited basal and the PACAP-induced increase in cAMP levels in adrenal medullary cells. Conversely, orexin-A (>o = 100 nM) significantly increased the cAMP level in adrenal cortex cells. These results indicate that orexin-A induces the release of catecholamine from porcine adrenal medullary cells, and aldosterone and cortisol from the cortex cells and has opposite effects on cAMP levels in adrenal medulla and cortex.  相似文献   

15.
F J Gordon 《Peptides》1990,11(2):305-309
These studies investigated whether the nucleus of the tractus solitarius (NTS) is a central site where opioids modulate baroreceptor reflexes. Microinjections into the NTS of [D-Ala2,MePhe4, Gly-ol5]enkephalin (DAGO) significantly reduced reflex-mediated depressor responses evoked by electrical stimulation of the aortic nerve. Subsequent NTS injections of naloxone restored baroreflexes to control levels. These results demonstrate that the NTS is a central site where exogenously administered opioids can modulate baroreceptor reflexes. NTS injections of naloxone had no effect on baroreflex function, suggesting that tonic activation of opioid receptors at this site plays little or no role in central baroreflex control.  相似文献   

16.
ACTH-release by primary cultures of rat anterior pituitary cells in response to CRF, vasopressin, epinephrine, norepinephrine and VIP is readily suppressible by dexamethasone. Rat hypothalamic extract-induced ACTH release is less sensitive to the inhibitory effect of dexamethasone than that elicited by CRF and the other secretagogues mentioned above. In studying the additive and potentiating effect on ACTH release of CRF in combination with vasopressin, VIP and the catecholamines it became evident that only the combination of micromolar concentrations of epinephrine or norepinephrine together with nanomolar concentrations of CRF will make ACTH release significantly less sensitive to the suppressive effect of dexamethasone. Other combinations of CRF and vasopressin or CRF and VIP will render ACTH release as suppressible to dexamethasone, as that elicited by each of these compounds by itself. This observation in the rat might explain at least in part the observation that a diminished suppressibility of the pituitary-adrenal axis to dexamethasone can be found in patients with psychiatric disease, especially depression.  相似文献   

17.
Presynaptic modulation by opioids of electrically-evoked neurotransmitter release from superfused rat amygdala slices prelabelled with [3H]noradrenaline (NA) and [14C]choline was examined. Both [3H]NA and [14C]acetylcholine release were strongly inhibited by morphine, the mixed δ/μ-receptor agonist [ -Ala2, -Leu5]enkephalin (DADLE) and the highly selective μ-agonist [ -Ala2, MePhe4, Gly-ol5]enkephalin (DAMGO), whereas the highly selective δ-agonist [ -Pen2, -Pen5]enkephalin and the κ-agonist bremazocine were without effect. The inhibitory effects were potently antagonized by naloxone but not by the selective δ-receptor antagonist fentanylisothiocyanate. When the selective uptake inhibitor desipramine was used to prevent uptake of [3H]NA into noradrenergic nerve terminals, but sparing the uptake into dopaminergic nerve terminals, the electrically evoked release of tritium was strongly inhibited by bremazocine but not by DADLE or DAMGO.

The data indicate, that in the amygdala transmitter release from dopaminergic nerve fibres is inhibited only via activation of κ-receptors, whereas transmitter release from noradrenergic and cholinergic nerve fibers is subjected to inhibition by opioids via activation of μ-receptors only. Regional differences and similarities of modulation of neurotransmitter release by opioids in the rat brain are briefly discussed.  相似文献   


18.
Several lines of anatomical, neurochemical, electrophysiological, and behavioral evidence suggest the existence of physiological interactions between neurotensin (NT) and the brain dopaminergic systems. Thus, NT has been shown to exert a neuroleptic-like action and could be implicated in the pathogenesis and treatment of schizophrenia. It is thus of particular importance to develop in vitro cell culture systems as models to study such interactions. Rat adrenal pheochromocytoma PC12 cells, which expressed high levels of tyrosine hydroxylase, were used in the present study. In contrast to rat brain cells in primary cultures, PC12 cells did not express functional NT receptors. However, they were able to express both NTmRNA and NT in response to NGF, forskolin, and dexamethasone. Those neurochemical modifications furthermore may be related to changes in the morphology of the PC12 cells in response to NGF, forskolin, and dexamethasone alone or in combination. These data suggest that PC12 cells may provide a useful model to study in vitro the regulation of both catecholamine and neurotensin phenotypes.  相似文献   

19.
Catecholamines were found to activate Na/H exchange in a concentration-dependent manner in primary cultures of vascular smooth muscle cells (VSMC). The potency order was found to be epinephrine greater than norepinephrine greater than isoproterenol. The major pathway for catecholamine effects appeared to be via interaction with an alpha 1 adrenergic receptor. In addition, it was found that alpha 1 receptor-mediated Na/H exchange in VSMC was increased by angiotensin II and inhibited by 12-O-tetradecanoyl phorbol-13-acetate (TPA). Adrenergic receptors have been shown to be coupled to both adenylate cyclase and to inositol phosphate release (Leeb-Lundberg, L. M. F., S. Cotecchia, J. W. Lomasney, J. F. DeBernadis, R. J. Lefkowitz, and M. G. Caron, 1985, Proc. Natl. Acad. Sci. USA, 82:5651-5655.). It was found that catecholamines increased AMP levels in the potency order isoproterenol greater than norepinephrine greater than epinephrine and the receptor involved was a beta adrenergic receptor. Since these findings did not parallel the results obtained for catecholamine stimulation of Na/H exchange, an increase in AMP levels was probably not the mechanism by which major pathway for catecholamine-stimulated Na/H exchange in VSMC (via the alpha 1 receptor) was activated. When the effects of catecholamines were measured on inositol phosphate release, the potency order for catecholamine stimulation was epinephrine greater than norepinephrine greater than isoproterenol, and the receptor involved was an alpha 1 adrenergic receptor. In addition, angiotensin II increased and TPA inhibited catecholamine-stimulated inositol phosphate release. Since these findings paralleled the results obtained for catecholamine stimulation of Na/H exchange, inositol phosphate release may be the mechanism by which the major pathway for catecholamine-stimulated Na/H exchange in VSMC (via the alpha 1 receptor) was activated.  相似文献   

20.
Primary cell cultures from 18 human pheochromocytomas were maintained in culture for 10 to 12 days and characterized. The cell yields ranged from 1.0 to 60.1 X 10(6) cells/g wet weight of tissue. Cell size, as determined by histofluorescent microscopy, varied as much as seven-fold among cells derived from a given tumor and ten-fold between cells from all tumors. Cell catecholamine content, norepinephrine (NE) plus epinephrine, ranged from 0.4 to 89.5 nmol/10(6) cells at day 5 in culture and did not correlate with catecholamine content of the tissue from which the cells were obtained. Cell catecholamine content decreased with time in culture, but this decrease could not be related to a change in cell viability, the type of media used, an inability to convert dopamine to NE, or an alteration in the uptake of 3H-NE. Cellular uptake of 1.0 microM 3H-NE varied as much as 230-fold between all cell dispersions. The basal and acetylcholine stimulated release of both preloaded 3H-NE and the endogenous catecholamines was quite variable. There was no correlation between the release rate, either basal or stimulated, of preloaded 3H-NE and the endogenous catecholamines. This study represents the largest existing data base on culturing cells from these tumors and describes many of the morphologic and biochemical characteristics of this cell system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号