首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The frequency of genomic rearrangements in BRCA1 was assessed in 42 American families with breast and ovarian cancer who were seeking genetic testing and who were subsequently found to be negative for BRCA1 and BRCA2 coding-region mutations. An affected individual from each family was tested by PCR for the exon 13 duplication (Puget et al. 1999a) and by Southern blot analysis for novel genomic rearrangements. The exon 13 duplication was detected in one family, and four families had other genomic rearrangements. A total of 5 (11. 9%) of the 42 families with breast/ovarian cancer who did not have BRCA1 and BRCA2 coding-region mutations had mutations in BRCA1 that were missed by conformation-sensitive gel electrophoresis or sequencing. Four of five families with BRCA1 genomic rearrangements included at least one individual with both breast and ovarian cancer; therefore, 4 (30.8%) of 13 families with a case of multiple primary breast and ovarian cancer had a genomic rearrangement in BRCA1. Families with genomic rearrangements had prior probabilities of having a BRCA1 mutation, ranging from 33% to 97% (mean 70%) (Couch et al. 1997). In contrast, in families without rearrangements, prior probabilities of having a BRCA1 mutation ranged from 7% to 92% (mean 37%). Thus, the prior probability of detecting a BRCA1 mutation may be a useful predictor when considering the use of Southern blot analysis for families with breast/ovarian cancer who do not have detectable coding-region mutations.  相似文献   

2.
The discovery of deleterious mutations in the breast and ovarian cancer susceptibility genes, BRCA1 and BRCA2, has facilitated the identification of individuals at particularly high risk of these diseases. There is a wide variation between populations in the prevalence and related risks of various types of BRCA1/2 mutations, so estimates cannot be extrapolated to Canadians, especially not founder populations such as French- Canadians. Polymerase chain reaction (PCR)-based methods were used to detect the majority of these mutations. These approaches usually failed to detect large DNA rearrangements, which have been claimed to be involved in other populations in 5% to up to 36% of BRCA1-positive families. There is very little information about the contribution of this type of mutation in BRCA2-positive families. To investigate if our available mutation spectrum of BRCA1 and BRCA2 in high-risk French-Canadian breast/ovarian cancer families has been biased by PCR-based direct sequencing methods, we first used Southern blot analysis to test DNA samples from 61 affected/obligate carrier individuals from 58 families in which no BRCA1/2 deleterious mutation was found. Finally, 154 individuals from 135 BRCA1/2 nonconclusive families, including all those tested previously by Southern blot analysis, were tested with the new multiplex ligation probe amplification (MLPA) technique. These approaches failed to detect any rearrangement. Moreover, if the frequency of MLPA-detectable rearrangements in our cohort of 135 BRCA1/2 nonconclusive families was 2.2% or higher, we would have had a 95% or greater chance of observing at least one such rearrangement. As no rearrangements were identified, such large rearrangements must be quite rare in our population.  相似文献   

3.
Women with mutations in the breast cancer genes BRCA1 or BRCA2 have an increased lifetime risk of developing breast, ovarian and other BRCA-associated cancers. However, the number of detected germline mutations in families with hereditary breast and ovarian cancer (HBOC) syndrome is lower than expected based upon genetic linkage data. Undetected deleterious mutations in the BRCA genes in some high-risk families are due to the presence of intragenic rearrangements such as deletions, duplications or insertions that span whole exons. This article reviews the molecular aspects of BRCA1 and BRCA2 rearrangements and their frequency among different populations. An overview of the techniques used to screen for large rearrangements in BRCA1 and BRCA2 is also presented. The detection of rearrangements in BRCA genes, especially BRCA1, offers a promising outlook for mutation screening in clinical practice, particularly in HBOC families that test negative for a germline mutation assessed by traditional methods.  相似文献   

4.
BRCA1 and BRCA2 are two major genes associated with familial breast and ovarian cancer susceptibility. In Poland standard BRCA gene test is usually limited to Polish founder BRCA1 mutations: 5382insC, C61G and 4153delA. To date, just a few single large genomic rearrangements (LGRs) of BRCA1 gene have been reported in Poland. Here we report the first comprehensive analysis of large mutations in BRCA1 and BRCA2 genes in this country. We screened LGRs in BRCA1 and BRCA2 genes by multiplex ligation-dependent probe amplification in 200 unrelated patients with strong family history of breast/ovarian cancers and negative for BRCA1 Polish founder mutations. We identified three different LGRs in BRCA1 gene: exons 13-19 deletion, exon 17 deletion and exon 22 deletion. No LGR was detected in BRCA2 genes. Overall, large rearrangements accounted for 3.7 % of all BRCA1 mutation positive families in our population and 1.5 % in high-risk families negative for Polish founder mutation.  相似文献   

5.
The identification of genomic rearrangements involving more than 0.5 kb of the BRCA1 gene has confirmed a more complex mutation spectrum than was initially appreciated. Genomic rearrangements in BRCA1 represent 15% of all mutations in a group of French and American breast and ovarian cancer families and 36% of all mutations in a group of Dutch families. The rearrangements described to date range in size from 510 bp to 23.8 kb, are found throughout the gene, and are most frequently attributable to homologous recombination. We describe the identification of rearrangements in two breast and ovarian cancer families that involve 3.4 and 11.5 kb of the BRCA1 gene and span multiple exons but maintain the reading frame. Both gene rearrangements appear to result from Alu-mediated homologous recombination and have been detected by using a combination of protein truncation analysis and Southern blot analysis. These rearrangements result in the loss of amino acids that lie at the carboxy-terminus of the protein and that have previously been shown to have functional significance. Because these rearrangements result in the deletion of exons but maintain the reading frame, they may provide insights into specific regions and amino acids that have functional significance for the BRCA1 protein.  相似文献   

6.
Background: The incidence of breast cancer has been on the rise in Malaysia. It is suggested that a subset of breast cancer cases were associated with germline mutation in breast cancer susceptibility (BRCA) genes. Most of the BRCA mutations reported in Malaysia were point mutations, small deletions and insertions. Here we report the first study of BRCA large genomic rearrangements (LGRs) in Malaysia. We aimed to detect the presence of LGRs in the BRCA genes of Malaysian patients with breast cancer. Methods: Multiplex ligation-dependent probe amplification (MLPA) for BRCA LGRs was carried out on 100 patients (60 were high-risk breast cancer patients previously tested negative/positive for BRCA1 and BRCA2 mutations, and 40 were sporadic breast cancer patients), recruited from three major referral centres, Universiti Kebangsaan Malaysia Medical Centre (UKMMC), Hospital Kuala Lumpur (HKL) and Hospital Putrajaya (HPJ). Results: Two novel BRCA1 rearrangements were detected in patients with sporadic breast cancer; both results were confirmed by quantitative PCR. No LGRs were found in patients with high-risk breast cancer. The two large genomic rearrangements detected were genomic amplifications of exon 3 and exon 10. No BRCA2 genomic rearrangement was found in both high-risk and sporadic breast cancer patients. Conclusion: These results will be helpful to understand the mutation spectrum of BRCA1 and BRCA2 genes in Malaysian patients with breast cancer. Further studies involving larger samples are required to establish a genetic screening strategy for both high-risk and sporadic breast cancer patients.  相似文献   

7.
Germline mutations of the adenomatous polyposis coli (APC) tumor-suppressor gene result in the hereditary colorectal cancer syndrome familial adenomatous polyposis (FAP). Almost all APC mutations that have been identified are single-nucleotide alterations, small insertions, or small deletions that would truncate the protein product of the gene. No well-characterized intragenic rearrangement of APC has been described, and the prevalence of this type of mutation in FAP patients is not clear. We screened 49 potential FAP families and identified 26 different germline APC mutations in 30 families. Four of these mutations were genomic rearrangements resulting from homologous and nonhomologous recombinations mediated by Alu elements. Two of these four rearrangements were complex, involving deletion and insertion of nucleotides. Of these four rearrangements, one resulted in the deletion of exons 11 and 12 and two others resulted in either complete or partial deletion of exon 14. The fourth rearrangement grossly altered the sequence within intron 14. Although this rearrangement did not affect any coding sequence of APC at the genomic DNA level, it caused inappropriate splicing of exon 14. These rearrangements were initially revealed by analyzing cDNAs and could not have been identified by using mutation detection methods that screened each exon individually. The identification of a rearrangement that did not alter any coding exons yet affected the splicing further underscores the importance of using cDNA for mutation analysis. The identification of four genomic rearrangements among 30 mutations suggests that genomic rearrangements are frequent germline APC mutations.  相似文献   

8.
Previous studies of high-risk breast cancer families have proposed that two major breast cancer-susceptibility genes, BRCA1 and BRCA2, may account for at least two-thirds of all hereditary breast cancer. We have screened index cases from 106 Scandinavian (mainly southern Swedish) breast cancer and breast-ovarian cancer families for germ-line mutations in all coding exons of the BRCA1 and BRCA2 genes, using the protein-truncation test, SSCP analysis, or direct sequencing. A total of 24 families exhibited 11 different BRCA1 mutations, whereas 11 different BRCA2 mutations were detected in 12 families, of which 3 contained cases of male breast cancer. One BRCA2 mutation, 4486delG, was found in two families of the present study and, in a separate study, also in breast tumors from three unrelated males with unknown family history, suggesting that at least one BRCA2 founder mutation exists in the Scandinavian population. We report 1 novel BRCA1 mutation, eight additional cases of 4 BRCA1 mutations described elsewhere, and 11 novel BRCA2 mutations (9 frameshift deletions and 2 nonsense mutations), of which all are predicted to cause premature truncation of the translated products. The relatively low frequency of BRCA1 and BRCA2 mutations in the present study could be explained by insufficient screening sensitivity to the location of mutations in uncharacterized regulatory regions, the analysis of phenocopies, or, most likely, within predisposed families, additional uncharacterized BRCA genes.  相似文献   

9.
Founder mutations can account for a large proportion of BRCA1/BRCA2 gene abnormalities in a given population. However there is still a need to study the entire gene in many families, even in countries where founder mutations have been identified. It is possible to decrease the number of cases which are studied by complex and expensive sequencing/Southern blot analyses of BRCA1/BRCA2 genes by exclusion of common BRCA1/BRCA2 alleles in a given family by using polymorphic dinucleotide markers. The goal of o ur study was to assess the effectiveness of this method in exclusion of BRCA1/BRCA2 constitutional mutations. In each family, blood samples for genetic analyses were taken from two affected relatives from the same generation. Six polymorphic microsatellite markers linked to BRCA1/BRCA2 genes were analysed. Results obtained with these markers were verified by applying BRCA1 testing for the most common founder mutations in Poland and using exon by exon" sequencing of coding fragments of the BRCA2 gene. Polymorphic markers useful in BRCA1/BRCA2 analyses included only 3 of 6 examined - D17S855, D13S260 and D13S267. Occurrence of commoalleles of BRCA1 was excluded in 3 families and BRCA2 in 5 out of 30 families. Results obtained by testing for BRCA1 Polish founder mutations and BRCA2 sequencing were in agreement with BRCA1 findings based on polymorphic markers. The only exception was family 994 with BRCA1 exon 5 300T/G mutation, in which BRCA1 mutation carrier was excluded by using D17S855. Among 14 families without BRCA1 Polish founder mutations in this gene were excluded in 2 families and BRCA2 mutation was excluded in one family.  相似文献   

10.
11.
Founder mutations in the BRCA1 and BRCA2 genes have been discovered in the Ashkenazic Jewish population, but a founder mutation(s) has not been discovered among non-Ashkenazi Jews (NAJ). Two BRCA1 mutations (P1812A, P25T), and a BRCA2 mutation (5164del4) have been detected in NAJ high-risk families. We studied the prevalence of these three mutations in 270 high-risk NAJ families, including 85 from Iraq/Iran, 67 from North Africa, 27 from Yemen, 50 from the Balkan region, and 41 with mixed ancestry. The three mutations were detected only in individuals related to the original families. We conclude that the P1812A and P25T BRCA1 and 5164del4 BRCA2 mutations are not likely to be founder mutations in NAJ high-risk families. We also assessed the pathogenicity of the BRCA1 P1812A mutation in vitro using reporter gene assays in yeast and mammalian cells. We found that the BRCA1 P1812A variant activity assays yielded a slightly reduced reporter gene activity. Thus, there is some uncertainty as to the pathogenicity of BRCA1 P1812A.  相似文献   

12.
Genetic heterogeneity in hereditary breast cancer: role of BRCA1 and BRCA2.   总被引:7,自引:4,他引:3  
The common hereditary forms of breast cancer have been largely attributed to the inheritance of mutations in the BRCA1 or BRCA2 genes. However, it is not yet clear what proportion of hereditary breast cancer is explained by BRCA1 and BRCA2 or by some other unidentified susceptibility gene(s). We describe the proportion of hereditary breast cancer explained by BRCA1 or BRCA2 in a sample of North American hereditary breast cancers and assess the evidence for additional susceptibility genes that may confer hereditary breast or ovarian cancer risk. Twenty-three families were identified through two high-risk breast cancer research programs. Genetic analysis was undertaken to establish linkage between the breast or ovarian cancer cases and markers on chromosomes 17q (BRCA1) and 13q (BRCA2). Mutation analysis in the BRCA1 and BRCA2 genes was also undertaken in all families. The pattern of hereditary cancer in 14 (61%) of the 23 families studied was attributed to BRCA1 by a combination of linkage and mutation analyses. No families were attributed to BRCA2. Five families (22%) provided evidence against linkage to both BRCA1 and BRCA2. No BRCA1 or BRCA2 mutations were detected in these five families. The BRCA1 or BRCA2 status of four families (17%) could not be determined. BRCA1 and BRCA2 probably explain the majority of hereditary breast cancer that exists in the North American population. However, one or more additional genes may yet be found that explain some proportion of hereditary breast cancer.  相似文献   

13.
14.
The aim of the study was to optimize the criteria for the BRCA1 and BRCA2 gene testing and to improve oncogenetic counseling in the Stockholm region. Screening for inherited breast cancer genes is laborious and a majority of tested samples turn out to be negative. The frequencies of mutations in the BRCA1 and BRCA2 genes differ across populations. Between 1997 and 2000, 160 families with breast and/or ovarian cancer were counseled and screened for mutations in the two genes. Twenty-five BRCA1 and two BRCA2 disease-causing mutations were found. Various factors associated with the probability of finding a BRCA1 mutation in the families were estimated. Age of onset in different generations and other malignancies were also studied. Families from our region in which both breast and ovarian cancer occur were likely to carry a BRCA1 mutation (34%). In breast-only cancer families, mutations were found only in those with very early onset. All breast- only cancer families with a mutation had at least one case of onset before 36 years of age and a young median age of onset (<43 years). Other malignancies than breast and ovarian cancers did not segregate in the BRCA1 families and surveillance for other malignancies is not needed, in general. Decreasing age of onset with successive generations was common and must be taken into account when surveillance options are considered.  相似文献   

15.
To establish the contribution of germline BRCA1 and BRCA2 mutations to familial ovarian cancer, we have analyzed both genes in DNA samples obtained from an affected individual in each of 112 families containing at least two cases of epithelial ovarian cancer. Germline mutations were found in 43% of the families; BRCA1 mutations were approximately four times more common than BRCA2 mutations. The extent of family history of ovarian and breast cancers was strongly predictive of BRCA1-mutation status. Segregation analysis suggests that a combination of chance clustering of sporadic cases and insensitivity of mutation detection may account for the remaining families; however, the contribution of other genes cannot be excluded. We discuss the implications for genetic testing and clinical management of familial ovarian cancer arising from the data presented in these studies.  相似文献   

16.
Mutations, Single Nucleotide Polymorphisms (SNPs), deletions and genetic rearrangements in specific genes in the human genome account for not only our physical characteristics and behavior, but can lead to many in-born and acquired diseases. Such changes in the genome can also predispose people to cancers, as well as significantly affect the metabolism and efficacy of many drugs, resulting in some cases in acute toxicity to the drug. The testing of the presence of such genetic mutations and rearrangements is of great practical and commercial value, leading many of these genes and their mutations/deletions and genetic rearrangements to be patented. A recent decision by a judge in the Federal District Court in the Southern District of New York, has created major uncertainties, based on the revocation of BRCA1 and BRCA2 gene patents, in the eligibility of all human and presumably other gene patents. This article argues that while patents on BRCA1 and BRCA2 genes could be challenged based on a lack of utility, the patenting of the mutations and genetic rearrangements is of great importance to further development and commercialization of genetic tests that can save human lives and prevent suffering, and should be allowed.  相似文献   

17.
To define the prevalence and relative contributions of BRCA1 and BRCA2 mutations among African American families with breast cancer, we analyzed 28 DNA samples from patients identified through two oncology clinics. The entire coding regions of BRCA1 and BRCA2 were screened by protein truncation test, heteroduplex analysis, or single-stranded conformation polymorphism followed by DNA sequencing of variant bands. Deleterious protein-truncating BRCA1 and BRCA2 mutations were identified in five patients or 18% of the entire cohort. Only 8% (1 of 13) of women with a family history of breast cancer, but no ovarian cancer, had mutations. The mutation rates were higher for women from families with a history of breast cancer and at least one ovarian cancer (three of six, 50%). One woman with a family history of undocumented cancers was also found to carry a deleterious mutation in BRCA2. The spectrum of mutations was unique in that one novel BRCA1 mutation (1625del5) and three novel BRCA2 mutations (1536del4, 6696delTC, and 7795delCT) were identified. No recurrent mutations were identified in this cohort, although one BRCA2 (2816insA) mutation had been previously reported. In addition, two BRCA1 and four BRCA2 missense mutations of unknown significance were identified, one of which was novel. Taken together with our previous report on recurrent mutations seen in unrelated families, we conclude that African Americans have a unique mutation spectrum in BRCA1 and BRCA2 genes, but recurrent mutations are likely to be more widely dispersed and therefore not readily identifiable in this population.  相似文献   

18.
The genetic etiology of hereditary breast cancer has not been fully elucidated. Although germline mutations of high-penetrance genes such as BRCA1/2 are implicated in development of hereditary breast cancers, at least half of all breast cancer families are not linked to these genes. To identify a comprehensive spectrum of genetic factors for hereditary breast cancer in a Chinese population, we performed an analysis of germline mutations in 2,165 coding exons of 152 genes associated with hereditary cancer using next-generation sequencing (NGS) in 99 breast cancer patients from families of cancer patients regardless of cancer types. Forty-two deleterious germline mutations were identified in 21 genes of 34 patients, including 18 (18.2%) BRCA1 or BRCA2 mutations, 3 (3%) TP53 mutations, 5 (5.1%) DNA mismatch repair gene mutations, 1 (1%) CDH1 mutation, 6 (6.1%) Fanconi anemia pathway gene mutations, and 9 (9.1%) mutations in other genes. Of seven patients who carried mutations in more than one gene, 4 were BRCA1/2 mutation carriers, and their average onset age was much younger than patients with only BRCA1/2 mutations. Almost all identified high-penetrance gene mutations in those families fulfill the typical phenotypes of hereditary cancer syndromes listed in the National Comprehensive Cancer Network (NCCN) guidelines, except two TP53 and three mismatch repair gene mutations. Furthermore, functional studies of MSH3 germline mutations confirmed the association between MSH3 mutation and tumorigenesis, and segregation analysis suggested antagonism between BRCA1 and MSH3. We also identified a lot of low-penetrance gene mutations. Although the clinical significance of those newly identified low-penetrance gene mutations has not been fully appreciated yet, these new findings do provide valuable epidemiological information for the future studies. Together, these findings highlight the importance of genetic testing based on NCCN guidelines and a multi-gene analysis using NGS may be a supplement to traditional genetic counseling.  相似文献   

19.
Chromosomal mutagen sensitivity is a common feature of cells from patients with different kinds of cancer. A portion of breast cancer patients also shows an elevated sensitivity to the induction of chromosome damage in cells exposed to ionizing radiation or chemical mutagens. Segregation analysis in families of patients with breast cancer indicated heritability of mutagen sensitivity. It has therefore been suggested that mutations in low-penetrance genes which are possibly involved in DNA repair predispose a substantial portion of breast cancer patients. Chromosomal mutagen sensitivity has been determined with the G2 chromosome aberration test and the G(0) micronucleus test (MNT). However, there seems to be no clear correlation between the results from the two tests, indicating that the inherited defect leading to enhanced G(0) sensitivity is different from that causing G2 sensitivity. Less than 5% of breast cancer patients have a familial form of the disease due to inherited mutations in the breast cancer susceptibility genes BRCA1 or BRCA2. Heterozygous mutations in BRCA1 or BRCA2 in lymphocytes from women with familial breast cancer are also associated with mutagen sensitivity. Differentiation between mutation carriers and controls seems to be much better with the MNT than with the G2 assay. Mutagen sensitivity was detected with the MNT not only after irradiation but also after treatment with chemical mutagens including various cytostatics. The enhanced formation of micronuclei after exposure of lymphocytes to these substances suggests that different DNA repair pathways are affected by a BRCA1 mutation in accordance with the proposed central role of BRCA1 in maintaining genomic integrity. Mutations in BRCA1 and BRCA2 seem to predispose cells to an increased risk of mutagenesis and transformation after exposure to radiation or cytostatics. This raises a question about potentially increased risks by mammography and cancer therapy in women carrying a mutation in one of the BRCA genes. Lymphoblastoid cell lines (LCLs) from breast cancer patients have been used to study the mechanisms and genetic changes associated with tumorigenesis. With respect to mutagen sensitivity, conflicting results have been reported. In particular enhanced induction of micronuclei does not seem to be a general feature of LCLs with a BRCA1 mutation in contrast to lymphocytes with the same mutation. Therefore, LCLs are of limited utility for studying the mechanisms underlying chromosomal mutagen sensitivity.  相似文献   

20.
We have identified four mutations in each of the breast cancer-susceptibility genes, BRCA1 and BRCA2, in French Canadian breast cancer and breast/ovarian cancer families from Quebec. To identify founder effects, we examined independently ascertained French Canadian cancer families for the distribution of these eight mutations. Mutations were found in 41 of 97 families. Six of eight mutations were observed at least twice. The BRCA1 C4446T mutation was the most common mutation found, followed by the BRCA2 8765delAG mutation. Together, these mutations were found in 28 of 41 families identified to have a mutation. The odds of detection of any of the four BRCA1 mutations was 18.7x greater if one or more cases of ovarian cancer were also present in the family. The odds of detection of any of the four BRCA2 mutations was 5.3x greater if there were at least five cases of breast cancer in the family. Interestingly, the presence of a breast cancer case <36 years of age was strongly predictive of the presence of any of the eight mutations screened. Carriers of the same mutation, from different families, shared similar haplotypes, indicating that the mutant alleles were likely to be identical by descent for a mutation in the founder population. The identification of common BRCA1 and BRCA2 mutations will facilitate carrier detection in French Canadian breast cancer and breast/ovarian cancer families.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号