首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fragile X syndrome is the most common inherited form of mental retardation. It is caused by the lack of the Fragile X Mental Retardation Protein (FMRP), which is encoded by the FMR1 gene. Although Fmr1 knockout mice display some characteristics also found in fragile X patients, it is a complex animal model to study brain abnormalities, especially during early embryonic development. Interestingly, the ortholog of the FMR1 gene has been identified not only in mouse, but also in zebrafish (Danio rerio). In this study, an amino acid sequence comparison of FMRP orthologs was performed to determine the similar regions of FMRP between several species, including human, mouse, frog, fruitfly and zebrafish. Further characterisation of Fmrp has been performed in both adults and embryos of zebrafish using immunohistochemistry and western blotting with specific antibodies raised against zebrafish Fmrp. We have demonstrated a strong Fmrp expression in neurons of the brain and only a very weak expression in the testis. In brain tissue, a different distribution of the isoforms of Fmrp, compared to human and mouse brain tissue, was shown using western blot analysis. Due to the high similarity between zebrafish Fmrp and human FMRP and their similar expression pattern, the zebrafish has great potential as a complementary animal model to study the pathogenesis of the fragile X syndrome, especially during embryonic development.Edited by D. Tautz  相似文献   

2.
3.
Alu elements are not distributed homogeneously throughout the human genome: old elements are preferentially found in the GC-rich parts of the genome, while young Alus are more often found in the GC-poor parts of the genome. The process giving rise to this differential distribution remains poorly understood. Here we investigate whether this pattern could be due to a preferential degradation of Alu elements integrated in GC-poor regions by small indel mutations. We aligned 5.1 Mb of human and chimpanzee sequences and examined whether the rate of insertion and deletion inside Alu elements differed according to the base composition surrounding them. We found that Alu elements are not preferentially degraded in GC-poor regions by indel events. We also looked at whether very young L1 elements show the same change in distribution compared to older ones. This analysis indicated that L1 elements also show a shift in their distribution, although we could not assess it as precisely as for Alu elements. We propose that the differential distribution of Alu elements is likely to be due to a change in their pattern of insertion or their probability of fixation through evolutionary time.Reviewing Editor: Dr. Stephen Freeland  相似文献   

4.
The formation of N-acylphosphatidylethanolamine by N-acylation of phosphatidylethanolamine (PE) is the initial step in the biosynthetic pathway of bioactive N-acylethanolamines, including the endocannabinoid anandamide and the anti-inflammatory substance N-palmitoylethanolamine. We recently cloned a rat enzyme capable of catalyzing this reaction, and referred to the enzyme as Ca2+-independent N-acyltransferase (iNAT). Here we report cDNA cloning and characterization of human and mouse iNATs. We cloned iNAT-homologous cDNAs from human and mouse testes, and overexpressed them in COS-7 cells. The purified recombinant proteins abstracted an acyl group from both sn-1 and sn-2 positions of phosphatidylcholine, and catalyzed N-acylation of PE as well as phospholipase A1/A2-like hydrolysis. The iNAT activity was mainly detected in soluble rather than particulate fractions, and was only slightly increased by Ca2+. These results demonstrated that the human and mouse homologues function as iNAT. As for the organ distribution of iNAT, human testis and pancreas and mouse testis exhibited by far the highest expression level, suggesting its physiological importance in the specific organs. Moreover, mutagenesis studies showed crucial roles of His-154 and Cys-241 of rat iNAT in the catalysis and a possible role of the N-terminal domain in membrane association or protein–protein interaction.  相似文献   

5.
We have studied the molecular characteristics of the yellow locus (y; 1–0.0), which determines the body color of phenotypically wild-type and mutant alleles isolated in different years from geographically distant populations of Drosophila melanogaster. According to the Southern blot, data restriction maps of the yellow locus of all examined strains differ from one another, as well as from Oregon stock. FISH analysis shows that, in the neighborhood of the yellow locus in the X chromosome, neither P nor hobo elements are found in y1–775 stock, while only hobo is found in these region in y1–859 and y1–866 stocks, only the P element is found in y+sn849 stock, and both elements are found in y1–719 stock. Thus, all yellow mutants studied are of independent origin. Locus yellow located on the end of X chromosome (region 1A5–8 on the cytologic map) carries significantly more transposon than retrotransposon induced mutations compared to the white locus (region 3C2). It is possible that, at the ends of Drosophila melanogaster chromosomes, transposons are more active than retrotransposons.  相似文献   

6.
7.
Mutations in the PKHD1 gene result in autosomal recessive polycystic kidney disease (ARPKD) in humans. To determine the molecular mechanism of the cystogenesis in ARPKD, we recently generated a mouse model for ARPKD that carries a targeted mutation in the mouse orthologue of human PKHD1. The homozygous mutant mice display hepatorenal cysts whose phenotypes are similar to those of human ARPKD patients. By littermates of this mouse, we developed two immortalized renal collecting duct cell lines with Pkhd1 and two without. Under nonpermissive culture conditions, the Pkhd1/ renal cells displayed aberrant cell–cell contacts and tubulomorphogenesis. The Pkhd1/ cells also showed significantly reduced cell proliferation and elevated apoptosis. To validate this finding in vivo, we examined proliferation and apoptosis in the kidneys of Pkhd1/ mice and their wildtype littermates. Using proliferation (PCNA and Histone-3) and apoptosis (TUNEL and caspase-3) markers, similar results were obtained in the Pkhd1/ kidney tissues as in the cells. To identify the molecular basis of these findings, we analyzed the effect of Pkhd1 loss on multiple putative signaling regulators. We demonstrated that the loss of Pkhd1 disrupts multiple major phosphorylations of focal adhesion kinase (FAK), and these disruptions either inhibit the Ras/C-Raf pathways to suppress MEK/ERK activity and ultimately reduce cell proliferation, or suppress PDK1/AKT to upregulate Bax/caspase-9/caspase-3 and promote apoptosis. Our findings indicate that apoptosis may be a major player in the cyst formation in ARPKD, which may lead to new therapeutic strategies for human ARPKD.  相似文献   

8.
9.
10.
11.
12.
Autism is a severe neurodevelopmental disorder, which typically emerges in early childhood. Most cases of autism have not been linked to mutations in a specific gene, and the etioloty of the disorder remains to be established [S.S. Moy, J.J. Nadler, T.R. Magnuson, J.N. Crawley, Mouse models of autism spectrum disorders: the challenge for behavioral genetics, Am. J. Med. Genet. 142 (2006) 40-51]. Fragile X syndrome is caused by mutation in the FMR1 gene and is characterized by mental retardation, physical abnormalities, and, in most case, autistic-like behavior [R.J. Hagerman, A.W. Jackson, A. Levitas, B. Rimland, M. Braden, An analysis of autism in fifty males with the Fragile X syndrome, Am. J. Med. Genet. 23 (1986) 359-374, C.E. Bakker, C. Verheij, R. Willemsen, R. van der Helm, F. Oerlemans, M. Vermeij, A. Bygrave, A.T. Hoogeveen, B.A. Oostra, E. Reyniers, K. De Boulle, R. D’Hooge, P. Cras, D. van Velzen, G. Nagels, J.J. Marti, P. De Deyn, J.K. Darby, P.J. Willems, Fmr1 knockout mice: a model to study Fragile X mental retardation, Cell 78 (1994) 23-33]. The FMR1 knockout (KO) mouse is one of the best characterized animal models for human disorders associated with autism [S.S. Moy, J.J. Nadler, T.R. Magnuson, J.N. Crawley, Mouse models of autism spectrum disorders: the challenge for behavioral genetics, Am. J. Med. Genet. 142 (2006) 40-51]. We have used real-time PCR to investigate changes in expression levels of three genes: WNT2, MECP2, and FMR1 in different brain regions of Fagile X mice and litter mate controls. We found major changes in the expression pattern for the three genes examined. FMR1, MECP2, and WNT2 expression were drastically down regulated in the Fragile X mouse brain.  相似文献   

13.
The (CGG)n-repeat in the 5′-untranslated region of the fragile X mental retardation gene (FMR1) gene is polymorphic and may become unstable on transmission to the next generation. In fragile X syndrome, CGG repeat lengths exceed 200, resulting in silencing of FMR1 and absence of its protein product, fragile X mental retardation protein (FMRP). CGG repeat lengths between 55 and 200 occur in fragile X premutation (FXPM) carriers and have a high risk of expansion to a full mutation on maternal transmission. FXPM carriers have an increased risk for developing progressive neurodegenerative syndromes and neuropsychological symptoms. FMR1 mRNA levels are elevated in FXPM, and it is thought that clinical symptoms might be caused by a toxic gain of function due to elevated FMR1 mRNA. Paradoxically, FMRP levels decrease moderately with increasing CGG repeat length in FXPM. Lowered FMRP levels may also contribute to the appearance of clinical problems. We previously reported increases in regional rates of cerebral protein synthesis (rCPS) in the absence of FMRP in an Fmr1 knockout mouse model and in a FXPM knockin (KI) mouse model with 120 to 140 CGG repeats in which FMRP levels are profoundly reduced (80%–90%). To explore whether the concentration of FMRP contributes to the rCPS changes, we measured rCPS in another FXPM KI model with a similar CGG repeat length and a 50% reduction in FMRP. In all 24 brain regions examined, rCPS were unaffected. These results suggest that even with 50% reductions in FMRP, normal protein synthesis rates are maintained.  相似文献   

14.
15.
The non-MHC-encoded CD1 family has recently emerged as a novel antigen-presenting system that is distinct from MHC class I and class II molecules. In the present study, we determined the genomic structure of that rat CD1, and compared with those of other previously reported CD1 genes. Rat CD1 was extremely similar to mouse CD1 genes, especially to CD1D1. It is of interest that a tyrosine-based motif for endosomal localization, identified in the human CD1b cytoplasmic tail, was conserved in all CD1 molecules except for CD1a, that was encoded by a single short exon. Comparison of the overall exon-intron organization of CD1 genes revealed that the length of the introns was also characteristic to each of the two classes of CD1 genes; classic (CD1A, CD1B, CD1C and CD1E), and CD1D, which have been categorized by comparison of coding regions. These findings support a hypothesis that the two classes have different evolutionary histories. In contrast to the absence of the classic CD1 genes in rats and mice, the entire region of nonpolymorphic CD1D gene has been conserved through mammalian evolution. Furthermore, we determined chromosomal localization of rat CD1 gene using the fluorescence in situ hybridization method with several probes derived from genomic rat CD1 clones. Similar to human and mouse CD1, rat CD1 mapped outside the MHC loci despite the structural and functional resemblance to MHC. Conserved syntheny of chromosomal segments of RNO2 and MMU3 is implied.  相似文献   

16.
Mutation in the “nude” gene, i.e. the FoxN1 gene, induces a hairless phenotype and a rudimentary thymus gland in mice (nude mouse) and humans (T-cell related primary immunodeficiency). Conventional FoxN1 gene knockout and transgenic mouse models have been generated for studies of FoxN1 gene function related to skin and immune diseases, and for cancer models. It appeared that FoxN1''s role was fully understood and the nude mouse model was fully utilized. However, in recent years, with the development of inducible gene knockout/knockin mouse models with the loxP-Cre(ERT) and diphtheria toxin receptor-induced cell abolished systems, it appears that the complete repertoire of FoxN1''s roles and deep-going usage of nude mouse model in immune function studies have just begun. Here we summarize the research progress made by several recent works studying the role of FoxN1 in the thymus and utilizing nude and “second (conditional) nude” mouse models for studies of T-cell development and function. We also raise questions and propose further consideration of FoxN1 functions and utilizing this mouse model for immune function studies.  相似文献   

17.
Density dependent habitat selection at the community level is regarded as a major determinant of biodiversity at the local scale, and data on these processes and how they are affected by human activities is highly applicable to conservation. By studying the competitive relationships between a specialist and a generalist we can acquire valuable insights about how different environmental elements determine species abundance and distribution and consequently biodiversity. Here we describe a study of density dependent processes that determine the community structure of two rodents: a specialist—the broad toothed mouse (Apodemus mystacinus), and a generalist—the common spiny mouse (Acomys cahirinus) in a Mediterranean maqui habitat, and how this structure is impacted by anthropogenic planting of pine stands. We carried out two field experiments: The first, based on open field trapping, looking at how rodent communities change with habitat structure. The second experiment was an enclosure study aimed at validating the habitat preferences and competitive relationship between the specialist and the generalist. We identified asymmetric competition relationships in which the specialist was dominant over the generalist. Competition intensity was lower in maqui with >10% oak cover, although both species abundances were high. Competition was found only during the limiting season (summer). Based on these findings we produced management recommendations to keep indigenous small mammals’ biodiversity high. Density dependent habitat selection processes play a central role in determining biodiversity, and understanding the mechanisms motivating these processes is needed if alterations in biodiversity in response to human disturbance are to be understood.  相似文献   

18.
The maT clade of transposons is a group of transposable elements intermediate in sequence and predicted protein structure to mariner and Tc transposons, with a distribution thus far limited to a few invertebrate species. We present evidence, based on searches of publicly available databases, that the nematode Caenorhabditis briggsae has several maT-like transposons, which we have designated as CbmaT elements, dispersed throughout its genome. We also describe two additional transposon sequences that probably share their evolutionary history with the CbmaT transposons. One resembles a fold back variant of a CbmaT element, with long (380-bp) inverted terminal repeats (ITRs) that show a high degree (71%) of identity to CbmaT1. The other, which shares only the 26-bp ITR sequences with one of the CbmaT variants, is present in eight nearly identical copies, but does not have a transposase gene and may therefore be cross mobilised by a CbmaT transposase. Using PCR-based mobility assays, we show that CbmaT1 transposons are capable of excising from the C. briggsae genome. CbmaT1 excised approximately 500 times less frequently than Tcb1 in the reference strain AF16, but both CbmaT1 and Tcb1 excised at extremely high frequencies in the HK105 strain. The HK105 strain also exhibited a high frequency of spontaneous induction of unc-22 mutants, suggesting that it may be a mutator strain of C. briggsae.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号