首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
A recent discovery of Iron Age burials (Pazyryk culture) in the Altai Mountains of Mongolia may shed light on the mode and tempo of the generation of the current genetic east-west population admixture in Central Asia. Studies on ancient mitochondrial DNA of this region suggest that the Altai Mountains played the role of a geographical barrier between West and East Eurasian lineages until the beginning of the Iron Age. After the 7th century BC, coinciding with Scythian expansion across the Eurasian steppes, a gradual influx of East Eurasian sequences in Western steppes is detected. However, the underlying events behind the genetic admixture in Altai during the Iron Age are still unresolved: 1) whether it was a result of migratory events (eastward firstly, westward secondly), or 2) whether it was a result of a local demographic expansion in a ‘contact zone’ between European and East Asian people. In the present work, we analyzed the mitochondrial DNA lineages in human remains from Bronze and Iron Age burials of Mongolian Altai. Here we present support to the hypothesis that the gene pool of Iron Age inhabitants of Mongolian Altai was similar to that of western Iron Age Altaians (Russia and Kazakhstan). Thus, this people not only shared the same culture (Pazyryk), but also shared the same genetic east-west population admixture. In turn, Pazyryks appear to have a similar gene pool that current Altaians. Our results further show that Iron Age Altaians displayed mitochondrial lineages already present around Altai region before the Iron Age. This would provide support for a demographic expansion of local people of Altai instead of westward or eastward migratory events, as the demographic event behind the high population genetic admixture and diversity in Central Asia.  相似文献   

2.
The southwestern and Central Asian corridor has played a pivotal role in the history of humankind, witnessing numerous waves of migration of different peoples at different times. To evaluate the effects of these population movements on the current genetic landscape of the Iranian plateau, the Indus Valley, and Central Asia, we have analyzed 910 mitochondrial DNAs (mtDNAs) from 23 populations of the region. This study has allowed a refinement of the phylogenetic relationships of some lineages and the identification of new haplogroups in the southwestern and Central Asian mtDNA tree. Both lineage geographical distribution and spatial analysis of molecular variance showed that populations located west of the Indus Valley mainly harbor mtDNAs of western Eurasian origin, whereas those inhabiting the Indo-Gangetic region and Central Asia present substantial proportions of lineages that can be allocated to three different genetic components of western Eurasian, eastern Eurasian, and south Asian origin. In addition to the overall composite picture of lineage clusters of different origin, we observed a number of deep-rooting lineages, whose relative clustering and coalescent ages suggest an autochthonous origin in the southwestern Asian corridor during the Pleistocene. The comparison with Y-chromosome data revealed a highly complex genetic and demographic history of the region, which includes sexually asymmetrical mating patterns, founder effects, and female-specific traces of the East African slave trade.  相似文献   

3.
Although a large part of the global domestic dog population is free-ranging and free-breeding, knowledge of genetic diversity in these free-breeding dogs (FBDs) and their ancestry relations to pure-breed dogs is limited, and the indigenous status of FBDs in Asia is still uncertain. We analyse genome-wide SNP variability of FBDs across Eurasia, and show that they display weak genetic structure and are genetically distinct from pure-breed dogs rather than constituting an admixture of breeds. Our results suggest that modern European breeds originated locally from European FBDs. East Asian and Arctic breeds show closest affinity to East Asian FBDs, and they both represent the earliest branching lineages in the phylogeny of extant Eurasian dogs. Our biogeographic reconstruction of ancestral distributions indicates a gradual westward expansion of East Asian indigenous dogs to the Middle East and Europe through Central and West Asia, providing evidence for a major expansion that shaped the patterns of genetic differentiation in modern dogs. This expansion was probably secondary and could have led to the replacement of earlier resident populations in Western Eurasia. This could explain why earlier studies based on modern DNA suggest East Asia as the region of dog origin, while ancient DNA and archaeological data point to Western Eurasia.  相似文献   

4.
Various studies on ancient DNA have attempted to reconstruct population movement in Asia, with much interest focused on determining the arrival of European lineages in ancient East Asia. Here, we discuss our analysis of the mitochondrial DNA of human remains excavated from the Yu Hong tomb in Taiyuan, China, dated 1400 years ago. The burial style of this tomb is characteristic of Central Asia at that time. Our analysis shows that Yu Hong belonged to the haplogroup U5, one of the oldest western Eurasian-specific haplogroups, while his wife can be classified as haplogroup G, the type prevalent in East Asia. Our findings show that this man with European lineage arrived in Taiyuan approximately 1400 years ago, and most probably married a local woman. Haplogroup U5 was the first west Eurasian-specific lineage to be found in the central part of ancient China, and Taiyuan may be the easternmost location of the discovered remains of European lineage in ancient China.  相似文献   

5.
The excavation of a frozen grave on the Kizil site (dated to be 2500 years old) in the Altai Republic (Central Asia) revealed a skeleton belonging to the Scytho-Siberian population. DNA was extracted from a bone sample and analyzed by autosomal STRs (short tandem repeats) and by sequencing the hypervariable region I (HV1) of the mitochondrial DNA. The resulting STR profile, mitochondrial haplotype, and haplogroup were compared with data from modern Eurasian and northern native American populations and were found only in European populations historically influenced by ancient nomadic tribes of Central Asia.  相似文献   

6.
Xinjiang is at the crossroads between East and West Eurasia, and it harbors a relatively complex genetic history. In order to better understand the population movements and interactions in this region, mitochondrial and Y chromosome analyses on 40 ancient human remains from the Tianshanbeilu site in eastern Xinjiang were performed. Twenty‐nine samples were successfully assigned to specific mtDNA haplogroups, including the west Eurasian maternal lineages of U and W and the east Eurasian maternal lineages of A, C, D, F, G, Z, M7, and M10. In the male samples, two Y chromosome haplogroups, C* and N1 (xN1a, N1c), were successfully assigned. Our mitochondrial and Y‐chromosomal DNA analyses combined with the archaeological studies revealed that the Di‐qiang populations from the Hexi Corridor had migrated to eastern Xinjiang and admixed with the Eurasian steppe populations in the early Bronze Age. Am J Phys Anthropol 157:71–80, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

7.
Phylogeography of the ermine Mustela erminea and the least weasel M. nivalis from Palaearctic and Nearctic regions were investigated based on mitochondrial DNA control region sequences. Mustela erminea exhibited a very low level of genetic variation, and geographic structures among populations were unclear. This may indicate that M. erminea recently reoccupied a wide territory in Eurasia following the last glacial retreat. In comparison with M. erminea, genetic variations within and among populations of M. nivalis were much greater. Molecular phylogenetic relationships showed that two lineages of M. nivalis occurred in the Holarctic region: one spread from the Eurasian region to North America, and the other occurred in south-eastern Europe, the Caucasus and Central Asia. The results suggest either mitochondrial DNA introgression among populations of south-eastern Europe, the Caucasus and Central Asia, or ancestral polymorphisms remaining in those populations. Contrastive phylogeographic patterns between the two mustelid species could reflect differences of their migration histories in Eurasia after the last glacial age.  相似文献   

8.
Long-tailed ground squirrel (Urocitellus undulatus) is a polytypic species with a wide distribution from the Tien Shan to the Amur River region. Previously, considerable genetic differentiation between eastern and western populations of this species was demonstrated. Moreover, the greatest differences were observed in the western part of the range located in Central Asia, the region that was subjected to repeated glaciations in the past and represents one of the centers of the ground squirrel secondary diversification. The analysis of polymorphism of the mitochondrial DNA control region was carried out on long-tailed ground squirrels living in the northern part of Central Asia, on the territory of the Altai Mountains (45 individuals from 23 localities). The presence of two genetically differentiated (7.7% differences) and geographically separated lineages (western and eastern) was revealed. The data obtained disprove the hypothesis on unidirectional, from west to east, colonization of the Altai Mountains after the end of the last glacial maximum and show the two pathways of the ground squirrel colonization of the Altai, from both western and eastern refugia.  相似文献   

9.
The extent and nature of southeastern Europe (SEE) paternal genetic contribution to the European genetic landscape were explored based on a high-resolution Y chromosome analysis involving 681 males from seven populations in the region. Paternal lineages present in SEE were compared with previously published data from 81 western Eurasian populations and 5,017 Y chromosome samples. The finding that five major haplogroups (E3b1, I1b* (xM26), J2, R1a, and R1b) comprise more than 70% of SEE total genetic variation is consistent with the typical European Y chromosome gene pool. However, distribution of major Y chromosomal lineages and estimated expansion signals clarify the specific role of this region in structuring of European, and particularly Slavic, paternal genetic heritage. Contemporary Slavic paternal gene pool, mostly characterized by the predominance of R1a and I1b* (xM26) and scarcity of E3b1 lineages, is a result of two major prehistoric gene flows with opposite directions: the post-Last Glacial Maximum R1a expansion from east to west, the Younger Dryas-Holocene I1b* (xM26) diffusion out of SEE in addition to subsequent R1a and I1b* (xM26) putative gene flows between eastern Europe and SEE, and a rather weak extent of E3b1 diffusion toward regions nowadays occupied by Slavic-speaking populations.  相似文献   

10.
We analyzed mitochondrial DNA (mtDNA), Y‐chromosome single nucleotide polymorphisms (Y‐SNP), and autosomal short tandem repeats (STR) of three skeletons found in a 2,000‐year‐old Xiongnu elite cemetery in Duurlig Nars of Northeast Mongolia. This study is one of the first reports of the detailed genetic analysis of ancient human remains using the three types of genetic markers. The DNA analyses revealed that one subject was an ancient male skeleton with maternal U2e1 and paternal R1a1 haplogroups. This is the first genetic evidence that a male of distinctive Indo‐European lineages (R1a1) was present in the Xiongnu of Mongolia. This might indicate an Indo‐European migration into Northeast Asia 2,000 years ago. Other specimens are a female with mtDNA haplogroup D4 and a male with Y‐SNP haplogroup C3 and mtDNA haplogroup D4. Those haplogroups are common in Northeast Asia. There was no close kinship among them. The genetic evidence of U2e1 and R1a1 may help to clarify the migration patterns of Indo‐Europeans and ancient East‐West contacts of the Xiongnu Empire. Artifacts in the tombs suggested that the Xiongnu had a system of the social stratification. The West Eurasian male might show the racial tolerance of the Xiongnu Empire and some insight into the Xiongnu society. Am J Phys Anthropol, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
Ancient DNA was recovered from 17 individuals found in a rock shelter in the district of "La Purnia" (Santander, Colombia). This region is the homeland of pre-Columbian Guane, whom spread over the "Río Suarez" to the "Río de Oro", and were surrounded to the west by the Central Andes, south and east by foothills of Eastern Andes, and north by the "Chicamocha" river canyon. Guanes established in a region that straddles the Andes and the northern Amazon basin, possibly making it an unavoidable conduit for people moving to and from South America. We amplified mtDNA hypervariable region I (HVI) segments from ancient bone remains, and the resulting sequences were compared with both ancient and modern mitochondrial haplogroups from American and non-American populations. Samples showed a distribution of 35% for haplogroup A, 41% for haplogroup B and 24% for haplogroup D. Nine haplotypes were found in 17 samples, indicating an unusually high genetic diversity on a single site ancient population. Among them, three haplotypes have not been previously found in America, two are shared in Asia, and one is a private haplotype. Despite geographical barriers that eventually isolated them, an important influence of gene flow from neighboring pre-Columbian communities, mainly Muiscas, could explain the high genetic polymorphism of this community before the Spanish conquest, and argues against Guanes as being a genetic isolate.  相似文献   

12.
The Kalash represent an enigmatic isolated population of Indo-European speakers who have been living for centuries in the Hindu Kush mountain ranges of present-day Pakistan. Previous Y chromosome and mitochondrial DNA markers provided no support for their claimed Greek descent following Alexander III of Macedon''s invasion of this region, and analysis of autosomal loci provided evidence of a strong genetic bottleneck. To understand their origins and demography further, we genotyped 23 unrelated Kalash samples on the Illumina HumanOmni2.5M-8 BeadChip and sequenced one male individual at high coverage on an Illumina HiSeq 2000. Comparison with published data from ancient hunter-gatherers and European farmers showed that the Kalash share genetic drift with the Paleolithic Siberian hunter-gatherers and might represent an extremely drifted ancient northern Eurasian population that also contributed to European and Near Eastern ancestry. Since the split from other South Asian populations, the Kalash have maintained a low long-term effective population size (2,319–2,603) and experienced no detectable gene flow from their geographic neighbors in Pakistan or from other extant Eurasian populations. The mean time of divergence between the Kalash and other populations currently residing in this region was estimated to be 11,800 (95% confidence interval = 10,600−12,600) years ago, and thus they represent present-day descendants of some of the earliest migrants into the Indian sub-continent from West Asia.  相似文献   

13.
The Cumanians were originally Asian pastoral nomads who in the 13th century migrated to Hungary. We have examined mitochondrial DNA from members of the earliest Cumanian population in Hungary from two archeologically well-documented excavations and from 74 modern Hungarians from different rural locations in Hungary. Haplogroups were defined based on HVS I sequences and examinations of haplogroup-associated polymorphic sites of the protein coding region and of HVS II. To exclude contamination, some ancient DNA samples were cloned. A database was created from previously published mtDNA HVS I sequences (representing 2,615 individuals from different Asian and European populations) and 74 modem Hungarian sequences from the present study. This database was used to determine the relationships between the ancient Cumanians, modern Hungarians, and Eurasian populations and to estimate the genetic distances between these populations. We attempted to deduce the genetic trace of the migration of Cumanians. This study is the first ancient DNA characterization of an eastern pastoral nomad population that migrated into Europe. The results indicate that, while still possessing a Central Asian steppe culture, the Cumanians received a large admixture of maternal genes from more westerly populations before arriving in Hungary. A similar dilution of genetic, but not cultural, factors may have accompanied the settlement of other Asian nomads in Europe.  相似文献   

14.
We analyzed mitochondrial DNA polymorphisms to search for evidence of the genetic structure and patterns of admixture in 124 populations (N = 1407 trees) across the distribution of Scots pine in Europe and Asia. The markers revealed only a weak population structure in Central and Eastern Europe and suggested postglacial expansion to middle and northern latitudes from multiple sources. Major mitotype variants include the remnants of Scots pine at the north-western extreme of the distribution in the Scottish Highlands; two main variants (western and central European) that contributed to the contemporary populations in Norway and Sweden; the central-eastern European variant present in the Balkan region, Finland, and Russian Karelia; and a separate one common to most eastern European parts of Russia and western Siberia. We also observe signatures of a distinct refugium located in the northern parts of the Black Sea basin that contributed to the patterns of genetic variation observed in several populations in the Balkans, Ukraine, and western Russia. Some common haplotypes of putative ancient origin were shared among distant populations from Europe and Asia, including the most southern refugial stands that did not participate in postglacial recolonization of northern latitudes. The study indicates different genetic lineages of the species in Europe and provides a set of genetic markers for its finer-scale population history and divergence inference.  相似文献   

15.
BackgroundThe craniometric specificity of the indigenous West Siberian human populations cannot be completely explained by the genetic interactions of the western and eastern Eurasian groups recorded in the archaeology of the area from the beginning of the 2nd millennium BC. Anthropologists have proposed another probable explanation: contribution to the genetic structure of West Siberian indigenous populations by ancient human groups, which separated from western and eastern Eurasian populations before the final formation of their phenotypic and genetic features and evolved independently in the region over a long period of time. This hypothesis remains untested. From the genetic point of view, it could be confirmed by the presence in the gene pool of indigenous populations of autochthonous components that evolved in the region over long time periods. The detection of such components, particularly in the mtDNA gene pool, is crucial for further clarification of early regional genetic history.

Results and Conclusion

We present the results of analysis of mtDNA samples (n = 10) belonging to the A10 haplogroup, from Bronze Age populations of West Siberian forest-steppe (V—I millennium BC), that were identified in a screening study of a large diachronic sample (n = 96). A10 lineages, which are very rare in modern Eurasian populations, were found in all the Bronze Age groups under study. Data on the A10 lineages’ phylogeny and phylogeography in ancient West Siberian and modern Eurasian populations suggest that A10 haplogroup underwent a long-term evolution in West Siberia or arose there autochthonously; thus, the presence of A10 lineages indicates the possible contribution of early autochthonous human groups to the genetic specificity of modern populations, in addition to contributions of later interactions of western and eastern Eurasian populations.  相似文献   

16.
To evaluate the gene admixture on the current genetic landscape in Gansu Corridor (GC) in China, the upper part of the ancient Silk Road which connects the Eastern and Central Asia, we examined mitochondrial DNA (mtDNA) polymorphisms of five ethnic populations in this study. Using PCR-RFLP and sequencing, we analyzed mtDNA haplotypes in 242 unrelated samples in three ethnic populations from the GC region and two ethnic populations from the adjacent Xinjiang Uygur Autonomous Region of China. We analyzed the data in comparison with the previously reported data from Eastern, Central and Western Asia and Europe. We found that both European-specific haplogroups and Eastern Asian-specific haplogroups exist in the Gansu Corridor populations, while a modest matrilineal gene flow from Europeans to this region was revealed. The Gansu Corridor populations are genetically located between Eastern Asians and Central Asians, both of who contributed significantly to the maternal lineages of the GC populations. This study made the landscape of the gene flow and admixture along the Silk Road from Europe, through Central Asia, to the upper part of the Silk Road more complete.  相似文献   

17.
The excavation of five frozen graves at the Sytygane Syhe and Istekh-Myrane burial sites (dated at 400 years old) in central Yakutia revealed five human skeletons belonging to the Yakut population. To investigate the origin and evolution of the Yakut population as well as the kinship system between individuals buried in these two sites, DNA was extracted from bone samples and analyzed by autosomal short tandem repeats (STRs) and by sequencing hypervariable region I (HV1) of the mitochondrial DNA (mtDNA) control region. The results showed a diversity of sepulchral organizations linked probably to the social or genetic background of the subjects. Comparison of STR profiles, mitochondrial haplotypes, and haplogroups with data from Eurasian populations indicated affinities with Asian populations and suggested a relative specificity and continuity of part of the Yakut mitochondrial gene pool during the last five centuries. Moreover, our results did not support a Central Asian (with the exception of maternal lineage of West Eurasian origin) or Siberian origin of the maternal lineages of these ancient Yakut subjects, implying an ethnogenesis of the Yakut population probably more complex than previously proposed.  相似文献   

18.
The Hungarian language belongs to the Finno-Ugric branch of the Uralic family, but Hungarian speakers have been living in Central Europe for more than 1000 years, surrounded by speakers of unrelated Indo-European languages. In order to study the continuity in maternal lineage between ancient and modern Hungarian populations, polymorphisms in the HVSI and protein coding regions of mitochondrial DNA sequences of 27 ancient samples (10th-11th centuries), 101 modern Hungarian, and 76 modern Hungarian-speaking Sekler samples from Transylvania were analyzed. The data were compared with sequences derived from 57 European and Asian populations, including Finno-Ugric populations, and statistical analyses were performed to investigate their genetic relationships. Only 2 of 27 ancient Hungarian samples are unambiguously Asian: the rest belong to one of the western Eurasian haplogroups, but some Asian affinities, and the genetic effect of populations who came into contact with ancient Hungarians during their migrations are seen. Strong differences appear when the ancient Hungarian samples are analyzed according to apparent social status, as judged by grave goods. Commoners show a predominance of mtDNA haplotypes and haplogroups (H, R, T), common in west Eurasia, while high-status individuals, presumably conquering Hungarians, show a more heterogeneous haplogroup distribution, with haplogroups (N1a, X) which are present at very low frequencies in modern worldwide populations and are absent in recent Hungarian and Sekler populations. Modern Hungarian-speaking populations seem to be specifically European. Our findings demonstrate that significant genetic differences exist between the ancient and recent Hungarian-speaking populations, and no genetic continuity is seen.  相似文献   

19.
The mitochondrial DNA (mtDNA) of 98 Mansi, an ancient group (formerly known as "Vogul") of Uralic-speaking fishers and hunters on the eastern slope of the northern Ural Mountains, were analyzed for sequence variants by restriction fragment--length polymorphism analysis, control-region sequencing, and sequencing of additional informative sites in the coding region. Although 63.3% of the mtDNA detected in the Mansi falls into western Eurasian lineages (e.g., haplogroups UK, TJ, and HV), the remaining 36.7% encompass a subset of eastern Eurasian lineages (e.g., haplogroups A, C, D, F, G, and M). Among the western Eurasian lineages, subhaplogroup U4 was found at a remarkable frequency of 16.3%, along with lineages U5, U7, and J2. This suggests that the aboriginal populations residing immediately to the east of the Ural Mountains may encompass remnants of the early Upper Paleolithic expansion from the Middle East/southeastern Europe. The added presence of eastern Eurasian mtDNA lineages in the Mansi introduces the possibilities that proto-Eurasians encompassed a range of macrohaplogroup M and N lineages that subsequently became geographically distributed and that the Paleolithic expansion may have reached this part of Siberia before it split into western and eastern human groups.  相似文献   

20.
《Mammalian Biology》2014,79(5):287-296
The Eurasian beaver (Castor fiber) represents an uncommon example of an endangered species in which the restoration programs proved a spectacular success and led to enormous spatial and demographic expansion. Documented reintroduction of beavers in Poland has been conducted using animals of the eastern European origin, most likely derived from the eastern mtDNA lineage. However demographic and spatial expansion of beavers from Germany, which represent the western lineage, may have led to admixture of these two genetically distinct entities in Poland. We detected significant genetic differentiation between the populations from W and NE Poland both in mitochondrial DNA control region and microsatellites, but also substantial admixture including apparent first-generation migrants between regions. Our results indicate that beavers from the western mtDNA lineage have contributed considerably to the Polish population, particularly in W Poland. As there have been no adequately documented translocations of beavers from the western European populations to Poland, the observed situation appears to result from natural migration or range expansion from the west. In contrast to previous findings we detected a substantial diversity in mtDNA control region, which indicates that either the variation in relict populations has been underestimated, or that additional relict beaver populations survived at the end of the 19th century in Poland and Germany as indicated by considerable similarity of ancient and extant mtDNA haplotypes. The implications of our findings for beaver conservation and management are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号