首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
  总被引:11,自引:0,他引:11  
The rate-limiting step of cytokinin biosynthesis in Arabidopsis thaliana Heynh. is catalyzed by ATP/ADP isopentenyltransferases, A. thaliana IsoPentenyl Transferase (AtIPT)1, and AtIPT4, and by their homologs AtIPT3, AtIPT5, AtIPT6, AtIPT7, and AtIPT8. To understand the dynamics of cytokinins in plant development, we comprehensively analyzed the expression of isopentenyltransferase genes of Arabidopsis. Examination of their mRNA levels and the expression patterns of the beta-glucuronidase (GUS) gene fused to the regulatory sequence of each AtIPT gene revealed a specific expression pattern of each gene. The predominant expression patterns were as follows: AtIPT1::GUS, xylem precursor cell files in the root tip, leaf axils, ovules, and immature seeds; AtIPT3::GUS, phloem tissues; AtIPT4::GUS and AtIPT8::GUS, immature seeds with highest expression in the chalazal endosperm (CZE); AtIPT5::GUS, root primordia, columella root caps, upper part of young inflorescences, and fruit abscission zones; AtIPT7::GUS, endodermis of the root elongation zone, trichomes on young leaves, and some pollen tubes. AtIPT1, AtIPT3, AtIPT5, and AtIPT7 were downregulated by cytokinins within 4 h. AtIPT5 and AtIPT7 was upregulated by auxin within 4 h in roots. AtIPT3 was upregulated within 1 h after an application of nitrate to mineral-starved Arabidopsis plants. The upregulation by nitrate did not require de novo protein synthesis. We also examined the expression of two genes for tRNA isopentenyltransferases, AtIPT2 and AtIPT9, which can also be involved in cytokinin biosynthesis. They were expressed ubiquitously, with highest expression in proliferating tissues. These findings are discussed in relation to the role of cytokinins in plant development.  相似文献   

2.
  总被引:13,自引:0,他引:13  
Cytokinin levels in plant cells are dependent on cytokinin biosynthesis and/or uptake from extracellular sources, metabolic interconversions, inactivation and degradation. Cytokinin conversion to compounds differing in polarity seems to be decisive for their entrapment within the cell and intracellular compartmentation, which affects their metabolic stability. Increase in cytokinin levels, resulting either from their uptake or intracellular biosynthesis, may promote further autoinductive accumulation of cytokinins which may function in the induction of cytokinin-initiated physiological processes. Accumulated cytokinins are capable of inducing cytokinin oxidase which consequently decreases cytokinin levels. This seems to be the mechanism of re-establishment and maintenance of cytokinin homeostasis required for further development of physiological events induced by transient cytokinin accumulation. Auxin may influence cytokinin levels by down regulation of cytokinin biosynthesis and/or by promotion of cytokinin degradation. A model of the regulation of cytokinin levels in plant cells based on these phenomena is presented and its physiological role(s) is discussed.  相似文献   

3.
4.
细胞分裂素对拟南芥(Arabidopsis thaliana)花分生组织细胞的分裂和分化具有重要作用。本研究利用APETALA1(AP1)特异启动子在花分生组织和第1、2轮花器官中表达细胞分裂素合成酶(isopentyl transferase,IPT)基因IPT4,研究细胞分裂素对花和花器官发育的影响。在pAP1∷IPT4转基因植株中出现了花密集和花器官数目增多等现象。原位杂交和GUS组织染色结果发现,在pAP1∷IPT4转基因植株中,花分生组织特征决定基因LEAFY(LFY)与花器官特征决定基因AP1、PISTILLATA(PI)和AGAMOUS(AG)的表达量均有不同程度的提高。研究结果表明在拟南芥中表达pAP1∷IPT4影响其花和花器官的正常发育。  相似文献   

5.
    
Arabidopsis thaliana has three membrane‐located cytokinin receptors (AHK2, AHK3 and CRE1/AHK4), which are sensor histidine kinases containing a ligand‐binding CHASE domain. Despite their structural similarity the role of these receptors differs in planta. Here we have explored which parameters contribute to signal specification. In a bacterial assay, the CHASE domain of AHK2 has a similar ligand binding spectrum as CRE1/AHK4. It shows the highest affinity for isopentenyladenine (iP) and trans‐zeatin (tZ) with an apparent KD of 1.4 and 4.0 nm , respectively. Real‐time PCR analysis of cytokinin primary response genes in double mutants retaining only single receptors revealed that all receptors are activated in planta by cytokinin concentrations in the low nanomolar range. However, there are differences in sensitivity towards the principal cytokinins iP and tZ. The activation of the cytokinin‐sensitive PARR5:GUS reporter gene in three different double mutants shows specific, but also overlapping, spatial domains of activity, which were for all receptors predominantly in the shoot apical meristems and root cap columella. AHK2 and AHK3 signal specifically in leaf parenchyma cells, AHK3 in stomata cells, and CRE1/AHK4 in the root vasculature. Promoter‐swap experiments demonstrate that CRE1/AHK4 can functionally replace AHK2 but not AHK3. However, the cytoplasmic AHK3 histidine kinase (Hk) domain can be replaced by the CRE1/AHK4 Hk domain, which suggests that functionality is mediated in this case by the extracytosolic domain. Together, the data show that both differential gene expression and ligand preference contribute to specify the receptor activity.  相似文献   

6.
    
Meristem function is underpinned by numerous genes that affect hormone levels, ultimately controlling phyllotaxy, the transition to flowering and general growth properties. Class I KNOX genes are major contributors to this process, promoting cytokinin biosynthesis but repressing gibberellin production to condition a replication competent state. We identified a suppressor mutant of the KNOX1 mutant brevipedicellus (bp) that we termed flasher (fsh), which promotes stem and pedicel elongation, suppresses early senescence, and negatively affects reproductive development. Map‐based cloning and complementation tests revealed that fsh is due to an E40K change in the flavin monooxygenase GS‐OX5, a gene encoding a glucosinolate (GSL) modifying enzyme. In vitro enzymatic assays revealed that fsh poorly converts substrate to product, yet the levels of several GSLs are higher in the suppressor line, implicating FSH in feedback control of GSL flux. FSH is expressed predominantly in the vasculature in patterns that do not significantly overlap those of BP, implying a non‐cell autonomous mode of meristem control via one or more GSL metabolites. Hormone analyses revealed that cytokinin levels are low in bp, but fsh restores cytokinin levels to near normal by activating cytokinin biosynthesis genes. In addition, jasmonate levels in the fsh suppressor are significantly lower than in bp, which is likely due to elevated expression of JA inactivating genes. These observations suggest the involvement of the GSL pathway in generating one or more negative effectors of growth that influence inflorescence architecture and fecundity by altering the balance of hormonal regulators.  相似文献   

7.
Cytokinin regulation of a soybean pollen allergen gene   总被引:2,自引:0,他引:2  
Cytokinin treatment of suspension-cultured soybean cells stimulated the accumulation of an mRNA, called cim 1, by a factor of ca. 20 within 4 h. Induction of cim 1 mRNA accumulation occurred at benzyladenine concentrations as low as 10-8 M. Furthermore, cim 1 mRNA accumulation was stimulated in the absence of cytokinin by staurosporine (an inhibitor of protein kinases) and inhibited in the presence of cytokinin by okadaic acid (an inhibitor of protein phosphatases 1 and 2a), suggesting that cim 1 accumulation in response to cytokinin is dependent on cytokinin-induced dephosphorylation of one or more cellular proteins. The deduced amino acid sequence of the cim 1 protein product, derived from the complete nucleotide sequence of a cim 1 cDNA, was 40% identical to that of a perennial rye grass pollen allergen cDNA (Lol Pl). This sequence also indicated that the cim 1 protein product contains a putative signal peptide followed by predominantly hydrophilic residues, consistent with the hypothesis that it is exported to the apoplast.  相似文献   

8.
在植物的生长发育过程中,细胞分裂素在调节细胞分裂和组织发育中起着非常重要的作用.研究表明细胞分裂素的信号转导是一种双组分信号转导途径,在这个系统中,由3种蛋白组成,分别是组氨酸激酶、磷酸转移蛋白和反应调控因子.利用已经克隆的玉米和水稻细胞分裂素反应调节因子基因,进行BLAST分析从玉米全基因组中获得候选ZmRR类型基因.然后设计全长基因引物,通过Trizol法提取玉米叶片总RNA,利用RT-PCR技术克隆出全长候选基因.序列分析表明所扩增序列含有完整的编码框,共编码156个氨基酸残基.序列比对分析其与ZmRR1-10基因具有较高的同源性,并命名为ZmRR11,系统进化树分析证实其属于A类细胞分裂素调控因子,并对所有ZmRR类型基因进行motif分析,共发现37个保守的motif.该基因的克隆和进化分析对阐明玉米双元信号传导体系具有重要的意义.  相似文献   

9.
Cytokinins are essential hormones for the proper growth and development of plants. They exert their actions through the phosphorylation of two-component signaling factors. The two-component elements in cytokinin signaling display not only overlapping, but also specific functions throughout a life cycle. These elements regulate the development of shoots, roots, and inflorescence meristems inArabidopsis; shoot meristems in rice; and nodule formation in the lotus. They are also involved in interactions between plants and pathogens. In this review, we examine the mechanism for signaling events initiated by cytokinins inArabidopsis.  相似文献   

10.
Seeds and cytokinins   总被引:2,自引:0,他引:2  
  相似文献   

11.
Cytokinin dehydrogenase (CKX) is responsible for regulating the endogenous cytokinin content by oxidative removal of the side chain and seven distinct genes, AtCKX1 to AtCKX7, code for the enzyme in Arabidopsis thaliana. The recombinant enzyme AtCKX2 was produced in Saccharomyces cerevisiae after expressing the corresponding gene from a plasmid (pDR197) or following chromosomal integration, under either the constitutive promoter PMA1 or the inducible promoter GAL1. The recombinant protein was purified from yeast culture media using a sequence of chromatographic steps. The purified enzyme had a molecular mass of 61 kDa and a typical flavoprotein spectrum. The specific activity of the enzyme was 87.8 μkat g−1, with isopentenyladenine as a substrate and 2,3-dimethoxy-5-methyl-p-benzoquinone as an electron acceptor. The pH optimum lay between 7.0 and 8.0, depending on the electron acceptor used. AtCKX2 reacts both with isoprenoid and aromatic cytokinins, the activity with isoprenoid cytokinins being two to three orders of magnitude higher. AtCKX2 prefers p-quinones and the synthetic dye 2,6-dichlorophenol indophenol as electron acceptors, although low reactivity with oxygen can also be observed. This study presents the first purification and characterization of the enzyme from Arabidopsis thaliana.  相似文献   

12.
    
Active brassinosteroids (BRs), such as brassinolide (BL) and castasterone (CS), are growth-promoting plant hormones. An Arabidopsis cytochrome P450 monooxygenase (CYP734A1, formerly CYP72B1), encoded by the BAS1 gene, inactivates BRs and modulates photomorphogenesis. BAS1 was identified as the overexpressed gene responsible for a dominant, BR-deficient mutant, bas1-D. This mutant was isolated in an activation-tagged screen designed to identify redundant genes that might not be identified in classic loss-of-function screens. Here we report the isolation of a second activation-tagged mutant with a BR-deficient phenotype. The mutant phenotype is caused by the overexpression of SOB7 (CYP72C1), a homolog of BAS1. We generated single and double null-mutants of BAS1 and SOB7 to test the hypothesis that these two genes act redundantly to modulate photomorphogenesis. BAS1 and SOB7 act redundantly with respect to light promotion of cotyledon expansion, repression of hypocotyl elongation and flowering time in addition to other phenotypes not regulated by light. We also provide biochemical evidence to suggest that BAS1 and SOB7 act redundantly to reduce the level of active BRs, but have unique mechanisms. Overexpression of SOB7 results in a dramatic reduction in endogenous CS levels, and although single null-mutants of BAS1 and SOB7 have the same level of CS as the wild type, the double null-mutant has twice the amount. Application of BL to overexpression lines of BAS1 or SOB7 results in enhanced metabolism of BL, though only BAS1 overexpression lines confer enhanced conversion to 26-OHBL, suggesting that SOB7 and BAS1 convert BL and CS into unique products.  相似文献   

13.
There are indications that the cytokinin content in transgenic tissues expressing the cytokinin biosynthetic ipt gene is under metabolic control, which prevents the accumulation of cytokinins to lethal levels. The objective of this study was to investigate the relationships between the content of endogenous cytokinins and the activity of cytokinin oxidase (which is believed to be a copper-containing amine oxidase, EC 1.4.3.6.) in ipt transgenic tobacco callus. In addition, the effect of exogenously applied N-benzyladenine (BA) on this relationship was examined. Endogenous cytokinin concentrations were measured in callus of Nicotiana tabacum L. cv. Petit Havana SRI transformed with the ipt of Agrobacterium tumefaciens under the control of a light-inducible promoter and in non-transformed tissue using LC-tandem mass spectrometry. The activity of cytokinin oxidase was estimated by measuring the conversion of [2,8-3H]N6-(Δ2-isopentenyl)adenine to [3H]adenine by enzyme preparations in vitro. The 14-day-old ipt-transformed callus contained a 25-fold higher amount of cytokinins as compared to the non-transformed tissue. Mainly zeatin- and dihydrozeatin-types of cytokinins (free bases, ribosides, nucleotides and O-glucosides) accumulated in the ipt transgenic tissue. The cytokinin pool of both ipt-transformed and non-transformed tissues consisted predominantly of cytokinins that are either resistant to cytokinin oxidase attack (nucleotides and O-glucosides of cytokinins and cytokinins bearing N6-saturated side chain) or have a low affinity for the enzyme (zeatin and its riboside). The former represented 71.6 and 74.8% and the latter 27.7 and 24.4% of the pool of endogenous cytokinins in ipt-transformed and non-transformed tissues, respectively. Enzyme preparations from ipt-transformed tissue exhibited 1.5-fold higher cytokinin oxidase activity compared with that observed in control tissues. Application of exogenous BA affected the total levels of cytokinins of the two tissue lines in different ways. The cytokinin content increased by 1.7- and 1.5-fold in ipt-transformed tissues 6 and 12 h after BA application, respectively, while it declined in the non-transformed control by 1.6- to 2.0-fold between 3 and 12 h after BA application. The increase in cytokinin content in the ipt callus is due to an increase of zeatin- and dihydrozeatin-type cytokinins (nucleotides, ribosides and free bases) leading to an enhanced accumulation of O-glucosides after 12 h. Following BA treatment, the cytokinin oxidase activity increased up to 1.8-fold in ipt-transformed and 1.6-fold in non-transformed tissues. The levels of isopentenyl-type cytokinins were near the detection limit; however, the enhancement of cytokinin oxidase activity after BA treatment in both tissue lines was correlated with the content of preferred substrate of the enzyme, N6-(Δ2-isopentenyl)adenosine.  相似文献   

14.
Molecular genetics of auxin and cytokinin   总被引:9,自引:0,他引:9  
  相似文献   

15.
    
O6-Substituted guanine and hypoxanthine derivatives were prepared and tested for their cytokinin activity by the tobacco callus, radish cotyledons and lettuce seed bioassay systems. The results indicated that some derivatives of both types possess cytokinin activity.  相似文献   

16.
  总被引:1,自引:0,他引:1  
Ubiquitin C-terminal hydrolases (UCHs) are a subset of de-ubiquitinating proteases that release covalently linked ubiquitin (Ub), and as such play essential roles in recycling Ub and reversing the action of Ub conjugation. We show here that two related Arabidopsis UCHs, UCH1, and UCH2, are important for shoot development. The UCH1 and 2 genes are ubiquitously expressed, with the corresponding proteins present in both the cytoplasm and nucleus. Unlike their animal and fungal counterparts, we found no evidence that the Arabidopsis UCH1 and 2 proteins stably associate with the 26S proteasome. Altering the levels of UCH1 and 2 has substantial effects on Arabidopsis shoot development, especially with respect to inflorescence architecture, with over-expression and double mutants enhancing and suppressing the outgrowth of cauline branches, respectively. Neither UCH1-over-expressing nor uch1-1 uch2-1 plants have detectably altered sensitivity to cytokinins or auxins individually, but exhibit an altered sensitivity to the ratio of the two hormones. UCH1-over-expressing plants show dramatically enhanced phenotypes when combined with auxin-insensitive mutants axr1-3 and axr2-1, suggesting that one or more aspects of auxin signaling are affected by this enzyme pair. Previous studies revealed that the ubiquitination and degradation of the AUX/IAA family of repressors is a key step in auxin signaling. Here, we show that turnover of a reporter fused to a representative AUX/IAA protein AXR3 is faster in the uch1-1 uch2-1 double mutant but slower in the UCH1 over-expression backgrounds. Taken together, our results indicate that de-ubiquitination helps to modify plant shoot architecture, possibly via its ability to directly or indirectly protect upstream target proteins involved in auxin/cytokinin signaling from Ub-mediated degradation.  相似文献   

17.
  总被引:1,自引:0,他引:1  
We have determined by an immunological method the endogenous levels of three cytokinins: dihydrozeatin riboside (DHZR), transzeatin riboside (tZR) and isope-ntenyladenosine (IPA) in watermelon (Citrullus vulgaris Schrad., cv. Fairfax) cotyledons that were either attached to the seedling or excised from the seed after imbibition and then grown on water. Both seedlings and cotyledons were grown either for 5 days in continuous light or for 3 days in the dark and 2 days in light. Our aim was to verify whether endogenous cytokinin levels are lower in excised than in attached cotyledons as could be expected since excised cotyledons are much more sensitive to exogenous cytokinin application. The levels of the three cytokinins were very low immediately after imbibition, but gradually increased during the following days. They were higher in excised cotyledons after 5 days of culture in the dark than in cotyledons of the same age that had developed on the seedling. Dihydrozeatin riboside was by far the most abundant of the three cytokinins in cotyledons as well as in the hypocotyl and the root.
Irradiation reduced the level of DHZR, negating the concept that light promotes cotyledon development by increasing endogenous cytokinins. Transzeatin riboside when supplied exogenously, stimulated cotyledon development at a lower concentration than the other two cytokinins. Exogenous supply of ben-zyladenine (BA) induced a strong increase in endogenous tZR already after 24 h.  相似文献   

18.
19.
宫立国  邱广蓉  邱广斌  贺光  孙开来 《遗传》2003,25(5):533-537
本文首次较为完整地报道了藏汉通婚子代群体的14项肤纹参数(其中藏父汉思及汉父藏母各100例),并将这些肤纹参数分别与其藏汉父母样本的有关肤纹参数进行比较,再与1000例藏族及1040例汉族两个大样本的有关肤纹参数进行比较。结果表明:藏汉后代的肤纹特征介于藏族和汉族之间,提示肤纹参数的多因子遗传本质。  相似文献   

20.
    
The plant hormones cytokinins play a central role in regulating cell division and developmental events. Cytokinin oxidase regulates the levels of these plant hormones by catalyzing their irreversible oxidation, which contributes to the regulation of various morpho‐physiological processes controlled by cytokinins. In this study, the crystallization and preliminary X‐ray diffraction analysis of the flax cytokinin oxidase LuCKX1.1 are reported. Plate‐like crystals of LuCKX1.1 were obtained using PEG 3350 as a precipitant and diffracted X‐rays to 1.78 Å resolution. The protein crystals have the symmetry of space group C2 and are most likely to contain two molecules per asymmetric unit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号