首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plasma membrane vesicles were isolated from either cystic fibrosis (CF) or non-CF cultured fibroblasts derived from skin biopsies of either foetus, child or adolescent human donors. The total membrane yield was essentially identical for either CF or control membranes. By using a rapid filtration technique, 36Cl uptake by these vesicles was quantitated in the absence and presence of alkali-metal ion-, electrical- and/or pH gradients. In the absence of a pH gradient (pHout = pHin = 7.5), Cl uptake took place downhill in both cases. Either cis K+, cis Na+ or an equimolar mixture of cis Na+ plus K+ caused Cl uptake activation. In the presence of an alkaline-inside pH gradient (pHout/pHin = 5.5/7.5), Cl uptake exhibited an apparent overshoot independently of the presence or absence of any metal-ion gradient. The observed potassium-, sodium- and proton-dependent Cl influx rates were all unaffected by voltage clamping, indicating the existence in these vesicles of electroneutral symport systems of the type Cl-/H+, Cl-/K+ and/or Cl-/Na+; but not 2 Cl-/Na+/K+. In the presence of an inward-directed K+ gradient, valinomycin further increased Cl uptake, both in the presence and in the absence of a pH gradient, indicating the presence of a rheogenic Cl uniport. In absolute quantitative terms, the two different modes (rheogenic and electroneutral) of Cl transport evinced in these vesicles were about 45% lower in CF than in control skin fibroblasts. However, qualitatively, there was no difference between normal and CF cells. The evidence obtained indicates that the CF defect, which is expressed in fibroblast plasma membranes, does not affect specifically either the rheogenic or the electroneutral Cl transport systems. Rather, the CF cells appear to give a smaller yield of closed, functional vesicles, reflected by a significantly smaller apparent intravesicular volume. Because it also affects the transport of D-glucose and L-alanine, this anomaly could be the consequence of a generalized membrane defect characterizing CF fibroblasts.  相似文献   

2.
To investigate the inhibitory effect of trans potassium on the Cl-/H+ symporter activity of brush-border membrane vesicles from guinea pig ileum, we measured both 36Cl uptake and, by the pyranine fluorescence method, proton fluxes, in the presence of appropriate H+ and K+ gradients. In the absence of valinomycin, a time-dependent inhibitory effect of chloride uptake by trans K+ was demonstrated. This inhibition was independent of the presence or absence of any K+ gradient. Electrical effects cannot be involved to explain these inhibitions because the intrinsic permeability of these vesicles to Cl- and K+ is negligibly small. Rather, our results show that, in the absence of valinomycin, the inhibitory effect of intravesicular K+ involves an acceleration of the rate of dissipation of the proton gradient through an electroneutral exchange of trans K+ for cis H+, catalyzed by the K+/H+ antiporter also present in these membranes. Valinomycin can further accelerate the rate of pH gradient dissipation by facilitating an electrically-coupled exchange between K+ and H+. To evaluate the apparent rate of pH-dissipating, downhill proton influx, we measured chloride uptake by vesicles preincubated in the presence of alkaline-inside pH gradients (pHout/pHin = 5.0/7.5), charged or not with K+. In the absence of intravesicular K+, proton influx exhibited monoexponential kinetics with a time constant k = 11 s-1. Presence of 100 mM K+ within the vesicles significantly increased the rate of pH gradient dissipation which, furthermore, became bi-exponential and revealed the appearance of an additional, faster proton influx component with k = 71 s-1. This new component we interpret as representing the sum of the electroneutral and the electrically-coupled exchange of trans K+ for cis H+, mentioned above. Finally, by using the pH-sensitive fluorophore, pyranine, we demonstrate that, independent of the absence or presence of a pH gradient, either vesicle acidification or alkalinisation can be generated by adding, respectively, Cl- or K+ to the extravesicular medium. Such results confirm the independent existence of both Cl-/H+ symporter and K+/H+ antiporter activities in our vesicle preparations, the relative activity of the former being larger under the conditions of the present experiments. The possible interplay of these two proton-transfer mechanisms in the regulation of the intracellular pH is discussed.  相似文献   

3.
Na+/H+ antiport was studied in alkaliphilic Bacillus sp. strain C-125, its alkali-sensitive mutant 38154, and a transformant (pALK2) with recovered alkaliphily. The transformed was able to maintain an intracellular pH (pHin) that was lower than that of external milieu and contained an electrogenic Na+/H+ antiporter driven only by delta psi (membrane potential, interior negative). The activity of this delta psi-dependent Na+/H+ antiporter was highly dependent on pHin, increasing with increasing pHin, and was found only in cells grown at alkaline pH. On the other hand, the alkali-sensitive mutant, which had lost the ability to grow above pH 9.5, lacked the delta psi-dependent Na+/H+ antiporter and showed defective regulation of pHin at the alkaline pH range. However, this mutant, like the parent strain, still required sodium ions for growth and for an amino acid transport system. Moreover, another Na+/H+ antiporter, driven by the imposed delta pH (pHin > extracellular pHout), was active in this mutant strain, showing that the previously reported delta pH-dependent antiport activity is probably separate from delta psi-dependent antiporter activity. The delta pH-dependent Na+/H+ antiporter was found in cells grown at either pH 7 or pH 9. This latter antiporter was reconstituted into liposomes by using a dilution method. When a transmembrane pH gradient was applied, downhill sodium efflux was accelerated, showing that the antiporter can be reconstituted into liposomes and still retain its activity.  相似文献   

4.
Using yeast species Saccharomyces cerevisiae K, Rhodotorula gracilis, and Lodderomyces elongisporus, their intracellular pH value and their membrane potential were estimated at pH 3.5-7.5 in four different buffers: triethanolamine--phthalic acid (TEPA), citric acid--trisodium citrate (CASC), acetic acid--NaOH (AANA) and MES. The pHin followed the same pattern in all buffers, with rather constant values below pHout = 5 and again above pHout = 7. The membrane potential decreased regularly with decreasing pHout. The apparent protonmotive force increased with decreasing pHout. It is seen that for all the yeast species pHin and pHout are the same between 5.0 and 6.0 which is thus the pH range of choice for various transport measurements. Of the four buffers, TEPA gives smoothest pHin dependences on pHout and, being metabolically inert, is the one to be recommended.  相似文献   

5.
The mechanism for HCO3-(-)independent proton permeability in microvillus membrane vesicles (MVV) isolated from human placenta was examined by using the entrapped pH indicator 6-carboxyfluorescein (6CF). Proton fluxes (JH) across MVV were determined in response to induced pH and anion gradients from the time course of 6CF fluorescence, the MVV buffer capacity, and the 6CF vs. pH calibration. In the absence of anions, JH was 12 +/- 2 nequiv s-1 (mg of protein)-1 (pHin 7.4, pHout 6.0, MVV voltage-clamped with K+/valinomycin, 23 degrees C), corresponding to a proton permeability coefficient of 0.02 cm/s, with an activation energy of 9.1 +/- 0.3 kcal/mol. JH was inhibited 20% by dihydro-4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (H2DIDS) with KI = 8 microM [( Cl-]out = 0 mM). For a 0.5-unit pH gradient JH increased from 1.5 to 4.6 nequiv s-1 (mg of protein)-1 as the internal MVV pH was increased (5.5-7.5). External Cl-, Br-, and I- (but not SO4(2-) and PO4-) increased JH 1.3-2.5-fold for both inwardly and outwardly directed pH gradients with KD = 1.0 +/- 0.4 mM (Br-) and greater than 100 mM (Cl-). This increase was blocked by 100 microM H2DIDS but not by amiloride or furosemide. Internal Cl- did not alter JH induced by pH gradients nor were proton fluxes induced by anion gradients in the absence of a pH gradient. Experiments in which JH was driven by membrane potentials (induced by valinomycin and K+ gradients) indicated that proton transport was voltage-sensitive. These experiments demonstrate a stilbene-sensitive electrogenic proton transport mechanism in MVV that is regulated allosterically by anions at an external binding site.  相似文献   

6.
The influenza A virus-associated M2 ion channel is generally believed to function during uncoating of virions in infected cells. On endocytosis of a virion into the lumen of endosomes, the M2 ion channel is thought to cause acidification of the virion interior. In addition, the influenza virus M2 ion channel is thought to function in the exocytic pathway by equilibrating the pH gradient between the acidic lumen of the trans-Golgi network and the neutral cytoplasm. A necessary test of the proposed roles of the influenza virus M2 ion channel in the virus life cycle is to show directly that the M2 ion channel conducts protons. We have measured the ionic selectivity and activation of three subtypes (Udorn, Weybridge, and Rostock) of the M2 ion channel in oocytes of Xenopus laevis by measurement of 1) the intracellular pH (pHin) of voltage-clamped oocytes, 2) the current-voltage relationship in solutions of various pH and ionic composition, and 3) the flux of 86Rb. We took advantage of the low pHin achieved during incubation in low pH medium to study the effects of low pHin on M2 activation. Oocytes expressing each of the three subtypes of the M2 protein a) underwent a slow acidification when incubated in medium of low pH (acidification was blocked by the M2 ion channel inhibitor, amantadine); b) had current-voltage relationships that shifted to more positive values and had greater conductance when the pHout was lowered (this relationship was modified when Na- was replaced by NH4+ or Li+); c) had an amantadine-sensitive influx of Rb+. The effects on the current-voltage relationship of reduced pHin were opposed to the increased conductance found with reduced pHout. We interpret these results to indicate that the M2 ion channel is capable of conducting H+ and that other ions may also be conducted. Moreover, the channel conductance is reduced by decreased pHin. These findings are consistent with the proposed roles of the M2 protein in the life cycle of influenza A virus.  相似文献   

7.
Organometals, including organomercurials, are capable of mediating Cl-/OH- exchange across lipid membranes by forming neutral ion pairs. In this study, the ability of inorganic metals to catalyze Cl-/OH- exchange was examined. In the presence of an inwardly directed chloride gradient, HgCl2 at concentrations as low as 30 nM resulted in quenching of acridine orange fluorescence in liposomes, indicating liposomal acidification. In the presence of the reducing agent, ascorbate, CuSO4 at concentrations as low as 0.6 microM also mediated chloride-dependent liposomal acidification. Copper in the absence of ascorbate, iron (with or without ascorbate), cobalt, cadmium, zinc, nickel, and lead were without an effect. 36Cl efflux from rabbit renal brush border membrane vesicles was also markedly stimulated by micromolar concentrations of mercury or copper plus ascorbate. Vesicle integrity was not altered by the concentrations of mercury or copper employed in these studies. In the absence of ascorbate, CuCl stimulated chloride efflux only under anaerobic conditions, confirming that it is the reduced form of copper (Cu+) that mediates chloride transport across the membrane. In the presence of mercury or reduced copper, an inside alkaline pH gradient stimulated the uphill accumulation of 36Cl and 82Br, respectively, confirming Cl-/OH- exchange. Studies in liposomes and brush border membranes demonstrate that this is an electroneutral process. These results show that Hg2+ and Cu+ are capable of acting as ionophores, mediating electroneutral Cl-/OH- exchange in liposomes and brush border membrane vesicles. This effect could contribute to the toxicity of these two metals.  相似文献   

8.
The aim of this study was to investigate the effect of NH4+ on the intracellular pH in TALH SVE.1 cells derived from the medullary thick ascending limb of Henle's loop (TALH) of rabbit kidney. These cells are specialized to perform NH4+ transport in vivo. Intracellular pH was monitored by 31P-NMR. The steady state intracellular pH (pHi) under standard conditions was 7.24 +/- 0.04 (n = 46). Exposure to NH4Cl resulted in an initial intracellular acidification of the TALH SVE.1 cells, followed by a recovery to the initial steady-state pHi value. The NH4(+)-induced acidification followed saturation kinetics up to 20 mM NH4Cl (delta pHmax = 0.2 pHunits). Half-maximal acidification was observed at 0.6 mmol/l. The intracellular acidification due to NH4Cl exposure was completely inhibited by 0.1 mM of the diuretic bumetanide, an inhibitor of the Na+/K+/2Cl- cotransporter. The effect of bumetanide was dose-dependent and a Ki value of 8.10(-7) M was calculated. NH4+ influx via K+ channels or the (Na+ + K+)ATPase could not be detected. pHi recovery to the initial value was caused mainly by amiloride-sensitive Na+/H+ exchange and to a lesser extent by an amiloride-insensitive system, which was not studied in detail. In the presence of bumetanide, pulses of high concentrations of NH4Cl induced small intracellular alkalinizations. From these experiments, an intrinsic buffer capacity (beta i) in TALH SVE.1 cells of 26 +/- 3 mM x pH-1 (pHi = 7.65) was determined. It could also be shown that the TALH SVE.1 cells exhibit maximal 'functional buffer capability' between pHout 6.9 and 7.3. Within these limits the cells can maintain their intracellular pH at a constant level, even though the extracellular pH changes. These data strongly suggest that the Na+/K+/2Cl- cotransporter is the main site of NH4+ entry into rabbit thick ascending limb cells in culture. A high intracellular buffer capacity and potent acid extrusion mechanism cooperate in counteracting the intracellular acidification caused by NH4+ influx into the cell.  相似文献   

9.
Membrane transport pathways for transplacental transfer of CO2/HCO3 were investigated by assessing the possible presence of a Cl/HCO3 exchange mechanism in the maternal-facing membrane of human placental epithelial cells. Cl/HCO3 exchange was tested for in preparations of purified brush border membrane vesicles by 36Cl tracer flux measurements and determinations of acridine orange fluorescence changes. Under 10% CO2/90% N2 the imposition of an outwardly directed HCO3- concentration gradient (pHo 6/pHi 7.5) stimulated Cl- uptake to levels approximately 2-fold greater than observed at equilibrium. Maneuvers designed to offset the development of ion gradient-induced diffusion potentials (valinomycin, Ko = Ki) significantly reduced HCO3- gradient-driven Cl- uptake but concentrative accumulation of Cl- persisted. Early time point determinations performed in the presumed absence of membrane potential suggests the reduced level of HCO3- gradient-driven Cl- uptake resulted from a more rapid dissipation of the HCO3- concentration gradient. Concentrative accumulation of Cl- was not observed in the presence of a pH gradient alone under 100% N2, suggesting a preference of HCO3- over OH- as a substrate for transport. As monitored by acridine orange fluorescence the Cl- gradient-dependent collapse of an imposed pH gradient (pHo 8.5/pHi 6) was accelerated in the presence of CO2/HCO3 when compared with its absence, indicating coupling of HCO3- influx to Cl- efflux. Increasing concentrations of the anion exchange inhibitor 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid were observed to cause a stepwise reduction in HCO3- gradient-driven Cl- uptake (I50 approximately 25 microM) further suggesting the presence of a Cl/HCO3 exchange mechanism. The results of this study provide evidence for a 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid-sensitive Cl/HCO3 exchange mechanism in the maternal-facing membrane of human placental epithelial cells. The identification of an ion-coupled HCO3- transport pathway in placental epithelia may suggest functional roles in mediating transplacental transfer of CO2 as well as maintenance of fetal acid/base balance.  相似文献   

10.
Na+, Li+ and Cl− transport by brush border membranes from rabbit jejunum   总被引:1,自引:0,他引:1  
Na+, Li+, K+, Rb+, Br-, Cl- and SO4(2-) transport were studied in brush border membrane vesicles isolated from rabbit jejunum. Li+ uptakes were measured by flameless atomic absorption spectroscopy, and all others were measured using isotopic flux and liquid scintillation counting. All uptakes were performed with a rapid filtration procedure. A method is presented for separating various components of ion uptake: 1) passive diffusion, 2) mediated transport and 3) binding. It was concluded that a Na+/H+ exchange mechanism exists in the jejunal brush border. The exchanger was inhibited with 300 microM amiloride or harmaline. The kinetic parameters for sodium transport by this mechanism depend on the pH of the intravesicular solution. The application of a pH gradient (pHin = 5.5, pHout = 7.5) causes an increase in Jmax (50 to 125 pmol/mg protein . sec) with no change in Kt (congruent to 4.5 nM). Competition experiments show that other monovalent cations, e.g. Li+ and NH4+, share the Na+/H+ exchanger. This was confirmed with direct measurements of Li+ uptakes. Saturable uptake mechanisms were also observed for K+, Rb+ and SO4(2-), but not for Br-. The Jmax for K+ and Rb+ are similar to the Jmax for Na+, suggesting that they may share a transporter. The SO4(2-) system appears to be a Na+/SO4(2-) cotransport system. There does not appear to be either a Cl-/OH- transport mechanism of the type observed in ileum or a specific Na+/Cl- symporter.  相似文献   

11.
In order to characterize the driving forces for the concentrative uptake of unconjugated bile acids by the hepatocyte, the effects of pH gradients on the uptake of [3H]cholate by rat basolateral liver plasma membrane vesicles were studied. In the presence of an outwardly directed hydroxyl gradient (pH 6.0 outside and pH 7.5 inside the vesicle), cholate uptake was markedly stimulated and the bile acid was transiently accumulated at a concentration 1.5- to 2-fold higher than at equilibrium ("overshoot"). In the absence of a pH gradient (pH 6.0 or 7.5 both inside and outside the vesicle), uptake was relatively slower and no overshoot was seen. Reductions in the magnitude of the transmembrane pH gradient were associated with slower initial uptake rates and smaller overshoots. Cholate uptake under pH gradient conditions was inhibited by furosemide and bumetanide but not by 4, 4'-diisothiocyano-2,2'-disulfonic stilbene (SITS), 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (DIDS), or probenecid. In the absence of a pH gradient, an inside-positive valinomycin-induced K+ diffusion potential caused a slight increase in cholate uptake which was insensitive to furosemide. Moreover, in the presence of an outwardly directed hydroxyl gradient, uphill cholate transport was observed even under voltage clamped conditions. These findings suggest that pH gradient-driven cholate uptake was not due to associated electrical potentials. Despite an identical pKa to that of cholate, an outwardly directed hydroxyl gradient did not drive uphill transport of three other unconjugated bile acids (deoxycholate, chenodeoxycholate, ursodeoxycholate), suggesting that a non-ionic diffusion mechanism cannot account for uphill cholate transport. In canalicular vesicles, although cholate uptake was relatively faster in the presence of a pH gradient than in the absence of a gradient, peak uptake was only slightly above that found at equilibrium under voltage clamped conditions. These findings suggest a specific carrier on the basolateral membrane of the hepatocyte which mediates hydroxyl/cholate exchange (or H+-cholate co-transport). A model for uphill cholate transport is discussed in which the Na+ pump would ultimately drive Na+/H+ exchange which in turn would drive hydroxyl/cholate exchange.  相似文献   

12.
Sodium ions as substitutes for protons in the gastric H,K-ATPase   总被引:2,自引:0,他引:2  
In view of the striking homology among various ion-translocating ATPases including Na,K-ATPase, Ca-ATPase, and H,K-ATPase, and the recent evidence that protons can replace cytoplasmic sodium as well as potassium in the reaction mechanism of the Na,K-ATPase (Polvani, C., and Blostein, R. (1988) J. Biol. Chem. 263, 16757-16763), we studied the role of sodium as a substitute for protons in the H,K-ATPase reaction. Using hog gastric H,K-ATPase-rich inside-out membrane vesicles we observed 22Na+ influx which was stimulated by intravesicular potassium ions (K+i) at pH 8.5 but not at pH 7.1. This sodium influx was observed in medium containing ATP and was inhibited by vanadate and SCH28080, a selective inhibitor of the gastric H,K-ATPase. At least 2-fold accumulation of sodium was observed at pH 8.5. Experiments aimed to determine the sidedness of the alkaline pH requirement for K+i-dependent sodium influx showed that K+i-activated sodium influx depends on pHout and is unaffected by changes in pHin. These results support the conclusion that sodium ions substitute for protons in the H,K-ATPase reaction mechanism and provide evidence for a similarity in ion selectivity and/or binding domains of the Na,K-ATPase and the gastric H,K-ATPase enzymes.  相似文献   

13.
Cl(-)-HCO3- exchange in rat renal basolateral membrane vesicles   总被引:1,自引:0,他引:1  
Pathways for HCO3- transport across the basolateral membrane were investigated using membrane vesicles isolated from rat renal cortex. The presence of Cl(-)-HCO3- exchange was assessed directly by 36Cl- tracer flux measurements and indirectly by determinations of acridine orange absorbance changes. Under 10% CO2/90% N2 the imposition of an outwardly directed HCO3- concentration gradient (pHo 6/pHi 7.5) stimulated Cl- uptake compared to Cl- uptake under 100% N2 in the presence of a pH gradient alone. Mediated exchange of Cl- for HCO3- was suggested by the HCO3- gradient-induced concentrative accumulation of intravesicular Cl-. Maneuvers designed to offset the development of ion-gradient-induced diffusion potentials had no significant effect on the magnitude of HCO3- gradient-driven Cl- uptake further suggesting chemical as opposed to electrical Cl(-)-HCO3- exchange coupling. Although basolateral membrane vesicle Cl- uptake was observed to be voltage sensitive, the DIDS insensitivity of the Cl- conductive pathway served to distinguish this mode of Cl- translocation from HCO3- gradient-driven Cl- uptake. No evidence for K+/Cl- cotransport was obtained. As determined by acridine orange absorbance measurements in the presence of an imposed pH gradient (pHo 7.5/pHi 6), a HCO3- dependent increase in the rate of intravesicular alkalinization was observed in response to an outwardly directed Cl- concentration gradient. The basolateral membrane vesicle origin of the observed Cl(-)-HCO3- exchange activity was verified by experiments performed with purified brush-border membrane vesicles. In contrast to our previous observations of the effect of Cl- on HCO3- gradient-driven Na+ uptake suggesting a basolateral membrane Na+-HCO3- for Cl- exchange mechanism, no effect of Na+ on Cl-HCO3- exchange was observed in the present study.  相似文献   

14.
The cytoplasmic pH (pHin) of Enterococcus hirae growing at pH 9.2 was maintained at about 8.1. Membrane-permeating amines such as ammonia alkalinized the pHin from 8.1 to 9.0 at a high concentration and induced K+ extrusion. The pHin alkalinization was transient; the pHin fell from 9.0 to the original value of pH 8.1, at which point K+ extrusion ceased, and remained constant. Cells accumulated ammonium ion to an extent stoichiometrically equivalent to the K+ loss. This bacterium continued to grow well under this condition. These results suggest that the pHin-responsive primary K+/H+ antiport system (Y. Kakinuma, and K. Igarashi, J. Biol. Chem. 263:14166-14170, 1988) works for the pHin regulation of this organism growing at a high pH.  相似文献   

15.
Weak acids are efficient blockers of gap-junctional conductance. It is generally accepted that intracellular acidification produced by weak acids fully accounts for the gap-junctional uncoupling. Protonation of the cytoplasmic portions of the channel-forming protein connexin is thought to lead to the conformational changes switching the channel from the open into the closed state. If this is the only mechanism of the weak-acid induced uncoupling, then the correlation between junctional conductance (Gj) and intracellular pH (pHin) should not depend on the means of intracellular acidification. We compared the responses of junctional conductance in BHK cells measured in double whole-cell experiments to the applied transmembrane concentration gradients of bicarbonate or ammonium. These treatments were to lower pHin in a predictable way according to the equations: pHin = pHout -lg[[HCO3]out/HCO3-]in) or pHin = PHout - lg[[NH4+]in[NH4+out), respectively. We found that the behavior of Gj depended on the substance used. At a 500-fold bicarbonate gradient (calculated pHin approximately 4.8) the cells remained coupled, while a 100- or 10-fold gradient of ammonium imposing pHin approximately 6.1 produced fast uncoupling. The responses of junctional conductance were often accompanied or preceded by changes of non-junctional membrane conductance. We suggest that the mechanisms of the weak acid/base-induced channel gating may contain an additional "lipophilic" component due to the presence of the non-dissociated form of the acid/base in cell membrane.  相似文献   

16.
Sodium-linked and sodium-independent HCO3-/Cl- antiport was measured under different conditions in a number of cell lines. Transport of HCO3- was estimated from its effect on intracellular pH (pHi) measured with the fluorescent probe 2',7'-bis(carboxyethyl)-5,6-carboxyfluorescein. The associated ion fluxes were estimated from the transport of 36Cl- and 22Na+. Na+-dependent and Na+-independent HCO3-/Cl- antiport were found in many, but not in all cell lines tested. The Na+-independent HCO3-/Cl- antiport was found to be highly pHi-dependent in a number of cell lines, whereas in others this was not the case. Some cell lines were found to have both Na+-dependent and Na+-independent HCO3-/Cl- antiport, whereas in others we could detect only one of these mechanisms. Na+/H+ antiport, which is quantitatively the most important H+-extruding mechanism, was found in all cell lines tested, but the activity varied strongly. Possible reasons for the qualitative and quantitative differences in antiport activity are discussed.  相似文献   

17.
G Krishnamoorthy 《Biochemistry》1986,25(21):6666-6671
Application of a temperature jump (2.5 degrees C) to a suspension of liposomes, having phosphate (delta pK/delta T approximately 0.005) as the internal buffer and tris(hydroxymethyl)aminomethane (delta pK/delta T approximately 0.031) as the external buffer, created a delta pH (pHin - pHout) of positive sign in ca. 5 microseconds. Decay of this delta pH was monitored by using the fluorescent pH indicator 8-hydroxy-1,3,6-pyrenetrisulfonic acid entrapped inside the liposome. This technique is useful to study transmembrane proton movement in the time range 5 microseconds-10 s at physiological pH values. The kinetics of proton transport aided by ion carriers such as nigericin, monensin, carbonyl cyanide m-chlorophenylhydrazone (CCCP), and valinomycin were studied by our method. The electrogenic nature of transport by CCCP and valinomycin and electroneutral ion transport by nigericin and monensin were shown. From the kinetics of proton transport aided by gramicidin, the time-averaged single-channel conductance of gramicidin channels was estimated to be (2.1 +/- 0.5) X 10(-16) S for H+ at pH 7.5.  相似文献   

18.
Proton motive force and Na+/H+ antiport in a moderate halophile.   总被引:4,自引:3,他引:1       下载免费PDF全文
The influence of pH on the proton motive force of Vibrio costicola was determined by measuring the distributions of triphenylmethylphosphonium cation (membrane potential, delta psi) and either dimethyloxazolidinedione or methylamine (osmotic component, delta pH). As the pH of the medium was adjusted from 5.7 to 9.0, the proton motive force steadily decreased from about 170 to 100 mV. This decline occurred, despite a large increase in the membrane potential to its maximum value at pH 9.0, because of the loss of the pH gradient (inside alkaline). The cytoplasm and medium were of equal pH at 7.5; membrane permeability properties were lost at the pH extremes of 5.0 and 9.5. Protonophores and monensin prevented the net efflux of protons normally found when an oxygen pulse was given to an anaerobic cell suspension. A Na+/H+ antiport activity was measured for both Na+ influx and efflux and was shown to be dissipated by protonophores and monensin. These results strongly favor the concept that respiratory energy is used for proton efflux and that the resulting proton motive force may be converted to a sodium motive force through Na+/H+ antiport (driven by delta psi). A role for antiport activity in pH regulation of the cytosol can also explain the broad pH range for optimal growth, extending to the alkaline extreme of pH 9.0.  相似文献   

19.
Recent studies suggest that the major pathway for exit of HCO3- across the basolateral membrane of the proximal tubule cell is electrogenic Na+/HCO3- co-transport. We therefore evaluated the possible presence of Na+/HCO3- co-transport in basolateral membrane vesicles isolated from the rabbit renal cortex. Imposing an inward HCO3- gradient induced the transient uphill accumulation of Na+, and imposing an outward Na+ gradient caused HCO3- -dependent generation of an inside-acid pH gradient as monitored by quenching of acridine orange fluorescence, findings consistent with the presence of Na+/HCO3- co-transport. In the absence of other driving forces, generating an inside-positive membrane potential by imposing an inward K+ gradient in the presence of valinomycin caused net Na+ uptake via a HCO3- -dependent pathway, indicating that Na+/HCO3- co-transport is electrogenic and associated with a flow of negative charge. Imposing transmembrane Cl- gradients did not appreciably affect HCO3- gradient-stimulated Na+ influx, suggesting that Na+/HCO3- co-transport is not Cl- -dependent. The rate of HCO3- gradient-stimulated Na+ influx was a simple, saturable function of the Na+ concentration (Km = 9.7 mM, Vmax = 160 nmol/min/mg of protein), was inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (I50 = 100 microM), but was inhibited less than 10% by up to 1 mM amiloride. We could not demonstrate a HCO3- -dependent or 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid-sensitive component of Na+ influx in microvillus membrane vesicles. This study thus indicates the presence of a transport system mediating electrogenic Na+/HCO3- co-transport in basolateral, but not luminal, membrane vesicles isolated from the rabbit renal cortex. Analogous to the use of renal microvillus membrane vesicles to study Na+/H+ exchange, renal basolateral membrane vesicles may be a useful model system for examining the kinetics and possible regulation of Na+/HCO3- co-transport.  相似文献   

20.
The effects of the Na+ gradient and pH on phosphate uptake were studied in brush-border membrane vesicles isolated from rat kidney cortex. The initial rates of Na(+)-dependent phosphate uptake were measured at pH 6.5, 7.5 and 8.5 in the presence of sodium gluconate. At a constant total phosphate concentration, the transport values at pH 7.5 and 8.5 were similar, but at pH 6.5 the influx was 31% of that at pH 7.5. However, when the concentration of bivalent phosphate was kept constant at all three pH values, the effect of pH was less pronounced; at pH 6.5, phosphate influx was 73% of that measured at pH 7.5. The Na(+)-dependent phosphate uptake was also influenced by a transmembrane pH difference; an outwardly directed H+ gradient stimulated the uptake by 48%, whereas an inwardly directed H+ gradient inhibited the uptake by 15%. Phosphate on the trans (intravesicular) side stimulated the Na(+)-gradient-dependent phosphate transport by 59%, 93% and 49%, and the Na(+)-gradient-independent phosphate transport by 240%, 280% and 244%, at pH 6.5, 7.5 and 8.5 respectively. However, in both cases, at pH 6.5 the maximal stimulation was seen only when the concentration of bivalent trans phosphate was the same as at pH 7.5. In the absence of a Na+ gradient, but in the presence of Na+, an outwardly directed H+ gradient provided the driving force for the transient hyperaccumulation of phosphate. The rate of uptake was dependent on the magnitude of the H+ gradient. These results indicate that: (1) the bivalent form of phosphate is the form of phosphate recognized by the carrier on both sides of the membrane; (2) protons are both activators and allosteric modulators of the phosphate carrier; (3) the combined action of both the Na+ (out/in) and H+ (in/out) gradients on the phosphate carrier contribute to regulate efficiently the re-absorption of phosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号