首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
2.
β-Amylase of sweet potato (Ipomoea batatas L.), which constitutes about 5% of the total soluble protein of the tuberous root, is absent or is present in only small amounts in organs other than the tuberous roots of the normal, field-grown plants. However, when leaf-petiole cuttings from such plants were supplied with a solution that contained sucrose, the accumulation of β-amylase was induced in both leaf and petiole portions of the explants. The sucrose-induced accumulation of β-amylase in leaf-petiole cuttings occurred concomitant with the accumulation of starch and of sporamin, the most abundant storage protein of the tuberous root. The accumulation of β-amylase, of sporamin and of starch in the petioles showed similar dependence on the concentration of sucrose, and a 6% solution of sucrose gave the highest levels of induction when assayed after 7 days of treatment. The induction of mRNAs for β-amylase and sporamin in the petiole could be detected after 6 hours of treatment with sucrose, and the accumulation of β-amylase and sporamin polypeptides, as well as that of starch, continued for a further 3 weeks. In addition to sucrose, glucose or fructose, but not mannitol or sorbitol, also induced the accumulation of β-amylase and sporamin, suggesting that metabolic effects of sucrose are important in the mechanism of this induction. Treatment of leaf-petiole cuttings with water under continuous light, but not in darkness, also caused the accumulation of small amounts of these components in the petioles, probably as a result of the endogenous supply of sucrose by photosynthesis. These results suggest that the expression of the gene for β-amylase is under metabolic control which is coupled with the expression of sink function of cells in the sweet potato.  相似文献   

3.
4.
5.
Sporamin, the tuberous root storage protein of the sweet potato, which is localized in vacuoles, is synthesized as a prepro-precursor with an N-terminal sequence of amino acids that includes a signal peptide and an additional pro-segment of 16 amino acids. A full-length cDNA for sporamin was placed downstream of the 35 S promoter of cauliflower mosaic virus and introduced into tobacco and sunflower genomes by Ti plasmid-mediated transformation. A polypeptide of nearly the same size as mature sporamin from the sweet potato was detected in transformed calli of tobacco and sunflower, as well as in the leaves, stems, and roots of regenerated, transgenic tobacco plants. Amino acid sequence analysis of the nearly mature-sized form of sporamin from the transformed tobacco cells revealed that it is actually longer by three amino acids at its N terminus than authentic sporamin purified from the sweet potato. By pulse labeling of suspension-cultured tobacco cells with [35S]methionine, the pro-form of the precursor to sporamin, but not the prepro-precursor, was detected. The 35S-labeled proform was chased to the nearly mature-sized form via an intermediate form which is slightly larger than the nearly mature-sized form. Analysis by Edman degradation of the intermediate form that was labeled in vivo with [3H]histidine suggested that it is longer by two amino acids at its N terminus than the nearly mature-sized form of sporamin. These results suggest that at least two steps of posttranslational processing of the pro-form occurs sequentially in tobacco cells. The posttranslational processing of the pro-form of the precursor to sporamin was inhibited by monensin, suggesting that this step takes place in the acidic compartment, probably in the vacuole. All of the sporamin polypeptides synthesized in transformed tobacco cells were retained inside the cell and sporamin was localized in the vacuole, as judged from results of subcellular fractionation. These results indicate that sporamin is appropriately targeted to the vacuole in tobacco cells.  相似文献   

6.
Sporamin, a major tuberous root protein of sweet potato, wasfound to accumulate in large quantities in excised leaves andpetioles when such explants were supplied with high concentrationsof sucrose. Although a small amount of sporamin could be detectedin leaves and petioles treated with 1% or lower concentrationsof sucrose, the maximum level of induction required sucroseat a concentration of 3% or higher. The appearance of sporaminpolypeptides in leaves and petioles treated with 3% sucrosefollowed a lag period of about one day, while a significantamount of sporamin mRNAs was already detectable in petiolesafter one day of treatment with sucrose. Addition of silvernitrate to the medium did not affect the accumulation of sporamin,suggesting that this induction is not due to the effect of ethyleneinduced by wounding of the tissue. The accumulation of sporamincould also be induced by glucose and by fructose, but not byman-nitol, suggesting that changes in carbohydrate and/or energymetabolism in the cell may be involved in the induction. Callustissues obtained by treatment of leaf segments with 1-naphthaleneaceticacid did not accumulate sporamin even though these cells werecultured on agar medium that contained 3% sucrose. However,when callus tissues were allowed to grow after transfer to amedium that contained 6-benzylaminopurine and sucrose, accumulationof large amounts of sporamin was induced. These results suggestthat, while expression of genes coding for sporamin can be inducedin organs other than the tuberous root by a process that doesnot accompany the differentiation of tissue, the induction ofexpression of sporamin genes by sucrose requires that cellsbe competent in some specific, but as yet unidentified, way. (Received August 27, 1990; Accepted November 5, 1990)  相似文献   

7.
8.
9.
10.
11.
12.
Transgenic Arabidopsis thaliana plants were constructed by introduction of a fusion of the gene for β-glucuronidase (GUS) to the CHS-A gene, which is one of the two genes for chalcone synthase that are actively expressed in the floral organs of petunia. The expression of the fusion gene CHS-A::GUS was low in transgenic Arabidopsis plantlets, but it was enhanced when plantlets or detached leaves were transferred to a medium that contained 0.3 molar sucrose, glucose, or fructose. No enhancement was observed when plantlets were transferred to a medium that contained 0.3 molar mannitol. Measurements of cellular levels of sugars revealed a tight linkage between the level of expression of the CHS-A::GUS gene and the level of accumulation of exogenously supplied sugars, in particular sucrose. The parallelism between the organ-specific accumulation of sugar and the organ-specific expression of the CHS-A::GUS gene was also observed in petunia and A. thaliana plants grown under normal conditions in soil. The consensus sequences for sugar responses, such as boxes II and III in members of the family of sporamin genes from the sweet potato, were found in the promoter region of the CHS-A gene that was used for fusion to the GUS gene. It is suggested that the expression of the CHS-A gene is regulated by sugars, as is the expression of other sugar-responsive genes, such as the genes for sporamin. A putative common mechanism for the control of expression of “sugar-related” genes, including the CHS-A gene, is discussed.  相似文献   

13.
Treatment of sweet potato plants cultured in vitro with a vaporof methyl jasmonate (MeJA) induced an accumulation in leavesof a large amount of protein with an apparent molecular massof 18 kDa. This protein, designated ipomoelin, was purified,and the amino acid sequences of proteolytic fragments were determined.Screening a cDNA library of MeJA-treated leaves by oligonucleotideprobes designed from the peptide sequences identified a clonethat could code for a polypeptide with 154 amino acids. Thededuced amino acid sequence of ipomoelin showed an overall aminoacid identity of 25% with the salt-inducible SalT protein ofrice. In addition, the C-terminal 70 amino acid sequence ofipomoelin showed about 50% identity with the C-terminal aminoacid sequences of seed lectins from Moraceae. The gene for ipomoelinwas present in a few copies in the genome of sweet potato. ThemRNA for ipomoelin was detected in leaves and petioles, butnot in stems and tuberous roots, of sweet potato plants grownin the field. Mechanical wounding of leaves induced ipomoelinmRNA both locally and systemically, while treatment of leaveswith ABA, salt, or a high level of sucrose did not induce ipomoelinmRNA. By contrast, ABA-inducible mRNA for sporamin was not inducedby MeJA. These results suggest that ipomoelin is involved indefensive reactions of leaves in response to wounding and thatJA-mediated wound-induction of ipomoelin occurs independentlyof ABA. (Received January 6, 1997; Accepted March 13, 1997)  相似文献   

14.
Various targeting motifs have been identified for plant proteins delivered to the vacuole. For barley (Hordeum vulgare) lectin, a typical Gramineae lectin and defense-related protein, the vacuolar information is contained in a carboxyl-terminal propeptide. In contrast, the vacuolar targeting information of sporamin, a storage protein from the tuberous roots of the sweet potato (Ipomoea batatas), is encoded in an amino-terminal propeptide. Both proteins were expressed simultaneously in transgenic tobacco plants to enable analysis of their posttranslational processing and subcellular localization by pulse-chase labeling and electron-microscopic immunocytochemical methods. The pulse-chase experiments demonstrated that processing and delivery to the vacuole are not impaired by the simultaneous expression of barley lectin and sporamin. Both proteins were targeted quantitatively to the vacuole, indicating that the carboxyl-terminal and amino-terminal propeptides are equally recognized by the vacuolar protein-sorting machinery. Double-labeling experiments showed that barley lectin and sporamin accumulate in the same vacuole of transgenic tobacco (Nicotiana tabacum) leaf and root cells.  相似文献   

15.
Sporamin and β-amylase are two major proteins of tuberous storage root of sweet potato (Ipomoea batatas) and their accumulation can be induced concomitantly with the accumulation of starch in leaves and petioles by sucrose (K Nakamura, M Ohto, N Yoshida, K Nakamura [1991] Plant Physiol 96: 902-909). Although mechanical wounding of leaves of sweet potato only occasionally induced the expression of sporamin and β-amylase genes, their expression could be reproducibly induced in leaf-petiole cuttings when these explants were dipped in a solution of polygalacturonic acid or chitosan at their cut edges. Polygalacturonic acid seemed to induce expression of the same genes coding for sporamin and β-amylase that are induced by sucrose. Because polygalacturonic acid and chitosan are known to mediate the induction of wound-inducible defense reactions, these results raise an interesting possibility that β-amylase, in addition to sporamin, may have some role in the defense reaction. Expression of sporamin and β-amylase genes could also be induced by abscisic acid, and this induction by abscisic acid, as well as induction by polygalacturonic acid or sucrose, was repressed by gibberellic acid. By contrast, methyl jasmonate did not cause the significant induction of either sporamin or β-amylase mRNAs. Induction of expression of sporamin and β-amylase genes by polygalacturonic acid or sucrose was inhibited by cycloheximide, suggesting that de novo synthesis of proteins is required for both of the induction processes.  相似文献   

16.
The sweet potato sporamin promoter was used to control the expression in transgenic potato of the E. coli appA gene, which encodes a bifunctional enzyme exhibiting both acid phosphatase and phytase activities. The sporamin promoter was highly active in leaves, stems and different size tubers of transgenic potato, with levels of phytase expression ranging from 3.8 to 7.4% of total soluble proteins. Phytase expression levels in transgenic potato tubers were stable over several cycles of propagation. Field tests showed that tuber size, number and yield increased in transgenic potato. Improved phosphorus (P) acquisition when phytate was provided as a sole P source and enhanced microtuber formation in cultured transgenic potato seedlings when phytate was provided as an additional P source were observed, which may account for the increase in leaf chloroplast accumulation (important for photosynthesis) and tuber yield of field-grown transgenic potato supplemented with organic fertilizers. Animal feeding tests indicated that the potato-produced phytase supplement was as effective as a commercially available microbial phytase in increasing the availability of phytate-P to weanling pigs. This study demonstrates that the sporamin promoter can effectively direct high-level recombinant protein expression in potato tubers. Moreover, overexpression of phytase in transgenic potato not only offers an ideal feed additive for improving phytate-P digestibility in monogastric animals but also improves tuber yield, enhances P acquisition from organic fertilizers, and has a potential for phytoremediation.  相似文献   

17.
Wound-response regulation of the sweet potato sporamin gene promoter region   总被引:9,自引:0,他引:9  
Sporamin, a tuberous storage protein of sweet potato, was systemically expressed in leaves and stems by wound stimulation. In an effort to demonstrate the regulatory mechanism of wound response on the sporamin gene, a 1.25 kb sporamin promoter was isolated for studying the wound-induced signal transduction. Two wound response-like elements, a G box-like element and a GCC core-like sequence were found in this promoter. A construct containing the sporamin promoter fused to a -glucuronidase (GUS) gene was transferred into tobacco plants by Agrobacterium-mediated transformation. The wound-induced high level of GUS activity was observed in stems and leaves of transgenic tobacco, but not in roots. This expression pattern was similar to that of the sporamin gene in sweet potatoes. Exogenous application of methyl jasmonate (MeJA) activated the sporamin promoter in leaves and stems of sweet potato and transgenic tobacco plants. A competitive inhibitor of ethylene (2,5-norbornadiene; NBD) down-regulated the effect of MeJA on sporamin gene expression. In contrast, salicylic acid (SA), an inhibitor of the octadecanoid pathway, strongly suppressed the sporamin promoter function that was stimulated by wound and MeJA treatments. In conclusion, wound-response expression of the sporamin gene in aerial parts of plants is regulated by the octadecanoid signal pathway.  相似文献   

18.
19.
Sporamin, a sweet potato tuberous storage protein, is a Kunitz-type trypsin inhibitor. Its capability of conferring insect-resistance on transgenic tobacco and cauliflower has been confirmed. To test its potential as an anti-feedant for the beet cyst nematode (Heterodera schachtii Schm.), the sporamin gene SpTI-1 was introduced into sugar beet (Beta vulgaris L.) by Agrobacterium rhizogenes-mediated transformation. Twelve different hairy root clones expressing sporamin were selected for studying nematode development. Of these, 8 hairy root clones were found to show significant efficiency in inhibiting the growth and development of the female nematodes whereas 4 root clones did not show any inhibitory effects even though the SpTI-1 gene was regularly expressed in all of the tested hairy roots as revealed by northern and western analyses. Inhibition of nematode development correlated with trypsin inhibitor activity but not with the amount of sporamin expressed in hairy roots. These data demonstrate that the trypsin inhibitor activity is the critical factor for inhibiting growth and development of cyst nematodes in sugar beet hairy roots expressing the sporamin gene. Hence, the sweet potato sporamin can be used as a new and effective anti-feedant for controlling cyst nematodes offering an alternative strategy for establishing nematode resistance in crops.  相似文献   

20.
Summary Sporamin accounts for more than 80% of the total soluble proteins of tuberous roots of sweet potato, but very little, if any, in other tissues of the same plant. In vitro translation of RNA fractions from the tuberous roots in wheat germ extract and subsequent immunoprecipitation with the antibody to sporamin indicated that this protein is synthesized by membrane-bound polysomes as a precursor 4 000 daltons larger than the mature protein. A cDNA expression library was constructed from the total poly(A)+ RNA from the tuberous roots by a vector-primer method, and an essentially full-length cDNA clone for the sporamin mRNA was selected by direct immunological screening of the colonies. Northern blot analysis showed that sporamin mRNA is approximately 950 nucleotides in length and is specifically present in tuberous roots and very little, if any, in leaves, petioles and non-tuberous roots. Nucleotide sequence of the cDNA predicts a 37 amino acid extension in the precursor at the amino-terminus of the mature protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号