首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.

Objective

To compare the presence of post-operative residual disease by magnetic resonance imaging (MRI) and [18F]fluorothymidine (FLT)-positron emission tomography (PET)-computer tomography (CT) in patients with malignant glioma and to estimate the impact of 18F-FLT PET on the delineation of post-operative target volumes for radiotherapy (RT) planning.

Methods

Nineteen patients with post-operative residual malignant gliomas were enrolled in this study. For each patient, 18F- FLT PET-CT and MRI were acquired in the same week, within 4 weeks after surgery but before the initiation of RT. The PET-CT and MRI data were co-registered based on mutual information. The residual tumor volume defined on the 18F-FLT PET (Vol-PET) was compared with that of gadolinium [Gd] enhancement on T1-weighted MRI (Vol-T1) and areas of hyperintensity on T2-weighted MRI (Vol-T2).

Results

The mean Vol-PET (14.61 cm3) and Vol-T1 (13.60 cm3) were comparable and smaller than the mean Vol-T2 (32.93 cm3). The regions of 18F-FLT uptake exceeded the contrast enhancement and the hyperintense area on the MRI in 14 (73.68%) and 8 patients (42.11%), respectively. In 5 (26.32%) of the 19 patients, Vol-PET extended beyond 25 mm from the margin of Vol-T1; in 2 (10.53%) patients, Vol-PET extended 20 mm from the margin of Vol-T2. Vol-PET was detected up to 35 mm away from the edge of Vol-T1 and 24 mm away from the edge of Vol-T2. In 16 (84.21%) of the 19 patients, the Vol-T1 extended beyond the Vol-PET. In all of the patients, at least some of the Vol-T2 was located outside of the Vol-PET.

Conclusions

The volumes of post-operative residual tumor in patients with malignant glioma defined by 18F-FLT uptake on PET are not always consistent with the abnormalities shown on post-operative MRI. Incorporation of 18F-FLT-PET in tumor delineation may have the potential to improve the definition of target volume in post-operative radiotherapy.  相似文献   

3.

Background and Aim

The utility of fluorine-18 fluorodeoxyglucose (18F-FDG) positron emission tomography-computed tomography (PET/CT) in initial staging of hepatocellular carcinoma (HCC) has yet to be fully explored. We assessed the usefulness of 18F-FDG PET/CT in initial staging of HCC.

Methods

A total of 457 consecutive patients initially diagnosed with HCC at Seoul National University Hospital between 2006 and 2012 were evaluated retrospectively to assess the impact of 18F-FDG PET/CT on staging and compliancy with Milan criteria, relative to dynamic CT of liver and chest x-ray.

Results

Seven among the 457 patients studied showed a shift in Barcelona Clinic Liver Cancer [BCLC] stage (A→C: 6 patients; B→C: 1 patient) and 5 patients who had originally met Milan criteria no longer qualified. 18F-FDG PET/CT had value in initial staging of early (stage A) or intermediate (stage B) HCC, as determined by dynamic CT of liver and BCLC or AJCC classifications, whereas BCLC stage 0 and stage C tumors were unchanged (P<0.001). 18F-FDG PET/CT disclosed additional metastases in patients with American Joint Committee on Cancer [AJCC] T2 (2.7%), T3a (5.3%), and T3b (4.8%) classifications.

Conclusions

In initial staging of HCC, 18F-FDG PET/CT provided additional information, impacting the patients with BCLC (stages A and B) and AJCC (T2 and T3) classifications. Its use might be thus appropriate for these patient subsets, especially if hepatic resection or liver transplantation is planned.  相似文献   

4.

Aim

To compare radiotherapy plans made according to CT and PET/CT and to investigate the impact of changes in target volumes on tumour control probability (TCP), normal tissue complication probability (NTCP) and the impact of PET/CT on the staging and treatment strategy.

Background

Contemporary studies have proven that PET/CT attains higher sensitivity and specificity in the diagnosis of lung cancer and also leads to higher accuracy than CT alone in the process of target volume delineation in NSCLC.

Materials and methods

Between October 2009 and March 2012, 31 patients with locally advanced NSCLC, who had been referred to radical radiotherapy were involved in our study. They all underwent planning PET/CT examination. Then we carried out two separate delineations of target volumes and two radiotherapy plans and we compared the following parameters of those plans: staging, treatment purpose, the size of GTV and PTV and the exposure of organs at risk (OAR). TCP and NTCP were also compared.

Results

PET/CT information led to a significant decrease in the sizes of target volumes, which had the impact on the radiation exposure of OARs. The reduction of target volume sizes was not reflected in the significant increase of the TCP value. We found that there is a very strong direct linear relationship between all evaluated dosimetric parameters and NTCP values of all evaluated OARs.

Conclusions

Our study found that the use of planning PET/CT in the radiotherapy planning of NSCLC has a crucial impact on the precise determination of target volumes, more precise staging of the disease and thus also on possible changes of treatment strategy.  相似文献   

5.

Objective

Based on the results of a recently accomplished multicenter clinical trial for the incremental value of a dual-tracer (18F-FDG and 18F-FLT), dual-modality (PET and CT) imaging in the differential diagnosis of pulmonary lesions, we investigate some issues that might affect the image interpretation and result reporting.

Methods

The images were read in two separate sessions. Firstly the images were read and reported by physician(s) of the imaging center on completion of each PET/CT scanning. By the end of MCCT, all images collected during the trial were re-read by a collective of readers in an isolated, blinded, and independent way.

Results

One hundred sixty two patients successfully passed the data verification and entered into the final analysis. The primary reporting result showed adding 18F-FDG image information did not change the clinical performance much in sensitivity, specifity and accuracy, but the ratio between SUVFLT and SUVFDG did help the differentiation efficacy among the three subgroups of patients. The collective reviewing result showed the diagnostic achievement varied with reading strategies. ANOVA indicated significant differences among 18F-FDG, 18F- FLT in SUV (F = 14.239, p = 0.004). CT had almost the same diagnostic performance as 18F-FLT. When the 18F-FDG, 18F- FLT and CT images read in pair, both diagnostic sensitivity and specificity improved. The best diagnostic figures were obtained in full-modality strategy, when dual-tracer PET worked in combination with CT.

Conclusions

With certain experience and training both radiologists and nuclear physicians are qualified to read and to achieve the similar diagnostic accuracy in PET/CT study. Making full use of modality combination and selecting right criteria seems more practical than professional back ground and personal experience in the new hybrid imaging technology, at least when novel tracer or application is concerned.  相似文献   

6.

Background

Posttreatment surveillance for the local and regional recurrence of the head and neck squamous cell carcinoma often requires a multimodality techniques that include PET combined with CT, MRI, US.

Aim

The purpose of this study is to compare the diagnostic performance of two imaging techniques (PET/CT and US), and their combined use for the detection of a subclinical regional recurrence in patients after HNSCC treatment.

Materials and methods

83 patients after completion of the HNSCC treatment underwent both US and PET/CT on the mean follow-up of 14 months after initial treatment.

Results

The sensitivity and specificity of PET/CT were 86% and 82%, respectively; US values reached 81% and 87%, respectively. PPV was 79% for PET/CT, and 83% for US. NPV was 89% for PET/CT, and 85% for US. The overall accuracy for PET/CT and US was 84% for both methods.

Conclusion

US could be regarded as complementary to PET/CT as the procedures with highest sensitivity, specificity and NPV for detecting subclinical regional recurrences after HNSCC treatment.  相似文献   

7.

Purpose

This study evaluates the prevalence of cardiac metastases in patients with serotonin producing neuroendocrine tumours (NET), examined with 18F-FDOPA PET/CT, and the relationship of these metastases to the presence of carcinoid heart disease (CHD) based on echocardiography.

Background

CHD occurs in patients with serotonin producing NET. The diagnostic method of choice remains echocardiography. The precise prevalence of cardiac metastases is unknown given the limitations of standard technologies. Nuclear medicine modalities have the potential to visualize metastases of NET.

Methods

All patients who underwent 18F-FDOPA PET/CT because of serotonin producing NET between November 2009 and May 2012 were retrospectively analyzed. The presence of cardiac metastasis was defined as myocardial tracer accumulation higher than the surrounding physiological myocardial uptake. Laboratory tests and transthoracic echocardiography (TTE) results were digitally collected.

Results

116 patients (62 male) underwent 18F-FDOPA PET/CT, mean age was 61±13 years. TTE was performed in 79 patients. Cardiac metastases were present in 15 patients, of which 10 patients also underwent TTE. One patient had both cardiac metastasis (only on 18F-FDOPA PET/CT) and echocardiographic signs of CHD. There were no differences in echocardiographic parameters for CHD between patients with and without cardiac metastases. TTE in none of the 79 patients showed cardiac metastases.

Conclusion

The prevalence of cardiac metastases detected with 18F-FDOPA PET/CT in this study is 13%. 18F-FDOPA PET/CT can visualize cardiac metastases in serotonin producing NET patients. There appears to be no relationship between the presence of cardiac metastases and TTE parameters of CHD.  相似文献   

8.

Background

3′-deoxy-3′-[18F]fluorothymidine (18F-FLT) is a tracer used to assess cell proliferation in vivo. The aim of the study was to use 18F-FLT positron emission tomography (PET) to study treatment responses to a new anti-cancer compound. To do so, we studied early anti-proliferative effects of the experimental chemotherapy Top216 non-invasively by PET.

Methodology/Principal Findings

In vivo uptake of 18F-FLT in human ovary cancer xenografts in mice (A2780) was studied at various time points after Top216 treatment (50 mg/kg i.v. at 0 and 48 hours) was initiated. Baseline 18F-FLT scans were made before either Top216 (n = 7–10) or vehicle (n = 5–7) was injected and repeated after 2 and 6 hours and 1 and 5 days of treatment. A parallel study was made with 2′-deoxy-2′-[18F]fluoro-D-glucose (18F-FDG) (n = 8). Tracer uptake was quantified using small animal PET/CT. Imaging results were validated by tumor volume changes and gene-expression of Ki67 and TK1. Top216 (50 mg/kg 0 and 48 hours) inhibited the growth of the A2780 tumor compared to the control group (P<0.001). 18F-FLT uptake decreased significantly at 2 hours (−52%; P<0.001), 6 hours (−49%; P = 0.002) and Day 1 (−47%; P<0.001) after Top216 treatment. At Day 5 18F-FLT uptake was comparable to uptake in the control group. Uptake of 18F-FLT was unchanged in the control group during the experiment. In the treatment group, uptake of 18F-FDG was significantly decreased at 6 hours (−21%; P = 0.003), Day 1 (−29%; P<0.001) and Day 5 (−19%; P = 0.05) compared to baseline.

Conclusions/Significance

One injection with Top216 initiated a fast and significant decrease in cell-proliferation assessable by 18F-FLT after 2 hours. The early reductions in tumor cell proliferation preceded changes in tumor size. Our data indicate that 18F-FLT PET is promising for the early non-invasive assessment of chemotherapy effects in both drug development and for tailoring therapy in patients.  相似文献   

9.

Introduction

Evaluation of disease severity in experimental models of rheumatoid arthritis is inevitably associated with assessment of structural bone damage. A noninvasive imaging technology allowing objective quantification of pathophysiological alterations of bone structure in rodents could substantially extend the methods used to date in preclinical arthritis research for staging of autoimmune disease severity or efficacy of therapeutical intervention. Sodium 18 F-fluoride (18 F-NaF) is a bone-seeking tracer well-suited for molecular imaging. Therefore, we systematically examined the use of 18 F-NaF positron emission tomography/computed tomography (PET/CT) in mice with glucose-6-phosphate isomerase (G6PI)–induced arthritis for quantification of pathological bone metabolism.

Methods

F-fluoride was injected into mice before disease onset and at various time points of progressing experimental arthritis. Radioisotope accumulation in joints in the fore- and hindpaws was analyzed by PET measurements. For validation of bone metabolism quantified by 18 F-fluoride PET, bone surface parameters of high-resolution μCT measurements were used.

Results

Before clinical arthritis onset, no distinct accumulation of 18 F-fluoride was detectable in the fore- and hindlimbs of mice immunized with G6PI. In the course of experimental autoimmune disease, 18 F-fluoride bone uptake was increased at sites of enhanced bone metabolism caused by pathophysiological processes of autoimmune disease. Moreover, 18 F-fluoride signaling at different stages of G6PI-induced arthritis was significantly correlated with the degree of bone destruction. CT enabled identification of exact localization of 18 F-fluoride signaling in bone and soft tissue.

Conclusions

The results of this study suggest that small-animal PET/CT using 18 F-fluoride as a tracer is a feasible method for quantitative assessment of pathophysiological bone metabolism in experimental arthritis. Furthermore, the possibility to perform repeated noninvasive measurements in vivo allows longitudinal study of therapeutical intervention monitoring.  相似文献   

10.

Background

Integrated 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) is widely performed for staging solitary pulmonary nodules (SPNs). However, the diagnostic efficacy of SPNs based on PET/CT is not optimal. Here, we propose a method of detection based on PET/CT that can differentiate malignant and benign SPNs with few false-positives.

Method

Our proposed method combines the features of positron-emission tomography (PET) and computed tomography (CT). A dynamic threshold segmentation method was used to identify lung parenchyma in CT images and suspicious areas in PET images. Then, an improved watershed method was used to mark suspicious areas on the CT image. Next, the support vector machine (SVM) method was used to classify SPNs based on textural features of CT images and metabolic features of PET images to validate the proposed method.

Results

Our proposed method was more efficient than traditional methods and methods based on the CT or PET features alone (sensitivity 95.6%; average of 2.9 false positives per scan).  相似文献   

11.

Aim

The aim of this study is to assess the effect of the compositions of various soft tissues and tissue-equivalent materials on dose distribution in neutron brachytherapy/neutron capture therapy.

Background

Neutron brachytherapy and neutron capture therapy are two common radiotherapy modalities.

Materials and methods

Dose distributions were calculated around a low dose rate 252Cf source located in a spherical phantom with radius of 20.0 cm using the MCNPX code for seven soft tissues and three tissue-equivalent materials. Relative total dose rate, relative neutron dose rate, total dose rate, and neutron dose rate were calculated for each material. These values were determined at various radial distances ranging from 0.3 to 15.0 cm from the source.

Results

Among the soft tissues and tissue-equivalent materials studied, adipose tissue and plexiglass demonstrated the greatest differences for total dose rate compared to 9-component soft tissue. The difference in dose rate with respect to 9-component soft tissue varied with compositions of the materials and the radial distance from the source. Furthermore, the total dose rate in water was different from that in 9-component soft tissue.

Conclusion

Taking the same composition for various soft tissues and tissue-equivalent media can lead to error in treatment planning in neutron brachytherapy/neutron capture therapy. Since the International Commission on Radiation Units and Measurements (ICRU) recommends that the total dosimetric uncertainty in dose delivery in radiotherapy should be within ±5%, the compositions of various soft tissues and tissue-equivalent materials should be considered in dose calculation and treatment planning in neutron brachytherapy/neutron capture therapy.  相似文献   

12.

Objectives

Cancer and metabolic bone diseases can alter the SUV. SUV values have never been measured from healthy skeletons in NaF18-PET/CT bone scans. The primary aim of this study was to measure the SUV values from normal skeletons in NaF18-PET/CT bone scans.

Methods

A retrospective study was carried out involving NaF18- PET/CT bone scans that were done at our institution between January 2010 to May 2012. Our excluding criteria was patients with abnormal real function and patients with past history of cancer and metabolic bone diseases including but not limited to osteoporosis, osteopenia and Paget’s disease. Eleven studies met all the criteria.

Results

The average normal SUVmax values from 11 patients were: cervical vertebrae 6.84 (range 4.38–8.64), thoracic vertebrae 7.36 (range 6.99–7.66), lumbar vertebrae 7.27 (range 7.04–7.72), femoral head 2.22 (range 1.1–4.3), humeral head 1.82 (range 1.2–2.9), mid sternum 5.51 (range 2.6–8.1), parietal bone 1.71 (range 1.3–2.4).

Conclusion

According to our study, various skeletal sites have different normal SUV values. SUV values can be different between the normal bones and bones with tumor or metabolic bone disease. SUV can be used to quantify NaF-18 PET/CT studies. If the SUV values of the normal skeleton are known, they can be used in the characterization of bone lesions and in the assessment of treatment response to bone diseases.  相似文献   

13.

Aim

The aim of this study is to evaluate the dose distribution of the Flexisource 192Ir source.

Background

Dosimetric evaluation of brachytherapy sources is recommended by task group number 43 (TG. 43) of American Association of Physicists in Medicine (AAPM).

Materials and methods

MCNPX code was used to simulate Flexisource 192Ir source. Dose rate constant and radial dose function were obtained for water and soft tissue phantoms and compared with previous data on this source. Furthermore, dose rate along the transverse axis was obtained by simulation of the Flexisource and a point source and the obtained data were compared with those from Flexiplan treatment planning system (TPS).

Results

The values of dose rate constant obtained for water and soft tissue phantoms were equal to 1.108 and 1.106, respectively. The values of the radial dose function are listed in the form of tabulated data. The values of dose rate (cGy/s) obtained are shown in the form of tabulated data and figures. The maximum difference between TPS and Monte Carlo (MC) dose rate values was 11% in a water phantom at 6.0 cm from the source.

Conclusion

Based on dosimetric parameter comparisons with values previously published, the accuracy of our simulation of Flexisource 192Ir was verified. The results of dose rate constant and radial dose function in water and soft tissue phantoms were the same for Flexisource and point sources. For Flexisource 192Ir source, the results of TPS calculations in a water phantom were in agreement with the simulations within the calculation uncertainties. Furthermore, the results from the TPS calculation for Flexisource and MC calculation for a point source were practically equal within the calculation uncertainties.  相似文献   

14.

Background

Orthotopic endometrial cancer models provide a unique tool for studies of tumour growth and metastatic spread. Novel preclinical imaging methods also have the potential to quantify functional tumour characteristics in vivo, with potential relevance for monitoring response to therapy.

Methods

After orthotopic injection with luc-expressing endometrial cancer cells, eleven mice developed disease detected by weekly bioluminescence imaging (BLI). In parallel the same mice underwent positron emission tomography–computed tomography (PET-CT) and magnetic resonance imaging (MRI) employing 18F-fluorodeoxyglocose (18F-FDG) or 18F- fluorothymidine (18F-FLT) and contrast reagent, respectively. The mice were sacrificed when moribund, and post-mortem examination included macroscopic and microscopic examination for validation of growth of primary uterine tumours and metastases. PET-CT was also performed on a patient derived model (PDX) generated from a patient with grade 3 endometrioid endometrial cancer.

Results

Increased BLI signal during tumour growth was accompanied by increasing metabolic tumour volume (MTV) and increasing MTV x mean standard uptake value of the tumour (SUVmean) in 18F-FDG and 18F-FLT PET-CT, and MRI conspicuously depicted the uterine tumour. At necropsy 82% (9/11) of the mice developed metastases detected by the applied imaging methods. 18F-FDG PET proved to be a good imaging method for detection of patient derived tumour tissue.

Conclusions

We demonstrate that all imaging modalities enable monitoring of tumour growth and metastatic spread in an orthotopic mouse model of endometrial carcinoma. Both PET tracers, 18F-FDG and 18F-FLT, appear to be equally feasible for detecting tumour development and represent, together with MRI, promising imaging tools for monitoring of patient-derived xenograft (PDX) cancer models.  相似文献   

15.

Purpose

Respiratory motion causes substantial artifacts in reconstructed PET images when using helical CT as the attenuation map in PET/CT imaging. In this study, we aimed to reduce the respiratory artifacts in PET/CT images of patients with lung tumors using an abdominal compression device.

Methods

Twelve patients with lung cancer located in the middle or lower lobe of the lung were recruited. The patients were injected with 370 MBq of 18F-FDG. During PET, the patients assumed two bed positions for 1.5 min/bed. After conducting free-breathing imaging, we obtained images of the patients with abdominal compression by applying the same setup used in the free-breathing scan. The differences in the standardized uptake value (SUV)max, SUVmean, tumor volume, and the centroid of the tumors between PET and various CT schemes were measured.

Results

The SUVmax and SUVmean derived from PET/CT imaging using an abdominal compression device increased for all the lesions, compared with those obtained using the conventional approach. The percentage increases were 18.1% ±14% and 17% ±16.8% for SUVmax and SUVmean, respectively. PET/CT imaging combined with abdominal compression generally reduced the tumor mismatch between CT and the corresponding attenuation corrected PET images, with an average decrease of 1.9±1.7 mm over all the cases.

Conclusions

PET/CT imaging combined with abdominal compression reduces respiratory artifacts and PET/CT misregistration, and enhances quantitative SUV in tumor. Abdominal compression is easy to set up and is an effective method used in PET/CT imaging for clinical oncology, especially in the thoracic region.  相似文献   

16.

Background

Integrated 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) is widely performed in hilar and mediastinal lymph node (HMLN) staging of non-small cell lung cancer (NSCLC). However, the diagnostic efficiency of PET/CT remains controversial. This retrospective study is to evaluate the accuracy of PET/CT and the characteristics of false negatives and false positives to improve specificity and sensitivity.

Methods

219 NSCLC patients with systematic lymph node dissection or sampling underwent preoperative PET/CT scan. Nodal uptake with a maximum standardized uptake value (SUVmax) >2.5 was interpreted as PET/CT positive. The results of PET/CT were compared with the histopathological findings. The receiver operating characteristic (ROC) curve was generated to determine the diagnostic efficiency of PET/CT. Univariate and multivariate analysis were conducted to detect risk factors of false negatives and false positives.

Results

The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy of PET/ CT in detecting HMLN metastases were 74.2% (49/66), 73.2% (112/153), 54.4% (49/90), 86.8% (112/129), and 73.5% (161/219). The ROC curve had an area under curve (AUC) of 0.791 (95% CI 0.723-0.860). The incidence of false negative HMLN metastases was 13.2% (17 of 129 patients). Factors that are significantly associated with false negatives are: concurrent lung disease or diabetes (p<0.001), non-adenocarcinoma (p<0.001), and SUVmax of primary tumor >4.0 (p=0.009). Postoperatively, 45.5% (41/90) patients were confirmed as false positive cases. The univariate analysis indicated age > 65 years old (p=0.009), well differentiation (p=0.002), and SUVmax of primary tumor ≦4.0 (p=0.007) as risk factors for false positive uptake.

Conclusion

The SUVmax of HMLN is a predictor of malignancy. Lymph node staging using PET/CT is far from equal to pathological staging account of some risk factors. This study may provide some aids to pre-therapy evaluation and decision-making.  相似文献   

17.

Aim

The aim of this retrospective study was to investigate the ability of fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) in the detection of synchronous cancers during staging workup for esophageal squamous cell carcinoma.

Materials and Methods

We performed a retrospective chart review of 426 Taiwanese patients with esophageal cancer who received FDG-PET/CT during their primary staging workup between December 2006 and December 2011. We defined synchronous cancers as those occurring within 6 months of the FDG-PET/CT scan. All of the synchronous lesions were confirmed by histology or imaging follow-up. The study patients were followed for at least 18 months or were censored on the date of last follow-up.

Results

Fifty patients were excluded from analysis because of the presence of distant metastases. Of the remaining 376 patients, 359 were diagnosed with squamous cell carcinoma (SCC). We identified 17 patients with synchronous cancers, and all of them had a diagnosis of SCC. Synchronous head and neck cancers were the most frequent (n=13, 76.4%), followed by gastrointestinal cancers (colon cancer, n=2; hepatocellular carcinoma, n=1), and renal cell carcinoma (n=1). FDG-PET/CT successfully detected 15 synchronous cancers (12 head and neck cancers, 2 colon cancers, and 1 renal cell carcinoma). In contrast, conventional workup detected only 9 synchronous cancers (7 head and neck cancers, 1 hepatocellular carcinoma and 1 renal cell carcinoma). The sensitivity of FDG-PET/CT and conventional workup in detecting synchronous cancers were 88.2% and 52.9% respectively.

Conclusion

The most frequent synchronous lesions in patients with esophageal SCC were head and neck cancers in Taiwan. Our data indicate that FDG-PET/CT is superior to conventional workup in the detection of synchronous tumors during primary staging for esophageal squamous cell carcinoma.  相似文献   

18.

Background

In vivo imaging using Annexin A5-based radioligands is a powerful technique for visualizing massive cell death, but has been less successful in monitoring the modest cell death typically seen in solid tumors after chemotherapy. Here we combined dynamic positron emission tomography (PET) imaging using Annexin A5 with a serum-based apoptosis marker, for improved sensitivity and specificity in assessment of chemotherapy-induced cell death in a solid tumor model.

Methodology/Principal Findings

Modest cell death was induced by doxorubicin in a mouse xenograft model with human FaDu head and neck cancer cells. PET imaging was based on 11C-labeled Sel-tagged Annexin A5 ([11C]-AnxA5-ST) and a size-matched control. 2-deoxy-2-[18F]fluoro-D-glucose ([18F]-FDG) was utilized as a tracer of tissue metabolism. Serum biomarkers for cell death were ccK18 and K18 (M30 Apoptosense® and M65). Apoptosis in tissue sections was verified ex vivo for validation. Both PET imaging using [11C]-AnxA5-ST and serum ccK18/K18 levels revealed treatment-induced cell death, with ccK18 displaying the highest detection sensitivity. [18F]-FDG uptake was not affected by this treatment in this tumor model. [11C]-AnxA5-ST gave robust imaging readouts at one hour and its short half-life made it possible to perform paired scans in the same animal in one imaging session.

Conclusions/Significance

The combined use of dynamic PET with [11C]-AnxA5-ST, showing specific increases in tumor binding potential upon therapy, with ccK18/K18 serum measurements, as highly sensitive markers for cell death, enabled effective assessment of modest therapy-induced cell death in this mouse xenograft model of solid human tumors.  相似文献   

19.

Background and Aims

Stable isotopes have proved a valuable phenotyping tool when breeding for yield potential and drought adaptation; however, the cost and technical skills involved in isotope analysis limit its large-scale application in breeding programmes. This is particularly so for Δ18O despite the potential relevance of this trait in C4 crops. The accumulation of minerals (measured as ash content) has been proposed as an inexpensive way to evaluate drought adaptation and yield in C3 cereals, but little is known of the usefulness of this measure in C4 cereals such as maize (Zea mays). The present study investigates how yield relates to ash content, Δ13C and Δ18O, and evaluates the use of ash content as an alternative or complementary criterion to stable isotopes in assessing yield potential and drought resistance in maize.

Methods

A set of tropical maize hybrids developed by CIMMYT were subjected to different water availabilities, in order to induce water stress during the reproductive stages under field conditions. Ash content and Δ13C were determined in leaves and kernels. In addition, Δ18O was measured in kernels.

Key Results

Water regime significantly affected yield, ash content and stable isotopes. The results revealed a close relationship between ash content in leaves and the traits informing about plant water status. Ash content in kernels appeared to reflect differences in sink–source balance. Genotypic variation in grain yield was mainly explained by the combination of ash content and Δ18O, whilst Δ13C did not explain a significant percentage of such variation.

Conclusions

Ash content in leaves and kernels proved a useful alternative or complementary criterion to Δ18O in kernels for assessing yield performance in maize grown under drought conditions.  相似文献   

20.

Aim

The aim of this work was to assess the suitability of the use of a Gafchromic EBT2 film for the measurement of anisotropy function for microSelectron HDR 192Ir (classic) source with a comparative dosimetry method using a Gafchromic EBT2 film and thermoluminescence dosimeters (TLDs).

Background

Sealed linear radiation sources are commonly used for high dose rate (HDR) brachytherapy treatments. Due to self-absorption and oblique filtration of radiation in the source capsule material, an inherent anisotropy is present in the dose distribution around the source which can be described by a measurable two-dimensional anisotropy function, F(r, θ).

Materials and methods

Measurements were carried out in a specially designed and locally fabricated PMMA phantom with provisions to accommodate miniature LiF TLD rods and EBT2 film dosimeters at identical radial distances with respect to the 192Ir source.

Results

The data of anisotropy function generated by the use of the Gafchromic EBT2 film method are in agreement with their TLD measured values within 4%. The produced data are also consistent with their experimental and Monte Carlo calculated results for this source available in the literature.

Conclusion

Gafchromic EBT2 film was found to be a feasible dosimeter in determining anisotropy in the dose distribution of 192Ir source. It offers high resolution and is a viable alternative to TLD dosimetry at discrete points. The method described in this paper is useful for comparing the performances of detectors and can be applied for other brachytherapy sources as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号