首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mated Drosophila melanogaster females show a decrease in mating receptivity, enhanced ovogenesis, egg-laying and activation of juvenile hormone (JH) production. Components in the male seminal fluid, especially the sex peptide ACP70A stimulate these responses in females. Here we demonstrate that ACP70A is involved in the down-regulation of female sex pheromones and hydrocarbon (CHC) production. Drosophila G10 females which express Acp70A under the control of the vitellogenin gene yp1, produced fewer pheromones and CHCs. There was a dose-dependent relationship between the number of yp1-Acp70A alleles and the reduction of these compounds. Similarly, a decrease in CHCs and diene pheromones was observed in da > Acp70A flies that ubiquitously overexpress Acp70A. Quantitative-PCR experiments showed that the expression of Acp70A in G10 females was the same as in control males and 5 times lower than in da > Acp70A females.Three to four days after injection with 4.8 pmol ACP70A, females from two different strains, exhibited a significant decrease in CHC and pheromone levels. Similar phenotypes were observed in ACP70A injected flies whose ACP70A receptor expression was knocked-down by RNAi and in flies which overexpress ACP70A N-terminal domain. These results suggest that the action of ACP70A on CHCs could be a consequence of JH activation. Female flies exposed to a JH analog had reduced amounts of pheromones, whereas genetic ablation of the corpora allata or knock-down of the JH receptor Met, resulted in higher amounts of both CHCs and pheromonal dienes.Mating had negligible effects on CHC levels, however pheromone amounts were slightly reduced 3 and 4 days post copulation. The physiological significance of ACP70A on female pheromone synthesis is discussed.  相似文献   

2.
In Drosophila melanogaster, as in other insects, a waxy layer on the outer surface of the cuticle, composed primarily of hydrocarbon compounds, provides protection against desiccation and other environmental challenges. Several of these cuticular hydrocarbon (CHC) compounds also function as semiochemical signals, and as such mediate pheromonal communications between members of the same species, or in some instances between different species, and influence behavior. Specialized cells referred to as oenocytes are regarded as the primary site for CHC synthesis. However, relatively little is known regarding the involvement of the oenocytes in the regulation of the biosynthetic, transport, and deposition pathways contributing to CHC output. Given the significant role that CHCs play in several aspects of insect biology, including chemical communication, desiccation resistance, and immunity, it is important to gain a greater understanding of the molecular and genetic regulation of CHC production within these specialized cells. The adult oenocytes of D. melanogaster are located within the abdominal integument, and are metamerically arrayed in ribbon-like clusters radiating along the inner cuticular surface of each abdominal segment. In this video article we demonstrate a dissection technique used for the preparation of oenocytes from adult D. melanogaster. Specifically, we provide a detailed step-by-step demonstration of (1) how to fillet prepare an adult Drosophila abdomen, (2) how to identify the oenocytes and discern them from other tissues, and (3) how to remove intact oenocyte clusters from the abdominal integument. A brief experimental illustration of how this preparation can be used to examine the expression of genes involved in hydrocarbon synthesis is included. The dissected preparation demonstrated herein will allow for the detailed molecular and genetic analysis of oenocyte function in the adult fruit fly.Download video file.(173M, mp4)  相似文献   

3.
4.
Recent work on Drosophila cuticular hydrocarbons (CHCs) challenges a historical assumption that CHCs in flies are largely invariant. Here, we examine the effect of time of day and social environment on a suite of sexually selected CHCs in Drosophila serrata. We demonstrate that males become more attractive to females during the time of day that flies are most active and when most matings occur, but females become less attractive to males during the same time of day. These opposing temporal changes may reflect differences in selection among the sexes. To evaluate the effect of social environment on male CHC attractiveness, we manipulated male opportunity for mating: male flies were housed either alone, with five females, with five males or with five males and five females. We found that males had the most attractive CHCs when with females, and less attractive CHCs when with competitor males. Social environment mediated how male CHC attractiveness cycled: males housed with females and/or other males showed temporal changes in CHC attractiveness, whereas males housed alone did not. In total, our results demonstrate temporal patterning of male CHCs that is dependent on social environment, and suggest that such changes may be beneficial to males.  相似文献   

5.
The first signs of ‘embryonic membrane’ deposition could be observed at the 11th/12th stage of the embryonic development, while serosal apolysis occurs, and the first signs of oenocyte differentiation could be detected at the 15th stage. When pleuropodial cuticle deposition occurs, at the 16th stage, there is a rapid increase in the number of differentiating oenocytes. At the 19th stage there are some fully differentiated oenocytes, whereas, just before the cuticulin layer of the embryonic cuticle is laid down, another wave of oenocyte differentiation could be observed. The differentiation process of oenocytes and of vertebrate cells with a rapid cell membrane biogenesis (steroid secreting cells and hepatocytes) are compared. The correlation of oenocyte differentiation with ectodermal coating deposition, with molting hormone titer and with prothoracic gland differentiation is discussed.  相似文献   

6.
Cuticular hydrocarbons (CHCs) in Drosophila melanogaster represent the basis of chemical communication being involved in many important biological functions. The aim of this study was to characterize chemical composition and variation of cuticular profiles in five D. melanogaster strains. These strains were reared for approximately 300 generations on five diets: standard cornmeal medium and substrates prepared with apple, banana, tomato, and carrot. Differences in quantity and/or quality in CHCs were assumed as a result of activation of different metabolic pathways involved in food digestion and adaptations to the particular diet type. In total, independently of sex and strain, 66 chemical compounds were identified. In females of all strains, 60 compounds were identified, while, in males, 47 compounds were extracted. Certain new chemical compounds for D. melanogaster were found. MANOVA confirmed that CHC amounts significantly depend on sex and substrates, as well as on their interactions. Discriminant analysis revealed that flies belonging to ‘apple’ and ‘carrot’ strains exhibited the most noticeable differences in CHC repertoires. A non‐hydrocarbon pheromone, cis‐vaccenyl acetate (cVA) also contributed to the variation in the pheromone bouquet among the strains. Variability detected in CHCs and cVA may be used in the explanation of differences in mating behaviour previously determined in analyzed fly strains.  相似文献   

7.
Evolutionary changes in traits that affect both ecological divergence and mating signals could lead to reproductive isolation and the formation of new species. Insect cuticular hydrocarbons (CHCs) are potential examples of such dual traits. They form a waxy layer on the cuticle of the insect to maintain water balance and prevent desiccation, while also acting as signaling molecules in mate recognition and chemical communication. Because the synthesis of these hydrocarbons in insect oenocytes occurs through a common biochemical pathway, natural or sexual selection on one role may affect the other. In this review, we explore how ecological divergence in insect CHCs can lead to divergence in mating signals and reproductive isolation. We suggest that the evolution of insect CHCs may be ripe models for understanding ecological speciation.  相似文献   

8.
Insect cuticular hydrocarbons (CHCs) play important roles in mate recognition and chemical communication. To explore the cues regulating courtship and mating behaviour in the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), CHCs were extracted from mature virgin female and male oriental fruit flies using n‐hexane. Nine compounds – i.e., 4‐allyl‐2,6‐dimethoxyphenol (designated ‘compound 3’) and eight ester compounds – had significantly greater abundance in female samples than in males. Of these nine compounds, six (1, 2, 4, 5, 6, and 8) elicited electrophysiological responses from the antennae of male flies. Compound 3 did not elicit a detectable male antennal response, but in Y‐tube olfactometer bioassays, it exhibited robust attractiveness to conspecific males at close range. We speculate that compound 3 is a close‐range sex pheromone in B. dorsalis. A mating competition experiment revealed that compound 3 significantly increased the competitiveness of males, which implied that compound 3 might be used in control programs of B. dorsalis.  相似文献   

9.
Although many theoretical models of male sexual trait evolution assume that sexual selection is countered by natural selection, direct empirical tests of this assumption are relatively uncommon. Cuticular hydrocarbons (CHCs) are known to play an important role not only in restricting evaporative water loss but also in sexual signalling in most terrestrial arthropods. Insects adjusting their CHC layer for optimal desiccation resistance is often thought to come at the expense of successful sexual attraction, suggesting that natural and sexual selection are in opposition for this trait. In this study, we sampled the CHCs of male black field crickets (Teleogryllus commodus) using solid-phase microextraction and then either measured their evaporative water loss or mating success. We then used multivariate selection analysis to quantify the strength and form of natural and sexual selection targeting male CHCs. Both natural and sexual selection imposed significant linear and stabilizing selection on male CHCs, although for very different combinations. Natural selection largely favoured an increase in the total abundance of CHCs, especially those with a longer chain length. In contrast, mating success peaked at a lower total abundance of CHCs and declined as CHC abundance increased. However, mating success did improve with an increase in a number of specific CHC components that also increased evaporative water loss. Importantly, this resulted in the combination of male CHCs favoured by natural selection and sexual selection being strongly opposing. Our findings suggest that the balance between natural and sexual selection is likely to play an important role in the evolution of male CHCs in T. commodus and may help explain why CHCs are so divergent across populations and species.  相似文献   

10.
Acyl-coenzyme A (CoA) synthetases (ACSs, EC 6.2.1.3) catalyze the formation of fatty acyl-CoAs from free fatty acid, ATP, and CoA. Essentially all de novo fatty acid synthesis occurs in the plastid. Fatty acids destined for membrane glycerolipid and triacylglycerol synthesis in the endoplasmic reticulum must be first activated to acyl-CoAs via an ACS. Within a family of nine ACS genes from Arabidopsis, we identified a chloroplast isoform, LACS9. LACS9 is highly expressed in developing seeds and young rosette leaves. Both in vitro chloroplast import assays and transient expression of a green fluorescent protein fusion indicated that the LACS9 protein is localized in the plastid envelope. A T-DNA knockout mutant (lacs9-1) was identified by reverse genetics and these mutant plants were indistinguishable from wild type in growth and appearance. Analysis of leaf lipids provided no evidence for compromised export of acyl groups from chloroplasts. However, direct assays demonstrated that lacs9-1 plants contained only 10% of the chloroplast long-chain ACS activity found for wild type. The residual long-chain ACS activity in mutant chloroplasts was comparable with calculated rates of fatty acid synthesis. Although another isozyme contributes to the activation of fatty acids during their export from the chloroplast, LACS9 is a major chloroplast ACS.  相似文献   

11.
12.
Cuticular hydrocarbons (CHCs) are long-chain fatty acids and their derivatives that protect insects from desiccation. They can also be important semiochemicals in insect reproduction. We used behavioural and chemical assays to examine the potential role of CHCs in sexual communication in a solitary burrowing bee, Amegilla dawsoni. Washing CHC blends from the cuticle of emerging virgin females made them unattractive to mate-searching males. Returning the CHC blends restored their attractiveness. Nesting females were unattractive to mate-searching males, whether they were washed or not. Chemical analysis identified significant differences between male and female CHC blends and between virgin female and nesting female blends. Some of these differences were due to specific compounds. Loss of attractiveness is unlikely to be due to antiaphrodisiac compounds delivered by males, because male-specific compounds were not found on nesting females, and because recently mated females with intact CHC blends were attractive to searching males. Nesting females could not be made attractive to searching males by removing their CHC blends. Adding virgin female CHC blends tended to improve attractiveness but the effect was weak, suggesting that some form of volatile compound may also be involved in signalling unreceptivity.  相似文献   

13.
《Journal of Asia》2006,9(1):43-48
Fatty acid synthesis produces long-chain fatty acids that are principal forms of stored energy and essential constituents of cellular membrane lipids. In animals fatty acid synthesis is catalyzed by fatty acid synthase (FAS) from acetyl-coenyzyme A (CoA) and malonyl-CoA. Cerulenin and C75, potent FAS inhibitors, can inhibit feeding in mammals.Using these inhibitors we examined the effect of feeding inhibition during H. zea larval stage. Growth of larvae injected (30 μg/g body weight) with C75 or cerulenin was significantly delayed during the first 8 hrs after injection, but recovered to normal levels within 20 hrs. During the first 8 hr period, the amount of consumed diet in the inhibitor treated larvae was significantly less than the control group. The retardation of larval development could be caused from the reduction of food intake after injection of the inhibitor. The result indicates that C75 or cerulenin inhibits fatty acid synthesis, resulting in feeding suppression in the larval moth as demonstrated in vertebrates.Pheromone production was significantly decreased in the isolated pheromone gland of H. zea females treated with FAS inhibitors. Pheromone production was inhibited by blocking fatty acid synthesis, even though PBAN stimulated pheromone biosynthesis. After topical application of D3-16: Acid to pheromone glands the relative labeled pheromone amount was increased when the gland was incubated with C75. This result indicates that a part of the pheromone amount could be synthesized from 16: Acid directly when fatty acid synthesis was blocked. These results indicate that the inhibitors have a potential possibility to control insect feeding activity and inhibit pheromone biosynthesis in moths.  相似文献   

14.
Females of many species obtain benefits by mating polyandrously, and often prefer novel males over previous mates. However, how do females recognise previous mates, particularly in the face of cognitive constraints? Female crickets appear to have evolved a simple but effective solution: females imbue males with their own cuticular hydrocarbons (CHCs) at mating and utilise chemosensory self‐referencing to recognise recent mates. Female CHC profiles exhibited significant additive genetic variation, demonstrating that genetically unique chemical cues are available to support chemosensory self‐referencing. CHC profiles of males became more similar to those of females after mating, indicating physical transfer of CHCs between individuals during copulation. Experimental perfuming of males with female CHCs resulted in a female aversion to males bearing chemical cues similar to their own. Chemosensory self‐referencing, therefore, could be a widespread mechanism by which females increase the diversity of their mating partners.  相似文献   

15.
Uptake of nonesterified long-chain fatty acids (LCFAs) into many cell types and organs such as liver, heart, intestine, and skeletal muscle occurs primarily through a saturable, protein-mediated mechanism. Membrane proteins that increase the uptake of LCFAs, such as FAT/CD36 and fatty acid transport proteins, represent significant therapeutic targets for the treatment of metabolic disorders, including type 2 diabetes. However, currently available methods for the quantification of LCFA uptake neither allow for real-time measurements of uptake kinetics nor are ideally suited for the development of LCFA uptake inhibitors in high-throughput screens. To address both problems, we developed a LCFA uptake assay using a fluorescently labeled fatty acid and a nontoxic cell-impermeable quenching agent that allows fatty acid transport to be measured in real time using fluorescence plate readers or standard fluorescence microscopy. With this assay, we faithfully reproduced known differentiation- and hormone-induced changes in LCFA uptake by 3T3-L1 cells and determined LCFA uptake kinetics with previously unobtainable temporal resolution. Applications of this novel assay should facilitate new insights into the biology of fatty acid uptake and provide new means for obesity-related drug discovery.  相似文献   

16.
Sexual signals in cactophilic Drosophila mojavensis include cuticular hydrocarbons (CHCs), contact pheromones that mediate female discrimination of males during courtship. CHCs, along with male courtship songs, cause premating isolation between diverged populations, and are influenced by genotype × environment interactions caused by different host cacti. CHC profiles of mated and unmated adult flies from a Baja California and a mainland Mexico population of D. mojavensis reared on two host cacti were assayed to test the hypothesis that male CHCs mediate within‐population female discrimination of males. In multiple choice courtship trials, mated and unmated males differed in CHC profiles, indicating that females prefer males with particular blends of CHCs. Mated and unmated females significantly differed in CHC profiles as well. Adults in the choice trials had CHC profiles that were significantly different from those in pair‐mated adults from no‐choice trials revealing an influence of sexual selection. Females preferred different male CHC blends in each population, but the influence of host cactus on CHC variation was significant only in the mainland population indicating population‐specific plasticity in CHCs. Different groups of CHCs mediated female choice‐based sexual selection in each population suggesting that geographical and ecological divergence has the potential to promote divergence in mate communication systems.  相似文献   

17.
During late embryogenesis in a cockroach, the epidermal cells secrete two cuticles: the embryonic cuticle and the pharate first larval cuticle. Late embryogenesis begins with the deposition of the cuticulin layer of the embryonic cuticle. The embryonic cuticle is an atypical one. It remains relatively thin and a well lamellated endocuticle is usually lacking. After general apolysis of the embryonic cuticle the epidermis secretes the epicuticle of the first larval cuticle and, subsequently, a typical lamellate procuticle. During the penultimate phase of late embryogenesis (i.e. before general apolysis) the epidermis becomes larvally committed. Some epidermal cells start to differentiate into specialized structures of the dermal glands, whereas the differentiated oenocytes appear to have acquired some stability. Nevertheless, shortly before general apolysis some oenocytes display signs of an increased alteration of the SER. When general apolysis occurs, the oenocytes contain a well-developed SER. The whole of the oenocyte population is programmed to regress after epicuticle deposition of the first larval cuticle. The correlation of oenocyte regression with available data on cuticulogenesis, ecdysteroid titres and cuticular lipid synthesis is discussed.  相似文献   

18.
19.
Cuticular hydrocarbons (CHCs) are hydrophobic compounds deposited on the arthropod cuticle that are of functional significance with respect to stress tolerance, social interactions and mating dynamics. We characterized CHC profiles in natural populations of Drosophila melanogaster at five levels: across a latitudinal transect in the eastern United States, as a function of developmental temperature during culture, across seasonal time in replicate years, and as a function of rapid evolution in experimental mesocosms in the field. Furthermore, we also characterized spatial and temporal changes in allele frequencies for SNPs in genes that are associated with the production and chemical profile of CHCs. Our data demonstrate a striking degree of parallelism for clinal and seasonal variation in CHCs in this taxon; CHC profiles also demonstrate significant plasticity in response to rearing temperature, and the observed patterns of plasticity parallel the spatiotemporal patterns observed in nature. We find that these congruent shifts in CHC profiles across time and space are also mirrored by predictable shifts in allele frequencies at SNPs associated with CHC chain length. Finally, we observed rapid and predictable evolution of CHC profiles in experimental mesocosms in the field. Together, these data strongly suggest that CHC profiles respond rapidly and adaptively to environmental parameters that covary with latitude and season, and that this response reflects the process of local adaptation in natural populations of D. melanogaster.  相似文献   

20.
We previously reported that lipid rafts are involved in long-chain fatty acid (LCFA) uptake in 3T3-L1 adipocytes. The present data show that LCFA uptake does not depend on caveolae endocytosis because expression of a dominant negative mutant of dynamin had no effect on uptake of [3H]oleic acid, whereas it effectively prevented endocytosis of cholera toxin. Isolation of detergent-resistant membranes (DRMs) from 3T3-L1 cell homogenates revealed that FAT/CD36 was expressed in both DRMs and detergent-soluble membranes (DSMs), whereas FATP1 and FATP4 were present only in DSMs but not DRMs. Disruption of lipid rafts by cyclodextrin and specific inhibition of FAT/CD36 by sulfo-N-succinimidyl oleate (SSO) significantly decreased uptake of [3H]oleic acid, but simultaneous treatment had no additional or synergistic effects, suggesting that both treatments target the same mechanism. Indeed, subcellular fractionation demonstrated that plasma membrane fatty acid translocase (FAT/CD36) is exclusively located in lipid rafts, whereas intracellular FAT/CD36 cofractionated with DSMs. Binding assays confirmed that [3H]SSO predominantly binds to FAT/CD36 within plasma membrane DRMs. In conclusion, our data strongly suggest that FAT/CD36 mediates raft-dependent LCFA uptake. Plasma membrane lipid rafts might control LCFA uptake by regulating surface availability of FAT/CD36.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号