首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Using fluorescence in situ hybridization (FISH) with probe pScT7, three different 5S rDNA loci were detected in the satellite of rye chromosome 1R (5SDna-R1) and in the short arms of chromosomes 3R (5SDna-R3) and 5R (5SDna-R2) respectively. All three loci showed polymorphism for the hybridization signal intensity. In order to determine the localization of these rye 5S rDNA multigene loci with higher precision within the corresponding chromosome arms, the probe pScT7 was physically mapped by FISH in relation to the following five translocations (Wageningen Tester Set): T850W (1RS/4RL), T248W (1RS/6RS), T273W (1RS/5RL), T305W (2RS/5RS) and T240W (3RS/5RL). Accurate physical maps of the translocation breakpoints had previously been made using electron microscope analysis of spread pachytene synaptonemal complexes of heterozygotes for the different translocations. The results indicate that locus 5SDna-R3 is located between the breakpoint of translocation T240W and the telomere, whereas locus 5SDna-R2 is located between the breakpoint of translocation T305W and the centromere, the hybridization of probe pScT7 on T305W translocated chromosomes demonstrating the complex nature of this translocation. On the other hand, the simultaneous detection of probes pScT7 and pTA71 (18S-5.8S-26S rDNA) with two different fluorochromes, indicated that the breakpoints of translocations T850W and T248W are located between loci Nor-R1 and 5SDna-R1.  相似文献   

2.
Homoeology of rye chromosome arms to wheat   总被引:5,自引:0,他引:5  
Summary Cytological markers such as diagnostic C-bands, telocentrics, and translocations were used to identify the arms of rye chromosomes associated with wheat chromosomes at metaphase I in ph1b mutant wheat × rye hybrids. Arm homoeologies of rye chromosomes to wheat were established from the results of metaphase I pairing combined with available data on the chromosomal location of homoeoloci series in wheat and rye. Only arms 1RS, 1RL, 2RL, 3RS, and 5RS showed normal homoeologous relationships to wheat. The remaining arms of rye appeared to be involved in chromosome rearrangements that occurred during the evolution of the genus Secale. We conclude that a pericentric inversion in chromosome 4R, a reciprocal translocation between 3RL and 6RL, and a multiple translocation involving 4RL, 5RL, 6RS, and 7RS are present in rye relative to wheat.  相似文献   

3.
Bi-directional selective genotyping (BSG) carried out on two opposite groups of F9(541 × Ot1-3) recombinant inbred lines (RILs) with extremely low and extremely high alpha-amylase activities in mature (dry) grain of rye, followed by molecular mapping, revealed a complex system of selection-responsive loci. Three classes of loci controlling alpha-amylase activity were discerned, including four major AAD loci on chromosomes 3R (three loci) and 6RL (one locus) responding to both directions of the disruptive selection, 20 AAR loci on chromosomes 2RL (three loci), 3R (three loci), 4RS (two loci), 5RL (three loci), 6R (two loci) and 7R (seven loci) responding to selection for low alpha-amylase activity and 17 AAE loci on chromosomes 1RL (seven loci), 2RS (two loci), 3R (two loci), 5R (two loci) and 6RL (four loci) affected by selection for high alpha-amylase activity. The majority of the discerned AA loci also showed responsiveness to selection for preharvest sprouting (PHS). Two AAD loci on chromosome arm 3RL coincided with PHSD loci. The AAD locus on chromosome arm 3RS was independent from PHS, whereas that on chromosome 6RL belonged to the PHSR class. AAR-PHSR loci were found on chromosomes 4RS (one locus) and 5R (two loci) and AAE-PHSE loci were identified on chromosomes 1RL (one locus) and 5RL (one locus). Some PHSD loci represented the AAE (chromosomes 1RL, 3RS and 3RL) or AAR classes (chromosome 5RL). AAR and AAE loci not related to PHS were found on chromosomes 1RL, 2R, 3RS, 4R, 6RL and 7RL. On the other hand, several PHS loci (1RL, 3RS, 5RL, 6RS and 7RS) had no effect on alpha-amylase activity. Allele originating from the parental line 541 mapped in six AA loci on chromosomes 2R (two loci), 5R (three loci) and 7R (one locus) exerted opposite effects on PHS and alpha-amylase activity. Differences between the AA and PHS systems of loci may explain the weak correlation between these two traits observed among recombinant inbred lines. Strategies for the breeding of sprouting-resistant varieties with low alpha-amylase and high PHS resistance are discussed.  相似文献   

4.
One hundred wheat lines, derived from monosomic additions of chromosome 1R of rye inbred line R12 (Chinese rye), were detected by PCR amplification using rye-specific primer pairs. Only 5 wheat lines, 1R296, 1R330, 1R314, 1R725, and 1R734, were determined to contain rye chromatin. While 1R296 and 1R330 were highly susceptible to stripe rust and powdery mildew, 1R314, 1R725 and 1R734 were highly resistant to both diseases. Acid-polyacrylamide gel electrophoresis showed that the ω-secalin bands were absent in 1R314, but present in the other 4 wheat lines. Genomicin situ hybridization indicated that 1R296, 1R330, and 1R725 contained translocations involving the whole short arm of chromosome 1R. However, 1R314 and 1R734 contained a pair of wheat chromosomes with small, terminal, rye-derived chromosome segments. The results suggest that the translocation breakpoint of 1RS in 1R314 was located between theSec-1 locus and the disease-resistance loci, while in line 1R734, the breakpoint was located between theSec-1 locus and the centromere. Taking account of the improved disease resistance of 1R725, 1R314 and 1R734, the chromosome arm 1RS of R12 may represent new and valuable disease resistance resources for wheat improvement.  相似文献   

5.
Transmission of chromosome 5R of rye (Secale cereale L.) and chromosome 5D of common wheat (Triticum aestivum L.) through gametes of 5R5D dimonosomics (2n = 42, 20W″ + 5R′ + 5D′) was studied. Chromosome 5R was found to have lower competitiveness as compared to 5D. Gametes with the rye chromosome were two times less often involved in the formation of a progeny. The combined frequency of the karyotypes of wheat (5D5D) and wheat monosomics (5D) was 11.6-fold higher than the frequency of the karyotypes of substitution lines (5R5R) and monosomics for the rye chromosome (5R). The karyotypes of 10.38% of hybrid plants had aberrant 5R chromosomes with different translocations formed as a result of breakages in the centromere and in the proximal region of the long arm. Telocentrics for the short arm t5RS, i5RS isochromosomes, and chromosomes with a terminal deletion T5RS.5RL-del were identified. The absence of amplification of SSR markers mapped on 5RS and the detection of PCR products for a number of 5RL markers (including the genome-specific rye marker Xrms115) permitted nine plants carrying only the long arm of chromosome 5R to be revealed. Since t5RL telocentrics were not detected by the cytological analysis, the results obtained allow us to suggest the presence of small intercalary translocations of the long arm of chromosome 5R in chromosome 5D or in other wheat chromosomes.  相似文献   

6.
Summary Linkage relationships were established between the secalin loci, Sec 1 (40-K gamma and omega secalins, homologous to the wheat gliadins) and Sec 3 (HMW = high-molecular-weight secalins, homologous to the wheat HMW glutenin subunits), and five chromosomal rearrangements involving chromosome 1R of rye (Secale cereale L.). These were: interchanges T273W (1RL/5RS), T306W (1RS/5RL), and T850W (1RS/ 4RL), Robertsonian centromere split Rb1RW and the interchanged Robertsonian split Rb2R/248W. The analysis established the linkage relationships between the secalin loci and the breakpoints of the rearrangements, in addition to the quantitative effects of the rearrangements on the linkage. Sec-1 is located in the satellite at a position at least 2.5 cMorgan from the proximal border of the terminal C-band, and about 30 cMorgan from the nucleolar organizing region (NOR). The locus is also physically closer to the terminal C-band than to the NOR, but not as much as corresponds with the map distances. Similarly, the physical distance between Sec-3 and the centromere is greater than corresponds with the recombination frequency (0%–9%). Although overall recombination in 1RL remains the same, recombination between the centromere and Sec-3 is greatly reduced in the Robertsonian split combined with the interchange. This is not the case with the single Robertsonian split.  相似文献   

7.
In order to reach a higher accuracy concerning the cytological locations of the rye seed storage protein lociSec2[Gli-R2] andSec3[Glu-R1] located within chromosome arms 2RS and 1RL, respectively, the linkage relationships between the following loci were analyzed: isozyme lociGpi-R1,Mdh-R1, andPgd2, translocationT273W (Wageningen tester set, involving chromosome arms 1RS and 5RL), the telomere C-bands of chromosome arms 1RL (tL1), 2RS (tS2), and 5RS (tS5), and three interstitial C-bands in chromosome arm 1RS (iS1), in the middle of chromosome arm 1RL (iL1), and in the middle of chromosome arm 2RL (iL2), respectively. The data indicated that locusSec3 is located in the distal half of chromosome arm 1RL (between C-bandiL1 and locusPgd2), while locusSec2 is located a short distance (2.9 ± 1.4%) from the telomere C-band of chromosome arm 2RS.  相似文献   

8.
Chromosomal rearrangements in the rye genome relative to that of wheat   总被引:13,自引:0,他引:13  
Summary An RFLP-based genetic map of Secale Cereale has provided evidence for multiple evolutionary translocations in the rye genome relative to that of hexaploid wheat. DNA clones which have previously been mapped in wheat indicated that chromosome arms 2RS, 3RL, 4RL, 5RL, 6RS, 6RL, 7RS and 7RL have all been involved in at least one translocation. A possible evolutionary pathway, which accounts for the present day R genome relative to the A, B and D genomes of wheat, is presented. The relevance of these results for strategies designed to transfer useful genes from rye, and probably other related species, to wheat is discussed.  相似文献   

9.
Cytogenetic maps involving chromosomes 1R, 3R, 4R and 6R have been developed from the analysis of offspring of crosses between multiple heterozygous rye plants. The maps include isozyme loci GpiR1, Mdh-R1 and Pgd2 (located in chromosome 1R), Mdh-R2 (located in chromosome 3R), Pgm-R1 (located in chromosome 4R) and Aco-R1 (located in chromosome 6R). Various telomeric and interstitial C-bands of these four chromosomes, the centromere split of chromosome 3R, and translocation TR01 were used as cytological markers. By means of electron microscope analysis of spread pachytene synaptonemal complexes, the breakpoint of TR01 was physically mapped in chromosome arms 4RS and 6RL. From the linkage data, conclusions were derived concerning the cytological locations of the isozyme loci and the physical extent of the evolutive translocations involving chromosome arm 6RL.  相似文献   

10.
Homozygous wheat/rye (1BL/1RS or 1AS/ 1RL) translocation lines have significantly contributed to wheat production, and several other wheat/rye translocation lines show a potential promise against biotic and abiotic stresses. Detecting the presence of rye at the chromosome level is feasible by C-banding and isozyme protocols, but the diagnostic strength of genomic in situ hybridization for eventually analyzing smaller DNA introgressions has greater significance. As a first step we have applied the genomic in situ hybridization technique to detect rye chromosomes in a wheat background using germ plasm of agricultural significance. By this method rye contributions to the translocations 1BL/1RS, 1AL/1RS, 5AS/5RL and 6BS/6RL could be identified. Differential labelling has further enabled the detection of rye and Thinopyrum bessarabicum chromosomes in a trigeneric hybrid of Triticum aestivum/Th. bessarabicum//Secale cereale.  相似文献   

11.
The Ph1 locus in hexaploid wheat (Triticum aestivum L.) enforces diploid-like behavior in the first metaphase of meiosis. To test the hypothesis that this chromosome pairing control is exercised by affecting the degree of chromatin condensation, the dispersion of rye chromatin in interphase nuclei in somatic tissues of wheat-rye chromosome translocations 1RS.1BL, 2RS.2BL, 2BS.2RL, 3RS.3DL and 5RS.5BL was compared in Ph1 and ph1b isogenic backgrounds. No significant differences in rye chromatin condensation that could be attributed to the Ph1 locus were detected. Regardless of the Ph1 status, each rye chromosome arm tested conformed to the general Rabl's orientation and occupied portions of the nuclei proportional to their length. Earlier observations that indicated the involvement of Ph1 locus in rye chromatin condensation in wheat could have been due either to specific loci on the studied 5RL rye arm that control the chromosome condensation process or to damage to the genetic system controlling chromatin condensation in the existing ph1b stocks of wheat. That damage might have been caused by homoeologous recombination and uneven disjunction of chromosomes from multivalents.  相似文献   

12.
The progeny of two crosses between a structural heterozygote for a reciprocal translocation (4RL/5RL) and a homozygote for the standard chromosome arrangement and of four crosses between standard chromosome homozygotes were analysed in rye (Secale cereale L. cv Ailés) for the electrophoretic patterns of five different leaf and endosperm isozymes (LAP, PGM, NDH, ADH and EPER). The presence or absence of the quadrivalents at metaphase I (MI) was also tested. Loci Adh-1, Pgm-1 and Ndh-1 were located on chromosome arm 4RS, and locus Eper-1 on chromosome arm 4RL. Locus Lap-2 was located on the 4RS chromosome arm. The estimated distances among the different linked loci support the following gene order: Eper1¨ (breakpoint-centromere)¨Lap-2¨ ¨Adh-1 ¨Pgm-1¨Ndh-1. These results provide evidence for the chromosomal location of Lap-2 locus on chromosome arm 4RS in cv Ailés. A high negative interference was detected between the zones delimited by centromere and Lap-2, and Lap-2 and Pgm-1 in plants with the 4RL/5RL translocation.Abbreviations LAP leucine aminopeptidase - PGM phosphoglucomutase - NDH NADH dehydrogenase - ADH alchohol dehydrogenase - EPER endosperm peroxidase  相似文献   

13.
Preharvest sprouting (PHS) and high alpha-amylase activity (AA) negatively affect quality of rye grain. The objective of this study was to reveal genetic relationship between PHS and AA by developing a consensus map of QTLs controlling each trait. A method of composite interval mapping (CIM) was used to search for QTLs within the 541 × Ot1-3 and DS2 × RXL10 F2 mapping populations representing wide variation range of both traits. Sixteen QTLs for AA were detected on chromosomes 1R (3), 2R (2), 3R (2), 4R (3), 5R (3), 6R (2) and 7R (1). Their distribution was not random showing a tendency of QTL location in distal regions of chromosomes. Nine QTLs for AA located on chromosome arms 1RS, 2RL, 3RS, 4RL, 5RS, 5RL, 6RS, 6RL and 7RS coincided with QTLs for PHS. Seven QTLs for AA independent from PHS were detected on chromosome arms 1RL (2), 2RS, 3RL, 4RS, 4RL and 5RL. Four QTLs for PHS not associated with those for AA were identified on chromosomes 1RL, 2RL, 5RL and 7RL. Partial overlapping of the genetic systems controlling AA and PHS suggests that alpha-amylase found in sound grain of rye could be produced through at least three independent mechanisms i.e. PHS at its initial stage, late maturity alpha-amylase (LMA) and/or retained pericarp alpha-amylase (RPAA). Six QTLs co-located on both maps were found on chromosome arms 1RS, 2RS, 5RS, 5RL, 6RS and 6RL. Valuable features of line Ot1-3 i.e. resistance to preharvest sprouting and low alpha-amylase production in ripening grain can be attributed to seven major QTLs from chromosomes 1RL, 2RL, 5RL (2), 6RL and 7R (2). This set of QTLs, identified in line Ot1-3, might be useful in breeding sprouting resistant cultivars of rye.  相似文献   

14.
 Fluorescence in situ hybridization (FISH) with multiple probes has been applied to meiotic chromosome spreads derived from ph1b common wheat x rye hybrid plants. The probes used included pSc74 and pSc 119.2 from rye (the latter also hybridizes on wheat, mainly B genome chromosomes), the Ae. squarrosa pAs1 probe, which hybridizes almost exclusively on D genome chromosomes, and wheat rDNA probes pTa71 and pTa794. Simultaneous and sequential FISH with a two-by-two combination of these probes allowed unequivocal identification of all of the rye (R) and most of the wheat (W) chromosomes, either unpaired or involved in pairing. Thus not only could wheat-wheat and wheat-rye associations be easily discriminated, which was already feasible by the sole use of the rye-specific pSc74 probe, but the individual pairing partners could also be identified. Of the wheat-rye pairing observed, which averaged from about 7% to 11% of the total pairing detected in six hybrid plants of the same cross combination, most involved B genome chromosomes (about 70%), and to a much lesser degree, those of the D (almost 17%) and A (14%) genomes. Rye arms 1RL and 5RL showed the highest pairing frequency (over 30%), followed by 2RL (11%) and 4RL (about 8%), with much lower values for all the other arms. 2RS and 5RS were never observed to pair in the sample analysed. Chromosome arms 1RL, 1RS, 2RL, 3RS, 4RS and 6RS were observed to be exclusively bound to wheat chromosomes of the same homoeologous group. The opposite was true for 4RL (paired with 6BS and 7BS) and 6RL (paired with 7BL). 5RL, on the other hand, paired with 4WL arms or segments of them in more than 80% of the cases and with 5WL in the remaining ones. Additional cases of pairing involving wheat chromosomes belonging to more than one homoeologous group occurred with 3RL, 7RS and 7RL. These results, while adding support to previous evidence about the existence of several translocations in the rye genome relative to that of wheat, show that FISH with multiple probes is an efficient method by which to study fundamental aspects of chromosome behaviour at meiosis, such as interspecific pairing. The type of knowledge attainable from this approach is expected to have a significant impact on both theoretical and applied research concerning wheat and related Triticeae. Received: 21 February 1996 / Accepted: 12 July 1996  相似文献   

15.
Rye (Secale cereale L.) is considered to be the most aluminum (Al)-tolerant species among the Triticeae. It has been suggested that aluminum tolerance in rye is controlled by three major genes (Alt genes) located on rye chromosome arms 3RL, 4RL, and 6RS, respectively. Screening of an F6 rye recombinant inbred line (RIL) population derived from the cross between an Al-tolerant rye (M39A-1–6) and an Al-sensitive rye (M77A-1) showed that a single gene controls aluminum tolerance in the population analyzed. In order to identify molecular markers tightly linked to the gene, we used a combination of amplified fragment length polymorphism (AFLP) and bulked segregant analysis techniques to evaluate the F6 rye RIL population. We analyzed approximately 22,500 selectively amplified DNA fragments using 204 primer combinations and identified three AFLP markers tightly linked to the Alt gene. Two of these markers flanked the Alt locus at distance of 0.4 and 0.7 cM. Chromosomal localization using cloned AFLP and a restriction fragment length polymorphism (RFLP) marker indicated that the gene was on the long arm of rye chromosome 4R. The RFLP marker (BCD1230) co-segregated with the Alt gene. Since the gene is on chromosome 4R, the gene was designated as Alt3. These markers are being used as a starting point in the construction of a high resolution map of the Alt3 region in rye. Received: 29 March 2000 / Accepted: 9 July 2001  相似文献   

16.
Summary Genetic analyses were conducted on alkaline phosphatases of the endosperm of dry kernels and leaf acid phosphatases in four open pollinated and one inbred line of cultivated rye (Secale cereale L.). A total of seven alkaline phosphatase isozymes were observed occurring at variable frequencies in the different cultivars analyzed. We propose that at least five loci control the alkaline phosphatases of rye endosperm — Alph-1, Alph-2, Alph-3, Alph-4 and Alph-5 — all of which have monomeric behaviour. The leaf acid phosphatases are controlled by one locus and have a dimeric quaternary structure. All loci coding for alkaline phosphatase isozymes showed one active, dominant allele and one null, recessive allele, except for the locus Alph-3 which showed two active, dominant alleles and one null, recessive one. The linkage analyses suggest the existence of two linkage groups for alkaline phosphatases: one of them would contain Alph-2, Alph-4, Alph-5 and the locus/loci coding isozymes 6 and 7. This linkage group is located in the 7RS chromosome arm. The other group would include Alph-1 and Alph-3 loci, being located in the 1RL chromosome arm. Leaf acid phosphatases have been previously located in the 7RL chromosome arm. Our data also support an independent relationship between loci controlling the endosperm alkaline phosphatases and leaf acid phosphatases.  相似文献   

17.
Summary An F1 plant fromSecale cereale ssp.ancestrale xtelocentric substitution lines3R of the cultivated rye Petkus spring was used as female in a cross with the inbred line Riodeva (I28), which has the standard chromosome arrangement. Single plants from this backcross progeny were analyzed for chromosome constitution, storage protein, and isozymic patterns. The seed protein loci were identified asSec-1a andSec-1b loci controlling 40-K-secalins and-secalins, respectively. These loci are located on the short arm of chromosome1R. TheSec-3 locus controlling high-molecular-weight secalins is located on the long arm of chromosome1R. A further seed protein locus,Pr-3 (55-K protein), was located on the short arm of chromosome1R. A linkage was found between the6Pgd-2 isozyme locus controlling 6-phosphogluconate dehydrogenase isozymes located on the long arm of chromosome1R and the four seed protein loci. The results favor the gene order:6Pgd-2 ...Sec-3 ... [centromere] ...Pr-3 ...Sec-1b ...Sec-1a. Other linkages detected werePer-3a andPer-3b (0.33±0.33 cM),Est-8 andEst-12 (0.33±0.33 cM), andGot-3 and centromere (20.57±2.42 cM). The proxidase (Per), glutamate oxaloacetate transaminase (Got), and esterase (Est) loci were located on chromosome arms2RS,3RL, and6RL, respectively. The distances and the maps obtained are compared with data available in the literature.  相似文献   

18.
The major limit to plant growth in acid soils is the presence of toxic aluminum (Al) cations, which limit growth by inhibiting root elongation. Aluminum tolerance in rye is controlled by (at least) four independent loci (Alt1, Alt2, Alt3 and Alt4) located on chromosome arms 6RS, 3RS, 4RL and 7RS, respectively. In this work, we analyzed several F2 populations in which two different Alt loci were segregating. We constructed a map of chromosome 7R, which contains the Alt4 locus and microsatellite and PCR-markers (B1, B4, B11, B26 and BCD1230). These markers were mapped to the S arm of 7R using wheat-rye addition lines. Our results show that all these markers are linked to the Alt4 locus already known to be on 7RS. In addition, the OPS14 705 RAPD marker was linked to the Alt3 locus using bulked segregant analysis. This RAPD marker was transformed into a SCAR (ScOPS14 705 ) and was localized to arm 4RL using wheat-rye addition lines. Finally, this SCAR was linked to the Alt3 locus at a genetic distance of 23.4 cM. In light of the current findings, and taking into account the synteny relationships in cereals, we propose candidate Alt3 and Alt4 orthologues in other cereals.  相似文献   

19.
Genetic control of alpha-amylase activity in rye grain was investigated by QTL mapping based on DS2 x RXL10 intercross consisting of 99 F5-6 families propagated at one location during four vegetation seasons. A wide range of variation in alpha-amylase activity and transgression effects were found among families and parental lines. This variation was shown to be determined in 40.1% by 7 significant (LOD score not less than 2.5) and 2 putative QTLs (2 < LOD < 2.5) distributed on all rye chromosomes except 4R. Two significant QTLs located on 3RL and 5RL chromosome arms were expressed each year. The third significant QTL was detected in three years (1RL). The other four significant QTLs (2RL, 5RS, 6RL, 7RL) were found in one year of study. The number and composition of QTLs were specific for a given year varying from three to six. QTLs were not correlated with isoenzyme polymorphisms at the structural alpha-Amy1 loci. A QTL associated with a region containing the alpha-Amy3 locus was detected on chromosome 5RL. Both high- and low-activity QTL alleles were found in each parental line, which explains the appearance of transgressive recombinants in the segregating population.  相似文献   

20.
A simple monoclonal antibody-based screening test has been developed for the presence of translocations of the short arm of chromosome 2 of rye (2RS) with wheat chromosome 2B. 2RS encodes a set of about three polypeptides known as Mr 75 000 gamma-secalins. Use of the antibody test for these secalins enabled screening of several hundred seeds per day. The antibody could readily distinguish 2BL-2RS translocations and 2R substitutions from 1BL-1RS translocations or nontranslocation wheats. Use of the antibody in analysis of segregating progeny for Sec-2 in several wheat backgrounds was successful. Results with a selection of the seed population were checked using protein gel electrophoresis, with 100% correct confirmation. Key words : rye, wheat, seed proteins, translocation, diagnostic test.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号