首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study examined the antimicrobial activity of the peptide ghrelin. Both major forms of ghrelin, acylated ghrelin (AG) and desacylated ghrelin (DAG), demonstrated the same degree of bactericidal activity against Gram-negative Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa), while bactericidal effects against Gram-positive Staphylococcus aureus (S. aureus) and Enterococcus faecalis (E. faecalis) were minimal or absent, respectively. To elucidate the bactericidal mechanism of AG and DAG against bacteria, we monitored the effect of the cationic peptides on the zeta potential of E. coli. Our results show that AG and DAG similarly quenched the negative surface charge of E. coli, suggesting that ghrelin-mediated bactericidal effects are influenced by charge-dependent binding and not by acyl modification. Like most cationic antimicrobial peptides (CAMPs), we also found that the antibacterial activity of AG was attenuated in physiological NaCl concentration (150mM). Nonetheless, these findings indicate that both AG and DAG can act as CAMPs against Gram-negative bacteria.  相似文献   

2.
Zhang L  Scott MG  Yan H  Mayer LD  Hancock RE 《Biochemistry》2000,39(47):14504-14514
Three structural variants (PV5, PV7, and PV8) of the horseshoe crab cationic antimicrobial peptide polyphemusin I were designed with improved amphipathic profiles. Circular dichroism spectroscopy analysis indicated that in phosphate buffer polyphemusin I, PV7, and PV8 displayed the spectrum of a type II beta-turn-rich structure, but, like polyphemusin I, all three variants adopted a typical beta-sheet structure in an anionic lipid environment. Both polyphemusin I and variants were potent broad spectrum antimicrobials that were clearly bactericidal at their minimal inhibitory concentrations. The variants were moderately less active in vitro but more effective in animal models. Moreover, these variants exhibited delayed bacterial killing, whereas polyphemusin I killed Escherichia coli UB1005 within 5 min at 2.5 microg/mL. All the peptides showed similar abilities to bind to bacterial lipopolysaccharide (LPS) and permeabilize bacterial outer membranes. Consistent with this was the observation that all peptides significantly inhibited cytokine production by LPS-stimulated macrophages and penetrated polyanionic LPS monolayers to similar extents. None of the peptides had affinity for neutral lipids as evident from both tryptophan fluorescence spectroscopy and Langmuir monolayer analysis. As compared to polyphemusin I, all variants showed reduced ability to interact with anionic lipids, and the hemolytic activity of the variants was decreased by 2-4-fold. In contrast, polyphemusin I efficiently depolarized the cytoplasmic membrane of E. coli, as assessed using a membrane potential sensitive fluorescent dye 3,3-dipropylthiacarbocyanine (diSC(3)5) assay, but the variants showed a substantially delayed and decreased depolarizing ability. The coincident assessment of cell viability indicated that depolarization of the bacterial cytoplasmic membrane potential by polyphemusin I occurred prior to lethal damage to cells. Our data suggest that increase of amphipathicity of beta-sheet polyphemusin I generally resulted in variants with decreased activity for membranes. Interestingly, all variants showed an improved ability to protect mice both against infection by Pseudomonas aeruginosa and from endotoxaemia.  相似文献   

3.
A bactericidal domain, P(18-39), of the proteinase inhibitor aprotinin, possesses the structural feature of two antiparallel beta-sheets connected by a short turn. In order to understand the structural requirements for antibacterial activity, two peptides, each having the sequence corresponding to a single beta-sheet structure of P(18-39), were synthesized and their antibacterial properties investigated. One peptide, P(18-28), with the sequence IIRYFYNAKAG, was active against almost all the bacterial strains investigated. However, the bactericidal activity of P(18-28) was reduced compared to the parent molecule, P(18-39). The other peptide, P(29-39), with the sequence LCQTFVYGGCR, was only weakly bactericidal against Pseudomonas aeruginosa. A peptide, P(18-26), devoid of the C-terminus dipeptide Ala-Gly of P(18-28), retained the bactericidal activity of P(18-28) against most of the bacterial strains investigated. Only Klebsiella pneumoniae, P. aeruginosa and Staphylococcus aureus were resistant to P(18-26). Replacement of lysine 26 by arginine in P(18-26) (IIRYFYNAR) improved the bactericidal activity. The retropeptide, RANYFYRII, retained the antibacterial activity of IIRYFYNAR toward Gram-negative bacteria, but it was less active against Gram-positive bacteria. The random peptide, IANRIYRYF, was as bactericidal as IIRYFYNAR. Moreover, the random peptide possessed, in contrast to IIRYFYNAR, a strong antifungal activity against Candida albicans. Elimination of the N-hydrophobic terminal Ile-Ile from P(18-26) (RYFYNAK) strongly reduced the bactericidal potency of the peptide. Attaching the hydrophobic peptide, FFVAP, to the C-terminal of P(18-26) (IIRYFYNAKFFVAP) increased the bactericidal potency of the peptides considerably. We concluded that the order of the amino acids in the sequence of the peptides is not, per se, a critical feature for bactericidal activity. Hydrophobic interaction between peptide and bacterial membrane is probably the most important feature involved in the bactericidal mechanism of the antibiotic peptides.  相似文献   

4.
L Cao  C Dai  Z Li  Z Fan  Y Song  Y Wu  Z Cao  W Li 《PloS one》2012,7(7):e40135
BmKn2 is an antimicrobial peptide (AMP) characterized from the venom of scorpion Mesobuthus martensii Karsch by our group. In this study, Kn2-7 was derived from BmKn2 to improve the antibacterial activity and decrease hemolytic activity. Kn2-7 showed increased inhibitory activity against both gram-positive bacteria and gram-negative bacteria. Moreover, Kn2-7 exhibited higher antibacterial activity against clinical antibiotic-resistant strains such as methicillin-resistant Staphylococcus aureus (MRSA). In addition, the topical use of Kn2-7 effectively protected the skin of mice from infection in an S. aureus mouse skin infection model. Kn2-7 exerted its antibacterial activity via a bactericidal mechanism. Kn2-7 killed S. aureus and E. coli rapidly by binding to the lipoteichoic acid (LTA) in the S. aureus cell wall and the lipopolysaccharides (LPS) in the E. coli cell wall, respectively. Finally, the hemolytic activity of Kn2-7 was significantly decreased, compared to the wild-type peptide BmKn2. Taken together, the Kn2-7 peptide can be developed as a topical therapeutic agent for treating bacterial infections.  相似文献   

5.
Rat defensins were purified and tested for in vitro bactericidal assay against gram-positive and gram-negative bacteria. Staphylococcus aureus (209P, Cowan I, Smith diffuse and Smith compact) were resistant to defensins, whereas Staphylococcus epidermidis, Staphylococcus saprophyticus, Micrococcus lysodeikticus and Bacillus subtilis were less sensitive. Gram-negative bacteria, such as Pseudomonas aeruginosa (mucoid and K) and Klebsiella pneumoniae (Chedid, 277, and 8N3 which were heavily capsulated, moderately capsulated and noncapsulated, respectively) were all very sensitive to defensins and killed within 20 min. Escherichia coli was moderately sensitive and the rough mutants of lipopolysaccharide (LPS) of Salmonella typhimurium LT2, such as Ra, Rc, Rd, and Re were equally sensitive to defensins, being killed within 40 min. Lysozyme did not show any bactericidal activity except against M. lysodeikticus and B. subtilis, whereas it enhanced the bactericidal activity of defensins against P. aeruginosa, E. coli, and K. pneumoniae and suppressed the killing activity of defensins against S. typhimurium and S. aureus. With regard to the three synthetic rabbit defensins, NP1, NP4, and NP5, NP1 showed strong bactericidal activity against K. pneumoniae 277, comparable to that of rat defensins. Neither NP4 nor NP5 showed any bactericidal activity, while NP5 rather enhanced the bactericidal activity of NP1 against K. pneumoniae 277.  相似文献   

6.
GL13NH2 is a bacteria-agglutinating peptide derived from the sequence of the salivary protein parotid secretory protein (PSP, BPIFA2, SPLUNC2, C20orf70). The peptide agglutinates both Gram negative and Gram positive bacteria, and shows anti-lipopolysaccharide activity in vitro and in vivo. However, GL13NH2 does not exhibit bactericidal activity. To generate a more cationic peptide with potential bactericidal activity, three amino acid residues were replaced with lysine residues to generate the peptide GL13K. In this report, the antibacterial and anti-inflammatory activities of GL13K were characterized. GL13K had lost the ability to agglutinate bacteria but gained bactericidal activity. Substitution of individual amino acids in GL13K with alanine did not restore bacterial agglutination. GL13K was bactericidal against Pseudomonas aeruginosa, Streptococcus gordonii and Escherichia coli but not Porphyromonas gingivalis. Unlike the agglutinating activity of GL13NH2, the bactericidal activity of GL13K against P. aeruginosa was retained in the presence of saliva. Both GL13NH2 and GL13K exhibited anti-lipopolysaccharide activity. In GL13K, this activity appeared to depend on a serine hydroxyl group. GL13K protected mice from lipopolysaccharide-induced sepsis and the peptide exhibited a low level of hemolysis, suggesting that it may be suitable for in vivo application.  相似文献   

7.
Y Endo  T Tani    M Kodama 《Applied microbiology》1987,53(9):2050-2055
Tertiary amine was covalently bonded to a polystyrene fiber and examined for antibacterial activity. The tertiary amine covalently bonded to a polystyrene fiber (TAF) showed a high antimicrobial activity against Escherichia coli. TAF exhibited a stronger antibacterial activity against gram-negative bacteria (E. coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Salmonella typhimurium, and Serratia marcescens) than against gram-positive bacteria (Staphylococcus aureus and Streptococcus faecalis) or Candida albicans. This activity against E. coli was accentuated by 0.1% deoxycholate or 10 mg of actinomycin D per ml, to which E. coli is normally not susceptible. This implies that TAF causes an increase of the bacterial outer membrane permeability. On the other hand, the antimicrobial activity was inhibited by adding Mg2+ or by lowering the pH. This suggest an electrostatic interaction between the bacterial cell wall and TAF. Scanning electron microscopy showed that E. coli cells were initially attached to TAF, with many projections on the cell surface, but then were apparently lysed after contact for 4 h. Taken together, these results imply that bacteria initially interact with TAF by an electrostatic force between the anionic bacterial outer membrane and the cationic tertiary amine residues of TAF and that longer contact with TAF damages the bacterial outer membrane structure and increases its permeability.  相似文献   

8.
NMR solution structure of the angiostatic peptide anginex   总被引:1,自引:0,他引:1  
Anginex, a designed peptide 33mer, is known to function both as an antiangiogenic and bactericidal agent. Solving the NMR solution structure of the peptide is key to understand better its structure-activity relationships and to design more bioactive peptides and peptide mimetics. However, structure elucidation of anginex has been elusive due to subunit exchange-induced resonance broadening. Here, we found that performing NMR structural studies in a micellar environment abolishes exchange broadening and allows the structure of anginex to be determined. Anginex folds in an amphipathic, three-stranded antiparallel beta-sheet conformation with functionally key hydrophobic residues lying on one face of the beta-sheet and positively charged, mostly lysine residues, lying on the opposite face. Structural comparison is made with a homologous, yet relatively inactive peptide, betapep-28. These results contribute to the design of peptidomimetics of anginex for therapeutic use against angiogenically-related diseases like cancer, as well as infectious diseases.  相似文献   

9.
Group IIA secreted phospholipase A(2) (sPLA2) is known to display potent Gram-positive bactericidal activity in vitro and in vivo. We have analyzed the bactericidal activity of the full set of recombinant murine and human groups I, II, V, X, and XII sPLA2s on Listeria monocytogenes, Staphylococcus aureus, and Escherichia coli. The rank order potency among human sPLA2s against Gram-positive bacteria is group IIA > X > V > XII > IIE > IB, IIF (for murine sPLA2s: IIA > IID > V > IIE > IIC, X > IB, IIF), and only human group XII displays detectable bactericidal activity against the Gram-negative bacterium E. coli. These studies show that highly basic sPLA2s display potent bactericidal activity with the exception of the ability of the acidic human group X sPLA2 to kill Gram-positive bacteria. By studying the Bacillus subtilis and S. aureus bactericidal potencies of a large panel of human group IIA mutants in which basic residues were mutated to acidic residues, it was found that: 1) the overall positive charge of the sPLA2 is the dominant factor in dictating bactericidal potency; 2) basic residues on the putative membrane binding surface of the sPLA2 are modestly more important for bactericidal activity than are other basic residues; 3) relative bactericidal potency tracks well with the ability of these mutants to degrade phospholipids in the bacterial membrane; and 4) exposure of the bacterial membrane of Gram-positive bacteria by disruption of the cell wall dramatically reduces the negative effect of charge reversal mutagenesis on bactericidal potency.  相似文献   

10.
Beta-defensins comprise a family of cationic peptides, which are predominately expressed at epithelial surfaces and have a broad-range antimicrobial activity. We have assembled two BAC-based contigs from the chromosomal region 8A4 that contain the murine defensins, and we have mapped six reported beta-defensin genes. In addition, we have isolated and functionally characterized a novel beta-defensin gene that deviates from the canonical six cysteine motif present in the mature functional peptide of all other beta-defensins. This defensin-related gene (Defr1) is most highly expressed in testis and heart. The genomic organization is highly similar to Defb3, 4, 5, and 6, and the exon 1 sequence is very highly conserved. A synthetic Defr1 peptide displayed antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Burkholderia cepacia. The antimicrobial activity of Defr1 against S. aureus, E.coli, and B. cepacia was found to be reduced in raised concentration of NaCl, but its action against P. aeruginosa was independent of NaCl concentration. This is the first report of a functional beta defensin that lacks one of the conserved cysteine residues in its predicted mature peptide. This study has major implications for the structure and functions of these important host defense molecules.  相似文献   

11.
Cyclization of R- and W-rich hexapeptides has been found to enhance specifically the antimicrobial activity against Gram-negative Escherichia coli. To gain insight into the role of the bacterial outer membrane in mediating selectivity, we assayed the activity of cyclic hexapeptides derived from the parent sequence c-(RRWWRF) against several E. coli strains and Bacillus subtilis, L-form bacteria, and E. coli lipopolysaccharide (LPS) mutant strains, and we also investigated the peptide-induced permeabilization of the outer and inner membrane of E. coli. Wall-deficient L-form bacteria were distinctly less susceptible than the wild type strain. The patterns of peptide-induced permeabilization of the outer and inner E. coli membranes correlated well with the antimicrobial activity, confirming that membrane permeabilization is a detrimental effect of the peptides upon bacteria. Truncation of LPS had no influence on the activity of the cyclic parent peptide, but the highly active c-(RRWFWR), with three adjacent aromatic residues, required the complete LPS for maximal activity. Furthermore, differences in the activity of the parent peptide and its all-D sequence indicated stereospecific interactions with the LPS mutant strains. We suggest that, depending on the primary sequence of the peptides, either hydrophobic interactions with the fatty acid chains of lipid A, or electrostatic interactions disturbing the polar core region and interference with saccharide-saccharide interactions prevail in the barrier-disturbing effect upon the outer membrane and thereby provide peptide accessibility to the inner membrane. The results underline the importance of tryptophan and arginine residues and their relative location for a high antimicrobial effect, and the activity-modulating function of the outer membrane of E. coli. In addition to membrane permeabilization, the data provided evidence for the involvement of other mechanisms in growth inhibition and killing of bacteria.  相似文献   

12.
Fallaxin is a 25-mer antibacterial peptide amide, which was recently isolated from the West Indian mountain chicken frog Leptodactylus fallax. Fallaxin has been shown to inhibit the growth of several Gram-negative bacteria including Enterobacter cloacae, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Here, we report a structure-activity study of fallaxin based on 65 analogs, including a complete alanine scan and a full set of N- and C-terminal truncated analogs. The fallaxin analogs were tested for hemolytic activity and antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-intermediate resistant S. aureus, (VISA), methicillin-susceptible S. aureus (MSSA), E. coli, K. pneumoniae, and P. aeruginosa. We identified several analogs, which showed improved antibacterial activity compared to fallaxin. Our best candidate was FA12, which displayed MIC values of 3.12, 25, 25, and 50 muM against E. coli, K. pneumoniae, MSSA, and VISA, respectively. Furthermore, we correlated the antibacterial activity with various structural parameters such as charge, hydrophobicity H, mean hydrophobic moment mu(H), and alpha-helicity. We were able to group the active and inactive analogs according to mean hydrophobicity H and mean hydrophobic moment mu(H). Far-UV CD-spectroscopy experiments on fallaxin and several analogs in buffer, in TFE, and in membrane mimetic environments (small unilamellar vesicles) indicated that a coiled-coil conformation could be an important structural trait for antibacterial activity. This study provides data that support fallaxin analogs as promising lead structures in the development of new antibacterial agents.  相似文献   

13.
Amphiphilic monodisperse compounds (series B-I and B-II) and poly(ethylene imine)s (PEI-I, PEI-II, and PEI-III) with different microstructures were prepared from primary amines or poly(ethylene imine) with functional carbonates bearing cationic, hydrophobic, or amphiphilic groups. Their inhibition potential against proliferation of E. coli , S. aureus , and B. subtilis was investigated and their hemolytic activities were determined. The influence of the microstructures, the alkyl chain length and the distribution of cationic and hydrophobic groups, on their antimicrobial efficacy was studied. Amphiphilic compounds with long alkyl chains (C14-C18) directly linked to the cationic groups (series B-I) are more effective against both Gram-positive and Gram-negative bacteria than amphiphilic compounds in which the hydrophobic and cationic groups (series B-II) are connected by a spacer. Poly(ethylene imine)s with amphiphilic grafts (B-I) called PEI-II are more effective than amphiphilic PEIs with the same alkyl chain but with randomly linked cationic and hydrophobic graft called PEI-I or with the amphiphilic grafts (B-II) called PEI-III. The influence of the inoculum size on the MIC value was investigated exemplarily with compounds of series B-I against S. aureus .  相似文献   

14.
Antimicrobial peptides from the Brazilian frog Phyllomedusa distincta.   总被引:1,自引:0,他引:1  
Different peptides were purified by chromatographic procedures from the skin-secretory glands of the frog Phyllomedusa distincta. These are the first peptides reported from this frog species. Their primary structure was determined by a combination of automated Edman degradation and mass spectrometry. Peptide Q2 contains 25 amino acid residues, peptide Q1 and L have 28 each, peptide M contains 31, and peptide K has 33 amino acid residues. They all showed potent antimicrobial activity against Gram-negative and Gram-positive bacteria, presenting minimal inhibitory concentrations from 0.6 to 40 microM, when tested against Enterococcus faecalis, Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. Peptides K, L, and Q1 were chemically synthesized and shown to be active.  相似文献   

15.
Eosinophil cationic protein (ECP) and eosinophil derived neurotoxin (EDN) are proteins of the ribonuclease A (RNase A) superfamily that have developed biological properties related to the function of eosinophils. ECP is a potent cytotoxic molecule, and although the mechanism is still unknown this cytotoxic activity has been associated with its highly cationic character. Using liposome vesicles as a model, we have demonstrated that ECP tends to disrupt preferentially acidic membranes. On the basis of structure analysis, ECP variants modified at basic and hydrophobic residues have been constructed. Changes in the leakage of liposome vesicles by these ECP variants have indicated the role of both aromatic and basic specific amino acids in cellular membrane disruption. This is the case with the two tryptophans at positions 10 and 35, but not phenylalanine 76, and the two arginines 101 and 104. The bactericidal activity of both native ECP and point-mutated variants, tested against Escherichia coli and Staphylococcus aureus, suggests that basic amino acids play, in addition to the effect on the disruption of the cellular membrane, other roles such as specific binding on the surface of the bacteria cell.  相似文献   

16.
To determine the antibacterial activity of defensins and other antimicrobial peptides in biopsy extracts, we evaluated a flow cytometric method with the membrane potential sensitive dye bis-(1,3-dibutylbarbituric acid) trimethine oxonol [DiBAC4(3)]. This assay enables us to discriminate intact non-fluorescent and depolarized fluorescent bacteria after exposure to antimicrobial peptides by measurement at the direct target, the cytoplasmic membrane and the membrane potential. The feasibility of the flow cytometric assay was evaluated with recombinant human beta-defensin 3 (HBD-3) against 25 bacterial strains representing 12 species. HBD-3 showed a broad-spectrum dose dependent activity and the minimal dose to cause depolarization ranged from 1.25 to >15 microg/ml HBD-3, depending on the species tested. The antibacterial effect was diminished with sodium chloride or dithiothreitol and could be abrogated with a HBD-3 antibody. Additionally, isolated cationic extracts from human intestinal biopsies showed a strong bactericidal effect against Escherichia coli K12, E. coli ATCC 25922 and Staphylococcus aureus ATCC 25923, which was diminished towards E. coli at 150 mM NaCl, whereas the activity towards S. aureus ATCC 25923 remained unaffected at physiological salt concentrations. DTT blocked the bactericidal effect of biopsy extracts completely.  相似文献   

17.
The bactericidal activity of catechin-copper (II) complexes against Staphylococcus aureus compared with Escherichia coli was investigated in relation to the generation of hydrogen peroxide and the binding of Cu(II) ion onto the bacteria. The bactericidal activity of catechin-Cu(II) complexes against Staph. aureus (Gram-positive) was much lower than that against E. coli (Gram-negative), suggesting that the binding of copper ions to the surface of bacterial cells plays an important role in the bactericidal activity of catechin-Cu(II) complexes.  相似文献   

18.
The antibacterial activity of the methanolic extract and its fractions of aerial parts of Aniheinis tinctoria (Asteraceae) was investigated against representative gram-positive Staphylococcus aureus (ATCC 25923) and Enterococcus faecalis (ATCC 29212) and gram-negative strains Escherichia coli (ATCC 25922) and Pseudomonas aeruginosa (ATCC 27853). The activity was concentrated mainly in the dichloromethane (DCM) and hexane fractions of crude methanolic extract. The 5 mg of DCM extract per disk produced 15-16 mm of inhibition zone against S. aureus and P. aeruginosa, however, no activity was found against E. faecalis and E. coli. The hexane fraction showed activity against S. aureus, P. aeruginosa and E. faecalis. As DCM fraction showed the highest antibacterial activity in the disk diffusion assay, the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of only this fraction was determined against S. aureus and P. aeruginosa. These values were found to be in the range of 1.25 to 10 mg/ml.  相似文献   

19.
【目的】鉴定家蝇 Musca domestica (Linnaeus)中一种新型抗菌肽(Muscin)基因,并分析其功能。【方法】通过数字基因表达谱和生物信息学分析,在家蝇转录组中筛选得到一条抗菌肽基因,命名为 muscin。以实时荧光定量PCR技术研究该基因的组织分布以及用大肠杆菌Escherichia coli和金黄色葡萄球菌Staphylococcus aureus混合细菌刺激后的表达量变化。并对合成肽Muscin进行抑菌活性检测及溶血率测定。【结果】muscin基因cDNA序列全长379 bp,包含完整的开放阅读框153 bp。推导Muscin多肽序列由50个氨基酸残基组成,N端含有由25个氨基酸残基组成的信号肽。成熟肽中富含疏水性氨基酸残基和带正电荷的氨基酸残基,理论等电点为9.39。基因定量结果显示 muscin 基因在血细胞和脂肪体中表达量最高。通过细菌刺激进行免疫诱导后,幼虫体内该基因的表达水平明显上调,并在6 h达到高峰。抑菌和溶血实验显示c-Muscin对革兰氏阳性菌和革兰氏阴性菌具有广谱抑菌活性,且溶血活性较低。【结论】Muscin是一种新型的广谱抗菌肽,可能参与家蝇抗菌免疫反应,且具有一定药物开发潜质。  相似文献   

20.
Kim Y  Kwak GH  Lee C  Kim HY 《BMB reports》2011,44(10):669-673
Human methionine sulfoxide reductase B3A (hMsrB3A) is an endoplasmic reticulum (ER) reductase that catalyzes the stereospecific reduction of methionine-R-sulfoxide to methionine in proteins. In this work, we identified an antimicrobial peptide from hMsrB3A protein. The N-terminal ER-targeting signal peptide (amino acids 1-31) conferred an antimicrobial effect in Escherichia coli cells. Sequence and structural analyses showed that the overall positively charged ER signal peptide had an Argand Pro-rich region and a potential hydrophobic α-helical segment that contains 4 cysteine residues. The potential α-helical region was essential for the antimicrobial activity within E. coli cells. A synthetic peptide, comprised of 2-26 amino acids of the signal peptide, was effective at killing Gram-negative E. coli, Klebsiella pneumoniae, and Salmonella paratyphi, but had no bactericidal activity against Gram-positive Staphylococcus aureus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号