首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Actin dynamics provide the driving force for many cellular processes including motility and endocytosis. Among the central cytoskeletal regulators are actin-depolymerizing factor (ADF)/cofilin, which depolymerizes actin filaments, and twinfilin, which sequesters actin monomers and caps filament barbed ends. Both interact with actin through an ADF homology (ADF-H) domain, which is also found in several other actin-binding proteins. However, in the absence of an atomic structure for the ADF-H domain in complex with actin, the mechanism by which these proteins interact with actin has remained unknown. Here, we present the crystal structure of twinfilin's C-terminal ADF-H domain in complex with an actin monomer. This domain binds between actin subdomains 1 and 3 through an interface that is conserved among ADF-H domain proteins. Based on this structure, we suggest a mechanism by which ADF/cofilin and twinfilin inhibit nucleotide exchange of actin monomers and present a model for how ADF/cofilin induces filament depolymerization by weakening intrafilament interactions.  相似文献   

2.
Hu X  Kuhn JR 《PloS one》2012,7(2):e31385
We reconstructed cellular motility in vitro from individual proteins to investigate how actin filaments are organized at the leading edge. Using total internal reflection fluorescence microscopy of actin filaments, we tested how profilin, Arp2/3, and capping protein (CP) function together to propel thin glass nanofibers or beads coated with N-WASP WCA domains. Thin nanofibers produced wide comet tails that showed more structural variation in actin filament organization than did bead substrates. During sustained motility, physiological concentrations of Mg(2+) generated actin filament bundles that processively attached to the nanofiber. Reduction of total Mg(2+) abolished particle motility and actin attachment to the particle surface without affecting actin polymerization, Arp2/3 nucleation, or filament capping. Analysis of similar motility of microspheres showed that loss of filament bundling did not affect actin shell formation or symmetry breaking but eliminated sustained attachments between the comet tail and the particle surface. Addition of Mg(2+), Lys-Lys(2+), or fascin restored both comet tail attachment and sustained particle motility in low Mg(2+) buffers. TIRF microscopic analysis of filaments captured by WCA-coated beads in the absence of Arp2/3, profilin, and CP showed that filament bundling by polycation or fascin addition increased barbed end capture by WCA domains. We propose a model in which CP directs barbed ends toward the leading edge and polycation-induced filament bundling sustains processive barbed end attachment to the leading edge.  相似文献   

3.
Twf (twinfilin) is an evolutionarily conserved regulator of actin dynamics composed of two ADF-H (actin-depolymerizing factor homology) domains. Twf binds actin monomers and heterodimeric capping protein with high affinity. Previous studies have demonstrated that mammals express two Twf isoforms, Twf1 and Twf2, of which at least Twf1 also regulates cytoskeletal dynamics by capping actin filament barbed-ends. In the present study, we show that alternative promoter usage of the mouse Twf2 gene generates two isoforms, which differ from each other only at their very N-terminal region. Of these isoforms, Twf2a is predominantly expressed in non-muscle tissues, whereas expression of Twf2b is restricted to heart and skeletal muscle. Both proteins bind actin monomers and capping protein, as well as efficiently capping actin filament barbed-ends. However, the N-terminal ADF-H domain of Twf2b interacts with ADP-G-actin with a 5-fold higher affinity than with ATP-G-actin, whereas the corresponding domain of Twf2a binds ADP-G-actin and ATP-G-actin with equal affinities. Taken together, these results show that, like Twf1, mouse Twf2 is a filament barbed-end capping protein, and that two tissue-specific and biochemically distinct isoforms are generated from the Twf2 gene through alternative promoter usage.  相似文献   

4.
Twinfilin is a ubiquitous and abundant actin monomer-binding protein that is composed of two ADF-H domains. To elucidate the role of twinfilin in actin dynamics, we examined the interactions of mouse twinfilin and its isolated ADF-H domains with G-actin. Wild-type twinfilin binds ADP-G-actin with higher affinity (K(D) = 0.05 microM) than ATP-G-actin (K(D) = 0.47 microM) under physiological ionic conditions and forms a relatively stable (k(off) = 1.8 s(-1)) complex with ADP-G-actin. Data from native PAGE and size exclusion chromatography coupled with light scattering suggest that twinfilin competes with ADF/cofilin for the high-affinity binding site on actin monomers, although at higher concentrations, twinfilin, cofilin, and actin may also form a ternary complex. By systematic deletion analysis, we show that the actin-binding activity is located entirely in the two ADF-H domains of twinfilin. Individually, these domains compete for the same binding site on actin, but the C-terminal ADF-H domain, which has >10-fold higher affinity for ADP-G-actin, is almost entirely responsible for the ability of twinfilin to increase the amount of monomeric actin in cosedimentation assays. Isolated ADF-H domains associate with ADP-G-actin with rapid second-order kinetics, whereas the association of wild-type twinfilin with G-actin exhibits kinetics consistent with a two-step binding process. These data suggest that the association with an actin monomer induces a first-order conformational change within the twinfilin molecule. On the basis of these results, we propose a kinetic model for the role of twinfilin in actin dynamics and its possible function in cells.  相似文献   

5.
Twinfilin is an evolutionarily conserved actin monomer-binding protein that regulates cytoskeletal dynamics in organisms from yeast to mammals. It is composed of two actin-depolymerization factor homology (ADF-H) domains that show approximately 20% sequence identity to ADF/cofilin proteins. In contrast to ADF/cofilins, which bind both G-actin and F-actin and promote filament depolymerization, twinfilin interacts only with G-actin. To elucidate the molecular mechanisms of twinfilin-actin monomer interaction, we determined the crystal structure of the N-terminal ADF-H domain of twinfilin and mapped its actin-binding site by site-directed mutagenesis. This domain has similar overall structure to ADF/cofilins, and the regions important for actin monomer binding in ADF/cofilins are especially well conserved in twinfilin. Mutagenesis studies show that the N-terminal ADF-H domain of twinfilin and ADF/cofilins also interact with actin monomers through similar interfaces, although the binding surface is slightly extended in twinfilin. In contrast, the regions important for actin-filament interactions in ADF/cofilins are structurally different in twinfilin. This explains the differences in actin-interactions (monomer versus filament binding) between twinfilin and ADF/cofilins. Taken together, our data show that the ADF-H domain is a structurally conserved actin-binding motif and that relatively small structural differences at the actin interfaces of this domain are responsible for the functional variation between the different classes of ADF-H domain proteins.  相似文献   

6.
The turnover of actin filament networks in cells has long been considered to reflect the treadmilling behavior of pure actin filaments in vitro, where only the pointed ends depolymerize. Newly discovered molecular mechanisms challenge this notion, as they provide evidence of situations in which growing and depolymerizing barbed ends coexist.

IntroductionIn cells, actin assembles into filament networks with diverse architectures and lifetimes, playing key roles in functions such as endocytosis, cell motility, and cell division. These filament networks are maintained and renewed by actin turnover, which implies that assembly and disassembly must take place simultaneously and in a controlled manner within the networks. Each actin filament end has the ability to either grow or shrink, depending on the concentration of actin and regulatory proteins, but pure actin treadmills at steady state: ATP-actin is added at the barbed end at a rate matching the departure of ADP-actin from the pointed end, and ATP hydrolysis takes place within the filament. This hallmark feature of actin dynamics has been known for decades (Wegner, 1976) and has been generalized to the cell context, in which it is commonly assumed that actin polymerization takes place at the barbed end, while depolymerization takes place only at the pointed end (whether it be the ends of filaments within the network or the ends of fragments that have detached from it). This notion is reinforced by the fact that the cytoplasm contains high concentrations of monomeric actin (G-actin) in complex with profilin (Funk et al., 2019), which is unable to bind to pointed ends and should drive the elongation of all noncapped barbed ends.Recently, however, in vitro studies have identified two seemingly independent mechanisms in which, in the presence of profilin-actin, filament barbed ends alternate between phases of growth and depolymerization. This behavior, referred to as “dynamic instability,” is widely observed for microtubules but was unexpected for actin filaments. It suggests that cells could use barbed ends for both elongation and disassembly.Driving the depolymerization of barbed ends with cofilin side-decorationProteins of the actin depolymerizing factor (ADF)/cofilin family (henceforth cofilin) are composed of a single ADF-homology (ADF-H) domain and are mostly known for their actin filament–severing activity (De La Cruz, 2009). Cofilin binds cooperatively to the sides of actin filaments, forming clusters where the conformation of the filament is locally altered, leading to its severing at cofilin cluster boundaries. In addition, the barbed ends of cofilin-decorated filaments steadily depolymerize, despite the presence of G-actin and profilin-actin (Fig. 1 A) and even capping protein (CP) in solution (Wioland et al., 2017, 2019). This unexpected result likely originates from the conformational change of actin subunits at the barbed end, induced by cofilin side-binding. As a consequence, filaments exposed to G-actin (with or without profilin), CP, and cofilin alternate between phases of barbed-end elongation and barbed-end depolymerization. In these conditions, actin filament barbed ends thus exhibit a form of dynamic instability.Open in a separate windowFigure 1.Two mechanisms that give rise to barbed-end depolymerization in elongation-promoting conditions. (A) When a cofilin side-decorated region reaches the barbed end, adding a new actin or profilin-actin becomes very difficult, and the barbed end depolymerizes. Not represented: Capping by CP can lead to depolymerization, as it allows the cofilin cluster to reach the barbed end, which then has a much weaker affinity for CP and steadily depolymerizes. Also, severing events occur at cofilin cluster boundaries, creating new barbed ends, either bare or cofilin-decorated. (B) Twinfilin binds to the barbed end, preventing its elongation and causing its depolymerization. Whether twinfilin remains processively attached to the depolymerizing barbed end or departs with the actin subunits is still unknown. Twinfilin has no impact on the elongation of mDia1-bearing barbed ends.Driving the depolymerization of barbed ends with twinfilin end-targetingTwinfilin has two ADF-H domains, but unlike cofilin, it binds poorly to the sides of actin filaments. Rather, twinfilin appears to mainly sequester ADP-actin monomers and target the barbed end to modulate its elongation and capping. Recent in vitro studies have shown that the interaction of twinfilin with actin filament barbed ends could drive their depolymerization, even in the presence of G-actin and profilin-actin (Johnston et al., 2015; Hakala et al., 2021; Shekhar et al., 2021). Very interestingly, the processive barbed-end elongator formin mDia1 is able to protect barbed ends from twinfilin, allowing them to sustain elongation (Shekhar et al., 2021). This leads to a situation in which, as filaments are exposed to profilin-actin and twinfilin, mDia1-bearing barbed ends elongate while bare barbed ends depolymerize (Fig. 1 B). It is safe to assume that, if filaments were continuously exposed to this protein mix including formin in solution, they would alternate between phases of growth and shrinkage over time, as formins come on and fall off the barbed end. This mix of proteins would therefore constitute another situation causing actin filament dynamic instability.From actin treadmilling to dynamic instability, in cells?This newly identified versatile behavior of actin filaments is reminiscent of microtubules. While dynamic instability is the hallmark behavior of microtubules, they can also be made to treadmill steadily by adding 4 microtubule-associated proteins (Arpağ et al., 2020). In cells, both microtubule dynamic instability and treadmilling have been clearly observed (Wittmann et al., 2003). In contrast, the disassembly of single actin filaments, either embedded in a network or severed from it, has not yet been directly observed in cells. Despite insights from techniques such as single-molecule speckle microscopy, it is still unclear from which end actin filaments depolymerize, even in networks that appear to globally treadmill, such as the lamellipodium. Pointed end depolymerization alone cannot account for what is observed in cells (Miyoshi et al., 2006) and alternative mechanisms have been proposed, including brutal filament-to-monomer transitions occurring in bursts, driven by cofilin, coronin, and Aip1 (Brieher, 2013; Tang et al., 2020).In cells, the high amounts of available G-actin (tens of micromolars; Funk et al., 2019) should limit barbed-end depolymerization. Based on the reported on-rate for ATP–G-actin at the barbed ends of cofilin-decorated filaments (Wioland et al., 2017, 2019), we can estimate that these barbed ends, under such conditions, would depolymerize for tens of seconds before being “rescued,” which is enough to remove tens of subunits from each filament. In contrast, twinfilin concentrations similar to those of G-actin appear necessary to drive barbed-end depolymerization (Hakala et al., 2021; Shekhar et al., 2021). As proteomics studies in HeLa cells report that twinfilin is 50-fold less abundant than actin, this may be difficult to achieve in cells (Bekker-Jensen et al., 2017). However, future studies may uncover proteins, or posttranslational modifications of actin, that enhance the ability of twinfilin to drive barbed-end depolymerization in the presence of high concentrations of profilin-actin.Molecular insights and possible synergiesWhile cofilin and twinfilin both interact with actin via ADF-H domains, they appear to drive barbed-end depolymerization through different mechanisms: twinfilin by directly targeting the barbed end, and cofilin by decorating the filament sides, thereby changing the conformation of the filament and putting its barbed end in a depolymerization-prone state.The two mechanisms, nonetheless, share clear similarities. For instance, cofilin side-binding and twinfilin end-targeting both slow down ADP-actin barbed-end depolymerization, compared with bare ADP-actin filaments (Wioland et al., 2017; Hakala et al., 2021; Shekhar et al., 2021). Strikingly, a crystal structure of the actin/twinfilin/CP complex indicates that the actin conformational change induced by twinfilin binding at the barbed end is similar to that induced by cofilin decorating the sides (Mwangangi et al., 2021). It is thus possible that the dynamic instability of actin filament barbed ends reflects the same conformation changes, triggered either by cofilin side-decoration or twinfilin end-targeting.In addition to decorating the filament sides, cofilin targets ADP-actin barbed ends. Unlike twinfilin, the direct interaction of cofilin with the barbed end cannot cause its depolymerization in the presence of ATP-actin monomers. Indeed, cofilin end-targeting accelerates the depolymerization of ADP-actin barbed ends in the absence of G-actin, but cofilin does not appear to interact with growing ATP-actin barbed ends (Wioland et al., 2017). This is in stark contrast with twinfilin end-targeting, which slows down ADP-actin depolymerization and accelerates ADP–Pi-actin depolymerization (Shekhar et al., 2021). These different behaviors regarding the nucleotide state of actin are intriguing and should be investigated further.Cofilin thus needs to decorate the filament sides in order to have an impact on barbed-end dynamics in elongation-promoting conditions. However, it is unknown whether cofilin side-decoration extends all the way to the terminal subunits and occupies sites that twinfilin would target. Thus, it is unclear whether cofilin and twinfilin would compete or synergize to drive barbed-end depolymerization.Synergies with other proteins are also worth further investigation, CP being an interesting candidate. Cofilin side-decoration drastically decreases the barbed-end affinity for CP, and capped filaments are thereby an efficient intermediate to turn growing barbed ends into depolymerizing barbed ends (Wioland et al., 2017). Twinfilin interacts with CP and the barbed end to enhance uncapping (Hakala et al., 2021; Mwangangi et al., 2021). Since CP can bind mDia1-bearing barbed ends and displace mDia1 (Bombardier et al., 2015; Shekhar et al., 2015), perhaps CP can also contribute to turn growing, mDia1-bearing barbed ends into depolymerizing barbed ends, by removing mDia1 from barbed ends and subsequently getting displaced from the barbed end by twinfilin.Finally, it is worth noting that profilin, which does not contain an ADF-H domain, also interacts with the barbed face of G-actin and with the barbed end of the filament. When profilin is in sufficient excess, it is able to promote barbed-end depolymerization in the presence of ATP–G-actin (Pernier et al., 2016). Unlike twinfilin, its depolymerization-promoting activity is not prevented by formin mDia1, and it thus does not lead to dynamic instability (bare and mDia1-bearing barbed ends all either grow or depolymerize). The coexistence of growing, mDia1-bearing barbed ends and depolymerizing, twinfilin-targeted barbed ends (Fig. 1 B) was observed in the presence of profilin (Shekhar et al., 2021), but profilin actually may not be required. Future studies should determine the exact role of profilin in this mechanism.ConclusionThe extent to which barbed-end dynamic instability contributes to actin turnover in cells is not known, but possible molecular mechanisms have now been identified. They should change the way we envision actin network dynamics, as we must now consider the possibility that cells also exploit the barbed end for disassembly. More work is needed to further document these mechanisms, but the idea of a “generalized treadmilling” has now been contradicted at its source: in vitro experiments.  相似文献   

7.
We develop an efficient stochastic simulation algorithm for analyzing actin filament growth and decay in the presence of various actin-binding proteins. The evolution of nucleotide profiles of filaments can be tracked and the resulting feedback to actin-binding proteins is incorporated. The computational efficiency of the new method enables us to focus on experimentally realistic problems, and as one example we use it to analyze the experimental data of Helfer et al. [(2006). Mammalian twinfilin sequesters ADP-G-actin and caps filament barbed ends: implications in motility. EMBO J. 25, 1184-1195] on the capping and G-actin sequestering activity of twinfilin. We show that the binding specificity of twinfilin for ADP-G-actin is crucial for the observed biphasic evolution of the filament length distribution in the presence of twinfilin, and we demonstrate that twinfilin can be an essential part of the molecular machinery for regulating filament lengths after a short burst of polymerization. Significantly, our simulations indicate that the pyrenyl-actin fluorescence experiments would fail to report the emergence of large filaments under certain experimental conditions.  相似文献   

8.
The first step in the directed movement of cells toward a chemotactic source involves the extension of pseudopods initiated by the focal nucleation and polymerization of actin at the leading edge of the cell. We have previously isolated a chemoattractant-regulated barbed-end capping activity from Dictyostelium that is uniquely associated with capping protein, also known as cap32/34. Although uncapping of barbed ends by capping protein has been proposed as a mechanism for the generation of free barbed ends after stimulation, in vitro and in situ analysis of the association of capping protein with the actin cytoskeleton after stimulation reveals that capping protein enters, but does not exit, the cytoskeleton during the initiation of actin polymerization. Increased association of capping protein with regions of the cell containing free barbed ends as visualized by exogenous rhodamine-labeled G-actin is also observed after stimulation. An approximate threefold increase in the number of filaments with free barbed ends is accompanied by increases in absolute filament number, whereas the average filament length remains constant. Therefore, a mechanism in which preexisting filaments are uncapped by capping protein, in response to stimulation leading to the generation of free barbed ends and filament elongation, is not supported. A model for actin assembly after stimulation, whereby free barbed ends are generated by either filament severing or de novo nucleation is proposed. In this model, exposure of free barbed ends results in actin assembly, followed by entry of free capping protein into the actin cytoskeleton, which acts to terminate, not initiate, the actin polymerization transient.  相似文献   

9.
Motile and morphogenetic cellular processes are driven by site-directed assembly of actin filaments. Formins, proteins characterized by formin homology domains FH1 and FH2, are initiators of actin assembly. How formins simply bind to filament barbed ends in rapid equilibrium or find free energy to become a processive motor of filament assembly remains enigmatic. Here we demonstrate that the FH1-FH2 domain accelerates hydrolysis of ATP coupled to profilin-actin polymerization and uses the derived free energy for processive polymerization, increasing 15-fold the rate constant for profilin-actin association to barbed ends. Profilin is required for and takes part in the processive function. Single filaments grow at least 10 microm long from formin bound beads without detaching. Transitory formin-associated processes are generated by poisoning of the processive cycle by barbed-end capping proteins. We successfully reconstitute formin-induced motility in vitro, demonstrating that this mechanism accounts for the puzzlingly rapid formin-induced actin processes observed in vivo.  相似文献   

10.
Twinfilins are evolutionarily conserved regulators of cytoskeletal dynamics. They inhibit actin polymerization by binding both actin monomers and filament barbed ends. Inactivation of the single twinfilin gene from budding yeast and fruit fly results in defects in endocytosis, cell migration, and organization of the cortical actin filament structures. Mammals express three twinfilin isoforms, of which twinfilin-1 and twinfilin-2a display largely overlapping expression patterns in non-muscle tissues of developing and adult mice. The expression of twinfilin-2b, which is generated through alternative promoter usage of the twinfilin-2 gene, is restricted to heart and skeletal muscles. However, the physiological functions of mammalian twinfilins have not been reported. As a first step towards understanding the function of twinfilin in vertebrates, we generated twinfilin-2a deficient mice by deleting exon 1 of the twinfilin-2 gene. Twinfilin-2a knockout mice developed normally to adulthood, were fertile, and did not display obvious morphological or behavioural abnormalities. Tissue anatomy and morphology in twinfilin-2a deficient mice was similar to that of wild-type littermates. These data suggest that twinfilin-2a plays a redundant role in cytoskeletal dynamics with the biochemically similar twinfilin-1, which is typically co-expressed in same tissues with twinfilin-2a.  相似文献   

11.
Cytoskeletal filaments are often capped at one end, regulating assembly and cellular location. The actin filament is a right-handed, two-strand long-pitch helix. The ends of the two protofilaments are staggered in relation to each other, suggesting that capping could result from one protein binding simultaneously to the ends of both protofilaments. Capping protein (CP), a ubiquitous alpha/beta heterodimer in eukaryotes, tightly caps (K(d) approximately 0.1-1 nM) the barbed end of the actin filament (the end favored for polymerization), preventing actin subunit addition and loss. CP is critical for actin assembly and actin-based motility in vivo and is an essential component of the dendritic nucleation model for actin polymerization at the leading edge of cells. However, the mechanism by which CP caps actin filaments is not well understood. The X-ray crystal structure of CP has inspired a model where the C termini ( approximately 30 amino acids) of the alpha and beta subunits of CP are mobile extensions ("tentacles"), and these regions are responsible for high-affinity binding to, and functional capping of, the barbed end. We tested the tentacle model in vitro with recombinant mutant CPs. Loss of both tentacles causes a complete loss of capping activity. The alpha tentacle contributes more to capping affinity and kinetics; its removal reduces capping affinity by 5000-fold and the on-rate of capping by 20-fold. In contrast, removal of the beta tentacle reduced the affinity by only 300-fold and did not affect the on-rate. These two regions are not close to each other in the three-dimensional structure, suggesting CP uses two independent actin binding tentacles to cap the barbed end. CP with either tentacle alone can cap, as can the isolated beta tentacle alone, suggesting that the individual tentacles interact with more than one actin subunit at a subunit interface at the barbed end.  相似文献   

12.
The interaction of capping protein (CP) with actin filaments is an essential element of actin assembly and actin-based motility in nearly all eukaryotes. The dendritic nucleation model for Arp2/3-based lamellipodial assembly features capping of barbed ends by CP, and the formation of filopodia is proposed to involve inhibition of capping by formins and other proteins. To understand the molecular basis for how CP binds the barbed end of the actin filament, we have used a combination of computational and experimental approaches, primarily involving molecular docking and site-directed mutagenesis. We arrive at a model that supports all of our biochemical data and agrees very well with a cryo-electron microscopy structure of the capped filament. CP interacts with both actin protomers at the barbed end of the filament, and the amphipathic helix at the C-terminus of the β-subunit binds to the hydrophobic cleft on actin, in a manner similar to that of WH2 domains. These studies provide us with new molecular insight into how CP binds to the actin filament.  相似文献   

13.
Capping of actin filament barbed ends regulates the duration of filament elongation and the steady-state level of actin polymerization. We find that the specific capping activity (capping activity per milligram protein) increased when a high speed supernatant of lysed neutrophils was diluted with buffer. The specific capping activity also increased when the concentration of barbed ends increased. This suggested the presence of a capping protein inhibitor that dissociates from capping protein upon dilution and that competes with barbed ends for binding to capping protein. Gel filtration of supernatant revealed a fraction of low-molecular-weight inhibitor (separated from capping protein) that both inhibited and reversed capping of barbed ends by pure capping protein. The properties and molecular weight of this inhibitor do not match with those of other inhibitors including V-1, VASP, or CARMIL. Thus, this inhibitor must either be a modified version of a known inhibitor or a novel inhibitor of capping.  相似文献   

14.
Regulated actin filament assembly is critical for eukaryotic cell physiology. Actin filaments are polar structures, and those with free high affinity or barbed ends are crucial for actin dynamics and cell motility. Actin filament barbed-end-capping proteins inhibit filament elongation after binding, and their regulated disassociation is proposed to provide a source of free filament ends to drive processes dependent on actin polymerization. To examine whether dissociation of actin filament capping proteins occurs with the correct spatio-temporal constraints to contribute to regulated actin assembly in live cells, I measured the dissociation of an actin capping protein, gelsolin, from actin in cells using a variation of fluorescence resonance energy transfer (FRET). Uncapping was found to occur in cells at sites of active actin assembly, including protruding lamellae and rocketing vesicles, with the correct spatio-temporal properties to provide sites of actin filament polymerization during protrusion. These observations are consistent with models where uncapping of existing filaments provides sites of actin filament elongation.  相似文献   

15.
Co C  Wong DT  Gierke S  Chang V  Taunton J 《Cell》2007,128(5):901-913
Actin filament networks exert protrusive and attachment forces on membranes and thereby drive membrane deformation and movement. Here, we show that N-WASP WH2 domains play a previously unanticipated role in vesicle movement by transiently attaching actin filament barbed ends to the membrane. To dissect the attachment mechanism, we reconstituted the propulsive motility of lipid-coated glass beads, using purified soluble proteins. N-WASP WH2 mutants assembled actin comet tails and initiated movement, but the comet tails catastrophically detached from the membrane. When presented on the surface of a lipid-coated bead, WH2 domains were sufficient to maintain comet tail attachment. In v-Src-transformed fibroblasts, N-WASP WH2 mutants were severely defective in the formation of circular podosome arrays. In addition to creating an attachment force, interactions between WH2 domains and barbed ends may locally amplify signals for dendritic actin nucleation.  相似文献   

16.
Twinfilin and capping protein (CP) are highly conserved actin-binding proteins that regulate cytoskeletal dynamics in organisms from yeast to mammals. Twinfilin binds actin monomer, while CP binds the barbed end of the actin filament. Remarkably, twinfilin and CP also bind directly to each other, but the mechanism and role of this interaction in actin dynamics are not defined. Here, we found that the binding of twinfilin to CP does not affect the binding of either protein to actin. Furthermore, site-directed mutagenesis studies revealed that the CP-binding site resides in the conserved C-terminal tail region of twinfilin. The solution structure of the twinfilin-CP complex supports these conclusions. In vivo, twinfilin's binding to both CP and actin monomer was found to be necessary for twinfilin's role in actin assembly dynamics, based on genetic studies with mutants that have defined biochemical functions. Our results support a novel model for how sequential interactions between actin monomers, twinfilin, CP, and actin filaments promote cytoskeletal dynamics.  相似文献   

17.
Formins catalyze rapid filament growth from profilin-actin, by remaining processively bound to the elongating barbed end. The sequence of elementary reactions that describe filament assembly from profilin-actin at either free or formin-bound barbed ends is not fully understood. Specifically, the identity of the transitory complexes between profilin and actin terminal subunits is not known; and whether ATP hydrolysis is directly or indirectly coupled to profilin-actin assembly is not clear. We have analyzed the effect of profilin on actin assembly at free and FH1-FH2-bound barbed ends in the presence of ADP and non-hydrolyzable CrATP. Profilin blocked filament growth by capping the barbed ends in ADP and CrATP/ADP-Pi states, with a higher affinity when formin is bound. We confirm that, in contrast, profilin accelerates depolymerization of ADP-F-actin, more efficiently when FH1-FH2 is bound to barbed ends. To reconcile these data with effective barbed end assembly from profilin-MgATP-actin, the nature of nucleotide bound to both terminal and subterminal subunits must be considered. All data are accounted for quantitatively by a model in which a barbed end whose two terminal subunits consist of profilin-ATP-actin cannot grow until ATP has been hydrolyzed and Pi released from the penultimate subunit, thus promoting the release of profilin and allowing further elongation. Formin does not change the activity of profilin but simply uses it for its processive walk at barbed ends. Finally, if profilin release from actin is prevented by a chemical cross-link, formin processivity is abolished.  相似文献   

18.
The focal adhesion protein vinculin is an actin-binding protein involved in the mechanical coupling between the actin cytoskeleton and the extracellular matrix. An autoinhibitory interaction between the N-terminal head (Vh) and the C-terminal tail (Vt) of vinculin masks an actin filament side-binding domain in Vt. The binding of several proteins to Vh disrupts this intramolecular interaction and exposes the actin filament side-binding domain. Here, by combining kinetic assays and microscopy observations, we show that Vt inhibits actin polymerization by blocking the barbed ends of actin filaments. In low salt conditions, Vt nucleates actin filaments capped at their barbed ends. We determined that the interaction between vinculin and the barbed end is characterized by slow association and dissociation rate constants. This barbed end capping activity requires C-terminal amino acids of Vt that are dispensable for actin filament side binding. Like the side-binding domain, the capping domain of vinculin is masked by an autoinhibitory interaction between Vh and Vt. In contrast to the side-binding domain, the capping domain is not unmasked by the binding of a talin domain to Vh and requires the dissociation of an additional autoinhibitory interaction. Finally, we show that vinculin and the formin mDia1, which is involved in the processive elongation of actin filaments in focal adhesions, compete for actin filament barbed ends.  相似文献   

19.
Twinfilin is a ubiquitous actin monomer-binding protein that regulates actin filament turnover in yeast and mammalian cells. To elucidate the mechanism by which twinfilin contributes to actin filament dynamics, we carried out an analysis of yeast twinfilin, and we show here that twinfilin is an abundant protein that localizes to cortical actin patches in wild-type yeast cells. Native gel assays demonstrate that twinfilin binds ADP-actin monomers with higher affinity than ATP-actin monomers. A mutant twinfilin that does not interact with actin monomers in vitro no longer localizes to cortical actin patches when expressed in yeast, suggesting that the ability to interact with actin monomers may be essential for the localization of twinfilin. The localization of twinfilin to the cortical actin cytoskeleton is also disrupted in yeast strains where either the CAP1 or CAP2 gene, encoding for the alpha and beta subunits of capping protein, is deleted. Purified twinfilin and capping protein form a complex on native gels. Twinfilin also interacts with phosphatidylinositol 4,5-bisphosphate (PI[4,5]P2), and its actin monomer-sequestering activity is inhibited by PI(4,5)P2. Based on these results, we propose a model for the biological role of twinfilin as a protein that localizes actin monomers to the sites of rapid filament assembly in cells.  相似文献   

20.
Ena/VASP proteins influence the organization of actin filament networks within lamellipodia and filopodia of migrating cells and in actin comet tails. The molecular mechanisms by which Ena/VASP proteins control actin dynamics are unknown. We investigated how Ena/VASP proteins regulate actin polymerization at actin filament barbed ends in vitro in the presence and absence of barbed end capping proteins. Recombinant His-tagged VASP increased the rate of actin polymerization in the presence of the barbed end cappers, heterodimeric capping protein (CP), CapG, and gelsolin-actin complex. Profilin enhanced the ability of VASP to protect barbed ends from capping by CP, and this required interactions of profilin with G-actin and VASP. The VASP EVH2 domain was sufficient to protect barbed ends from capping, and the F-actin and G-actin binding motifs within EVH2 were required. Phosphorylation by protein kinase A at sites within the VASP EVH2 domain regulated anti-capping and F-actin bundling by VASP. We propose that Ena/VASP proteins associate at or near actin filament barbed ends, promote actin assembly, and restrict the access of barbed end capping proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号