首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
From measurements of the rates of depletion of labelled ions from solution in the low concentration range, we described the phosphate and potassium uptake characteristics of the roots of intact barley plants in terms of the kinetic parameters, K m and I max (the maximum rate of uptake). In relatively young (13 d) and older (42 d) plants, cessation of phosphate supply for 4 d or more caused a marked increase in I max (up to four times), without concomitant change in K m, which remained between 5 and 7 M. By contrast, 1 d of potassium starvation with 14-d plants caused a decline in the K m (i.e. an increased apparent affinity for potassium) from 53 M to 11 M, without alteration to I max. After longer periods of potassium starvation, I max increased (about two times) while the K m remained at the same low value. Growth of shoots and roots were unaffected by these treatments, so that concentrations of ions in the tissues declined after 1 d or more of nutrient starvation, but we could not identify a characteristic endogenous concentration for either nutrient at which changes in kinetic parameters were invariably induced. The possible mechanisms regulating carriermediated transport, and the importance of changes induced in kinetic parameters in ion uptake from solution and soil are discussed.Symbol I max the maximum rate of absorption at saturating concentrations  相似文献   

2.
Kinetics of sulfate uptake by freshwater and marine species ofDesulfovibrio   总被引:3,自引:0,他引:3  
Apparent half-saturation constants (K m) and maximum uptake rates (V max) for sulfate were determined in four species ofDesulfovibrio of freshwater and marine origin using a35S-sulfate tracer technique. The lowerstK m (5 M) was found in the freshwater speciesDesulfovibrio vulgaris (Marburg) and the highestK m (77 M) in the marine speciesDesulfovibrio salexigens. Maximum specific rates of sulfate uptake (i.e.,V max) were proportional to the growth rates observed in batch cultures. The halophilicDesulfovibrio salexigens did not change itsK m andV max between 1 and 6,000 M SO 4 2- , and apparently did not induce a low-affinity uptake system at high sulfate concentrations. The low half-saturation constants measured for sulfate uptake explain why high rates of bacterial sulfate reduction occur in surface sediments of freshwater lakes, and why sulfate reduction can be a quantitatively important process in anaerobic carbon mineralization in low-sulfate environments. The results shows that extremely low sulfate concentrations must occur before sulfate reduction is completely outcompeted by methanogenesis.Abbreviations MPB methane producing bacteria - SRB sulfate reducing bacteria  相似文献   

3.
Cloning and characterization of an exoinulinase from Bacillus polymyxa   总被引:2,自引:0,他引:2  
A gene encoding an exoinulinase (inu) from Bacillus polymyxa MGL21 was cloned and sequenced. It is composed of 1455 nucleotides, encoding a protein (485 amino acids) with a molecular mass of 55522 Da. Inu was expressed in Escherichia coli and the His-tagged exoinulinase was purified. The purified enzyme hydrolyzed sucrose, levan and raffinose, in addition to inulin, with a sucrose/inulin ratio of 2. Inulinase activity was optimal at 35°C and pH 7, was completely inactivated by 1 mM Ag+ or Hg2+. The K m and V max values for inulin hydrolysis were 0.7 mM and 2500 M min–1 mg–1 protein. The enzyme acted on inulin via an exo-attack to produce fructose mainly.  相似文献   

4.
val Bel  A. J. E.  Koops  A. J. 《Planta》1985,164(3):362-369
Maceration with pectinase (4.5h) of Commelina benghalensis L. leaves stripped at either side yielded isolated vein networks consisting of four to five secondary veins and tertiary cross veins (=minor veins). Examination with Evans Blue and injection of Fluorescein F showed that 80% of the veins were viable. Proof of normal functioning of isolated minor veins was that [14C]sucrose fed to an apical vein network attached to the remaining intact part of the leaf was absorbed and finally arrived in the petiole. Sucrose uptake by veins obeyed Michaelis-Menten kinetics (K m 5·10-4 mol l-1; V max (light) 3.2 mol h-1 g-1 fresh weight, V max (dark) 1.5 mol h-1 g-1 fresh weight). A linear component, not inhibited by carbonylcyanide m-chlorophenylhydrazone and p-chloromercuribenzenesulfonic acid, was present. Maximal uptake took place at 5 mmol l-1 K+; concentrations of K+ higher than 10 mmol l-1 decreased the rate of uptake. The uptake rates by isolated veins and veins in situ (in disks) were in the same order of magnitude. Altogether, isolated veins promise to be a useful system for the study of loading.Abbreviations CCCP carbonylcyanide m-chlorophenylhydrazone - EDTA ethylenediamine tetraacetic acid - PCMBS p-chloromercuribenzenesulfonic acid  相似文献   

5.
Zymomonas mobilis is a Gram-negative ethanologen that can ferment glucose, fructose, and sucrose. Three enzymes that hydrolyze sucrose were found in a zymogram of electrophoretically separated proteins of Z. mobilis CP4. Two were invertase,, Inv A and Inv B; the latter was studied. Inv B is extracellular and accounts for at least 60% of the saccharolytic activity found in the culture broth of Z. mobilis CP4. The enzyme was purified 51-fold in 17% yield from culture broth of Z. mobilis grown on sucrose. It is a -fructosidase, monomeric with a molecular mass of 47 kDa and pI of 4.3. Its K m for sucrose is 86 mm, and it has high catalytic activity (V max = 1800 mol product/min per milligram protein). The purification and some properties of Inv B are presented. Correspondence to: D. E. Eveleigh  相似文献   

6.
Summary Surface of polystyrene beads was modified by poly(phe-lys) for invertase immobilisation. The optimum immobilisation conditions of invertase were; 0.01% (w/v) poly(phe-lys), 2% (v/v) glutaraldehyde at 25 °C and pH 4.5. The kinetics of sucrose hydrolysis by free and immobilised invertase in a batch reactor at pH 4.5 and 55 °C gave Km and Vmax values for sucrose with free and immobilised invertase of 81, 114 mM and 10.1, 9.2 mol glucose/min.mg enzyme, respectively. The deactivation rate constants of free and immobilised invertase were 0.0347 and 0.0098 min–1, respectively.  相似文献   

7.
Summary The effects of short- and long-term exposure to a range in concentration of sea salts on the kinetics of NH inf4 sup+ uptake by Spartina alterniflora were examined in a laboratory culture experiment. Long-term exposure to increasing salinity up to 50 g/L resulted in a progressive increase in the apparent Km but did not significantly affect Vmax (mean Vmax=4.23±1.97 mole·g–1·h–1). The apparent Km increased in a nonlinear fashion from a mean of 2.66±1.10 mole/L at a salinity of 5 g/L to a mean of 17.56±4.10 mole/L at a salinity of 50 g/L. These results suggest that the long-term effect of exposure to total salt concentrations within the range 5–50 g/L was a competitive inhibition of NH inf4 sup+ uptake in S. alterniflora. No significant NH inf4 sup+ uptake was observed in S. alterniflora exposed to 65 g/L sea salts. Short-term exposure to rapid changes in salinity significantly affected both Vmax and Km. Reduction of solution salinity from 35 to 5 g/L did not change Vmax but reduced Km by 71%. However, exposing plants grown at 5 g/L salinity to 35 resulted in an decrease in Vmax of approximately 50%. Exposure of plants grown at 35 g/L to a total sea salt concentration of 50 g/L for 48h completely inhibited uptake of NH inf4 sup+ . For both experiments, increasing salinity led to an increase in the apparent Km similar to that found in response to long-term exposure. Our data are consistent with a conceptual model of changes in the productivity of S. alterniflora in the salt marsh as a function of environmental modification of NH inf4 sup+ uptake kinetics.  相似文献   

8.
Uptake rates of L-valine in epidermis-free leaf discs of tobacco (Nicotiana tabacum L. cv. Xanthi) were measured over the concentration range 0.1 M to 50 mM. Wild-type tobacco was compared with the digenic mutant Valr-2 (genotype vr2/vr2; vr3/vr3), and with the monogenic mutant strains h9 and h10 (genotype +/+; vr3/vr3) and h17 and h23 (genotype vr2/vr2; +/+). Rate equations consisting of one to three Michaelis-Menten terms, possibly in combination with a linear term were fitted to the kinetic data. These rate equations are equivalent to rational polynomials which may be regarded as the general type of mathematical function describing the kinetics of enzymes and carriers. Kinetic data of the four genotypes conformed to the sum of three Michaelis-Menten terms. Accordingly, three kinetic components could be distinguished. In the wild-type the approximate Kms were 40 M, 1mM, and 40 mM, respectively. In Valr-2 a component with a very low Km (about 4 M) was found which may represent either the modified low-Km component of the wild-type or a fourth component which is undetectable in the wild-type by kinetic analysis. The Vmax of the low-Km component in Valr-2 was at least a 100-fold lower than in the wild-type. In the presence of one of the mutant genes the calculated Vmax of the low-Km component was 48% (strains h9 and h10) or 40% (strains h17 and h23) of the corresponding Vmax in the wild-type. It is reasoned that the mutations have no effect on the activity of the other two kinetic components, though the evidence for this is circumstantial. Autoradiographs of leaf discs showed that in Valr-2 the uptake of 14C-labelled valine in both mesophyll and minor veins was strongly reduced as compared with the wild-type.Abbreviations CCCP carbonylcyanide m-chlorophenylhydrazone - DW dry weight - TPP+ tetraphenylphosphonium ion A preliminary account of part of this work has been presented (Borstlap 1986)  相似文献   

9.
Bong-Heuy Cho  Ewald Komor 《Planta》1984,162(1):23-29
The incubation of Chlorella cells with glucose causes the induction of an uptake system, which is specific for the basic amino acids arginine and lysine. Both amino acids are taken up in the positively charged form and with high affinity (K m values 2 M and 7 M, respectively). The transport of arginine depolarizes the membrane by 20–30 mV. The charge compensation is achieved within a few seconds after arginine addition by the proton pump, later on K+ efflux serves for charge compensation. No evidence for arginine-proton symport was found, neither by inhibitor studies nor by use of other Chlorella strains which have a slower-responding proton pump. The accumulation of arginine is appreciably higher than it should be according to the thermodynamic force of the membrane potential. There is, however, some evidence that a large proportion of arginine is trapped by intracellular compartments and is therefore not in equilibrium with the outside arginine.Abbreviations DCCD N,N-dicyclohexylcarbodiimide - FCCP p-trifluoromethoxycarbonylcyanide phenylhydrazone  相似文献   

10.
Kinetic analysis of the reduction of Cr(VI) by resting cell suspensions of Desulfovibrio vulgaris ATCC 29579 and a new isolate, Desulfovibrio sp. (`Oz7') was studied using lactate as the electron donor at 30 °C. The apparent K m (K m app) and V max with respect to Cr(VI) reduction was compared for both strains. Desulfovibio sp. `Oz7' had a K m app of 90 M (threefold lower than that of D. vulgaris ATCC 29579) and a V max of 120 nmol h–1 mg–1 biomass dry wt (approx. 30% lower than for the reference strain). The potential of the new isolate for bioremediation of Cr(VI) wastewaters is discussed.  相似文献   

11.
The activities and kinetics of the enzymes G6PDH (glucose-6-phosphate dehydrogenase) and 6PGDH (6-phosphogluconate dehydrogenase) from the mesophilic cyanobacterium Synechococcus 6307 and the thermophilic cyanobacterium Synechococcus 6716 are studied in relation to temperature. In Synechococcus 6307 the apparent K m's are for G6PDH: 80M (substrate) and 20M (NADP+); for 6PGDH: 90M (substrate) and 25M (NADP+). In Synechococcus 6716 the apparent K m's are for G6PDH: 550M (substrate) and 30M (NADP+); for 6PGDH: 40M (substrate) and 10M (NADP+). None of the K m's is influenced by the growth temperature and only the K m's of G6PDH for G6P are influenced by the assay temperature in both organisms. The idea that, in general, thermophilic enzymes possess a lower affinity for their substrates and co-enzymes than mesophilic enzymes is challenged.Although ATP, ribulose-1,5-bisphosphate, NADPH and pH can all influence the activities of G6PDH and 6PGDH to a certain extent (without any difference between the mesophilic and the thermophilic strain), they cannot be responsible for the total deactivation of the enzyme activities observed in the light, thus blocking the pentose phosphate pathway.Abbreviations G6PDH glucose-6-phosphate, dehydrogenase - 6PGDH 6-phosphogluconate dehydrogenase - G6P glucose-6-phosphate - 6PG 6-phosphogluconate - RUDP ribulose-1,5-bisphosphate - Tricine N-Tris (hydroxymethyl)-methylglycine  相似文献   

12.
Germlings of Phytophthora palmivora possess at least two systems for the uptake of inorganic phosphate (Pi). The first is synthesized on germination in medium containing 50 M Pi and has a Km of approx. 30 M (Vmax=7–9 nmol Pi/h·106 cells). The second is synthesized under conditions of Pi-deprivation and has a higher affinity for Pi (Km=1–2 M), but a lower Vmax (0.5–2 nmol Pi/h·106 cells). The fungicide phosphite likewise enters the germlings via two different transport systems, the synthesis of which also depends on the concentration of Pi in the medium. The Km of the lower affinity system is 3 mM (Vmax=20 nmol phosphite/h·106 cells) and that of the higher affinity system is 0.6 mM (Vmax=12 nmol/h·106 cells). Pi and phosphite are competitive inhibitors for each other's transport in both systems. However, whereas mM concentrations of phosphite are necessary to inhibit Pi transport, only M concentrations of Pi are required to inhibit phosphite transport. A third system of uptake for Pi also exists, since when phosphate-deprived cells are presented with mM concentrations of Pi, they transport the anion at a very high rate (around 100 nmol/h·106 cells). High rates of transport of phosphite are also observed when these cells are presented with mM concentrations of this anion.  相似文献   

13.
A recently described procedure of freezing and thawing, which allows retention of metabolic and functional integrity, has been applied in the study of serotonin and dopamine uptake into frozen rat and post mortem human frozen tissue. TheK m andV max for the serotonin uptake into human hypothalamus were estimated to be 0.12 M and 0.03 nmol/g/min respectively. TheK m andV max for the dopamine uptake into human putamen were estimated to be 0.28 M and 0.13 nmol/g/min respectively. The results indicate that the freezing procedure does not affect the uptake sites for these transmitters. The storage time before freezing is however of importance for theV max value. TheK m value for the uptake, on the other hand, seems to be rather resistant to storage time before freezing.  相似文献   

14.
Erythrocyte plasma membranes of non-insulin dependent diabetic humans (NIDDM) and healthy humans were prepared by hypotonic lysis. The specific activity of (Na+–K+)-ATPase of NIDDM membranes, both in the absence and presence of digoxin were lower than the specific activity of normal enzymes (83.6 percent and 74.0 percent of the normal enzyme respectively). Addition of digoxin decreased the activity of this enzyme (38.0 percent in NIDDM and 30.0 percent in normal enzyme).Although the affinity of the pump for ATP was similar in both membranes of NIDDM and normal humans (Km for ATP=19.9±0.24M ATP and 20.0±0.21 M ATP respectively), the Vmax of NIDDM membranes was more than 20 percent lower than that of the normal enzyme. The specific activity of Mg2+-dependent Ca2+-pumping ATPase (Ca2+–Mg2+)-ATPase) of NIDDM membrane was lower than 80 percent of the specific activity of the normal enzymes. While the affinity of the pump for ATP was lower in the membranes of NIDDM (Km for ATP=50.0±4.3 M ATP) in comparison to normal membranes (Km for ATP=63.1±38M ATP), the Vmax of NIDDM membranes was similar to the normal enzyme. Altogether, these findings suggest that both the (Na+–K+)-ATPase and Ca2+-pumping ATPase of NIDDM membranes are less functional than the enzymes in normal erythrocytes.  相似文献   

15.
The oxidation of catechol, an intermediate in benzene catabolism, was studied using transient variations in dissolved oxygen tension (DOT) when a succinate limited steady state culture of Pseudomonas putida ML2 was perturbed with a pulse of another substrate. A model was developed and tested for the effect of fluctuations in oxidizing enzyme activity on DOT. It was found that the rate of induction of catechol oxidizing enzymes was independent of dilution rate up to a relative growth rate /max of 0.75. Only at higher dilution rates was catabolite repression observed.Abbreviations DOT dissolved oxygen tension - K L a gas transfer coefficient - specific growth rate - max maximum specific growth rate - Ks substrate saturation constant  相似文献   

16.
Protoplasts isolated from beetroot tissue took up glucose preferentially whereas sucrose was transported more slowly. The 14C-label from [14C]glucose and [14C]sucrose taken up by the cells could be detected rapidly in phosphate esters and, after feeding of [14C]glucose was found also in sucrose. The temperature-dependent uptake process (activation energy EA about 50 kJ · mol–1) seems to be carrier mediated as indicated by its substrate saturation and, for glucose, by competition experiments which revealed positions C1, C5 and C6 of the D-glucose molecule as important for effective uptake. The apparent Km(20° C) for glucose (3-O-methylglucose) was about 1 mM whereas for sucrose a significantly lower apparent affinity was determined (Km about 10 mM). When higher concentrations of glucose (5 mM) or sucrose (20 mM) were administered, the uptake process followed first-order kinetics. Carrier-mediated transport was inhibited by N,N-dicyclohexylcarbodiimide, Na-orthovanadate, p–chloromercuribenzenesulfonic acid, and by uncouplers and ionophores. The uptake system exhibited a distinct pH optimum at pH 5.0. The results indicate that generation of a proton gradient is a prerequisite for sugar uptake across the plasma membrane. Protoplasts from the bundle regions in the hypocotyl take up glucose at higher rates than those derived from bundle-free regions. The results favour the idea that apoplastic transport of assimilates en route of unloading might be restricted to distinct areas within the storage organ (i.e. the bundle region) whereas distribution in the storage parenchyma is symplastic.Abbreviations CCCP Carbonylcyanide m–chlorophenylhydrazone - DCCD N,N-dicyclohexylcarbodiimide - DOG deoxyglucose - Mes 2-(N-morpholino)ethanesulfonic acid - 3-OMG 3-O-methylglucose - PCMBS p–chloromercuribenzenesulfonic acid - SDS Sodium dodecyl sulfate - Tris 2-amino-2-(hydroxymethyl)-1,3-propanediol  相似文献   

17.
Evidence is presented that the high levels of internal l-glutamic and l-aspartic acid in frog Rana esculenta red blood cells are due to the existence of a specific carrier for acidic amino acids of high affinity K m = 3 m and low capacity (Vmax) 0.4 mol l-Glu · Kg–1 dry cell mass · 10 min–1. It is Na+ dependent and the incorporation of l-glutamic acid can be inhibited by l and d-aspartate and l-cysteic acid, while d-glutamic does not inhibit. Moreover, this glutamic uptake shows a bell-shaped dependence on the external pH. All these properties show that this carrier belongs to the system X AG family. Besides the incorporation through this system, l-glutamic acid is also taken up through the ASC system, although, under physiological conditions, this transport is far less important, since it has relatively low affinity K m 39 m but high capacity (V max) 1.8 mol l-Glu · Kg–1 dry cell mass · 10 min–1.  相似文献   

18.
Gisela Mäck  Rudolf Tischner 《Planta》1990,182(2):169-173
The pericarp of the dormant sugarbeet fruit acts as a storage reservoir for nitrate, ammonium and -amino-N. These N-reserves enable an autonomous development of the seedling for 8–10 d after imbibition. The nitrate content of the seed (1% of the whole fruit) probably induces nitrate-reductase activity in the embryo enclosed in the pericarp. Nitrate that leaks out of the pericarp is reabsorbed by the emerging radicle. Seedlings germinated from seeds (pericarp was removed) without external N-supply are able to take up nitrate immediately upon exposure via a low-capacity uptake system (vmax = 0.8 mol NO 3 - ·(g root FW)–1·h–1; Ks = 0.12 mM). We assume that this uptake system is induced by the seed nitrate (10 nmol/seed) during germination. Induction of a high-capacity nitrate-uptake system (vmax = 3.4 mol NO 3 - ·(g root FW)–1·h–1; Ks = 0.08 mM) by externally supplied nitrate occurs after a 20-min lag and requires protein synthesis. Seedlings germinated from whole fruits absorb nitrate via a highcapacity uptake mechanism induced by the pericarp nitrate (748 nmol/pericarp) during germination. The uptake rates of the high-capacity system depend only on the actual nitrate concentration of the uptake medium and not on prior nitrate pretreatments. Nitrate deprivation results in a decline of the nitrate-uptake capacity (t1/2 of vmax = 5 d) probably caused by the decay of carrier molecules. Small differences in Ks but significant differences in vmax indicate that the low- and high-capacity nitrate-uptake systems differ only in the number of identical carrier molecules.Abbreviations NR nitrate reductase - pFPA para-fluorophenylalanine This work was supported by a grant from Bundesministerium für Forschung und Technologie and by Kleinwanzlebener Saatzucht AG, Einbeck.  相似文献   

19.
The effects of aluminum on the concentration-dependent kinetics of Ca2+ uptake were studied in two winter wheat (Triticum aestivum L.) cultivars, Al-tolerant Atlas 66 and Al-sensitive Scout 66. Seedlings were grown in 100 M CaCl2 solution (pH 4.5) for 3 d. Subsequently, net Ca2+ fluxes in intact roots were measured using a highly sensitive technique, employing a vibrating Ca2+-selective microelectrode. The kinetics of Ca2+ uptake into cells of the root apex, for external Ca2+ concentrations from 20 to 300 M, were found to be quite similar for both cultivars in the absence of external Al; Ca2+ transport could be described by Michaelis-Menten kinetics. When roots were exposed to solutions containing levels of Al that were toxic to Al-sensitive Scout 66 but not to Atlas 66 (5 to 20 M total Al), a strong correlation was observed between Al toxicity and Al-induced inhibition of Ca2+ absorption by root apices. For Scout 66, exposure to Al immediately and dramatically inhibited Ca2+ uptake over the entire Ca2+ concentration range used for these experiments. Kinetic analyses of the Al-Ca interactions in Scout 66 roots were consistent with competitive inhibition of Ca2+ uptake by Al. For example, exposure of Scout 66 roots to increasing Al levels (from 0 to 10 M) caused the K m for Ca2+ uptake to increase with each rise in Al concentration, from approx. 100 M in the absence of Al to approx. 300 M in the presence of 10 M Al, while having no effect on the V max. The same Al exposures had little effect on the kinetics of Ca2+ uptake into roots of Atlas 66. The results of this study indicate that Al disruption of Ca2+ transport at the root apex may play an important role in the mechanisms of Al toxicity in Al-sensitive wheat cultivars, and that differential Al tolerance may be associated with the ability of Ca2+-transport systems in cells of the root apex to resist disruption by potentially toxic levels of Al in the soil solution.We would like to thank Dr. Lionel F. Jaffe, Director of the National Vibrating Probe Facility, Marine Biological Laboratory, Woods Hole, Mass., USA, for making his calcium-selective vibrating-mi-croelectrode system available for a portion of this work. The research presented here was supported in part by USDA/NRI Competitive Grant number 91-37100-6630 to Leon Kochian. Contribution from the USDA-ARS, U.S. Plant, Soil and Nutrition Laboratory, Cornell University, Ithaca, N.Y. This research was part of the program of the Center for Root-Soil Research, Cornell University, Ithaca, N.Y. Department of Soil, Crop and Atmosphere Science, paper No. 1741.  相似文献   

20.
Andreas Renz  Mark Stitt 《Planta》1993,190(2):166-175
The substrate dependence and product inhibition of three different fructokinases and three different hexokinases from growing potato (Solanum tuberosum L.) tubers was investigated. The tubers contained three specific fructokinases (FK1, FK2, FK3) which had a high affinity for fructose K m=64, 90 and 100 (M) and effectively no activity with glucose or other hexose sugars. The affinity for ATP (K m=26, 25 and 240 M) was at least tenfold higher than for other nucleoside triphosphates. All three fructokinases showed product inhibition by high fructose (K i=5.7, 6.0 and 21 mM) and were also inhibited by ADP competitively to ATP. Sensitivity to ADP was increased in the presence of high fructose, or fructose-6-phosphate. In certain conditions, the K i (ADP) was about threefold below the K m (ATP). All three fructokinase were also inhibited by fructose-6-phosphate acting non-competitively to fructose (K i=1.3 mM for FK2). FK1 and FK2 showed very similar kinetic properties whereas FK3, which is only present at low activities in the tuber but high activities in the leaf, had a generally lower affinity for ATP, and lower sensitivity to inhibition by ADP and fructose. The tuber also contained three hexokinases (HK1, HK2, HK3) which had a high affinity for glucose (K m=41, 130 and 35 M) and mannose but a poor affinity for fructose (K m=11, 22 and 9 mM). All three hexokinases had a tenfold higher affinity for ATP (K m=90, 280 and 560 M) than for other nucleoside triphosphates. HK1 and HK2 were both inhibited by ADP (K i=40 and 108 M) acting competitively to ATP. HK1, but not HK2, was inhibited by glucose-6-phosphate, which acted non-competitively to glucose (K i=4.1 mM). HK1 and HK2 differed, in that HK1 had a narrower pH optimum, a higher affinity for its substrate, and showed inhibition by glucose-6-phosphate. The relevance of these properties for the regulation of hexose metabolism in vivo is discussed.Abbreviations FK fructokinase - Fru6P fructose-6-phosphate - Glc6P glucose-6-phosphate - HK hexokinase - NTP nucleoside triphosphate - Pi inorganic phosphate - UDPGlc uridine-5-diphosphoglucose This work was supported by the Deutsche Froschungsgemeinschaft (SFB 137). We are grateful to Professor E. Beck (Lehrstuhl für Pflanzenphysiologie, Universität Bayreuth, FRG) for providing laboratory facilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号