首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Voltage-gated sodium channels (Nav) are responsible for initiation and propagation of nerve, skeletal muscle, and cardiac action potentials. Nav are composed of a pore-forming alpha subunit and often one to several modulating beta subunits. Previous work showed that terminal sialic acid residues attached to alpha subunits affect channel gating. Here we show that the fully sialylated beta1 subunit induces a uniform, hyperpolarizing shift in steady state and kinetic gating of the cardiac and two neuronal alpha subunit isoforms. Under conditions of reduced sialylation, the beta1-induced gating effect was eliminated. Consistent with this, mutation of beta1 N-glycosylation sites abolished all effects of beta1 on channel gating. Data also suggest an interaction between the cis effect of alpha sialic acids and the trans effect of beta1 sialic acids on channel gating. Thus, beta1 sialic acids had no effect gating on the of the heavily glycosylated skeletal muscle alpha subunit. However, when glycosylation of the skeletal muscle alpha subunit was reduced through chimeragenesis such that alpha sialic acids did not impact gating, beta1 sialic acids caused a significant hyperpolarizing shift in channel gating. Together, the data indicate that beta1 N-linked sialic acids can modulate Nav gating through an apparent saturating electrostatic mechanism. A model is proposed in which a spectrum of differentially sialylated Nav can directly modulate channel gating, thereby impacting cardiac, skeletal muscle, and neuronal excitability.  相似文献   

2.
Antibodies against a peptide (SP19) corresponding to a highly conserved, predicted intracellular region of the sodium channel alpha subunit bind rat brain sodium channels with a similar affinity as the peptide antigen, indicating that the corresponding segment of the alpha subunit is fully accessible in the intact channel structure. These antibodies recognize sodium channel alpha subunits from rat or eel brain, rat skeletal muscle, rat heart, eel electroplax, and locust nervous system. alpha subunits from all these tissues except rat skeletal muscle are substrates for phosphorylation by cAMP-dependent protein kinase. Disulfide linkage of alpha and beta 2 subunits was observed for both the RI and RII subtypes of rat brain sodium channels and for sodium channels from eel brain but not for sodium channels from rat heart, eel electroplax, or locust nerve cord. Treatment with neuraminidase reduced the apparent molecular weight of sodium channel alpha subunits from rat and eel brain and eel electroplax by 22,000-58,000, those from heart by 8000, and those from locust nerve cord by less than 4000. Our results provide the first identification of sodium channel alpha subunits from rat heart and locust brain and nerve cord and show that sodium channel alpha subunits are expressed with different subunit associations and posttranslational modifications in different excitable tissues.  相似文献   

3.
Sodium channels consist of a pore-forming alpha subunit and auxiliary beta 1 and beta 2 subunits. The subunit beta 1 alters the kinetics and voltage-dependence of sodium channels expressed in Xenopus oocytes or mammalian cells. Functional modulation in oocytes depends on specific regions in the N-terminal extracellular domain of beta 1, but does not require the intracellular C-terminal domain. Functional modulation is qualitatively different in mammalian cells, and thus could involve different molecular mechanisms. As a first step toward testing this hypothesis, we examined modulation of brain Na(V)1.2a sodium channel alpha subunits expressed in Chinese hamster lung cells by a mutant beta1 construct with 34 amino acids deleted from the C-terminus. This deletion mutation did not modulate sodium channel function in this cell system. Co-immunoprecipitation data suggest that this loss of functional modulation was caused by inefficient association of the mutant beta 1 with alpha, despite high levels of expression of the mutant protein. In Xenopus oocytes, injection of approximately 10,000 times more mutant beta 1 RNA was required to achieve the level of functional modulation observed with injection of full-length beta 1. Together, these findings suggest that the C-terminal cytoplasmic domain of beta 1 is an important determinant of beta1 binding to the sodium channel alpha subunit in both mammalian cells and Xenopus oocytes.  相似文献   

4.
The saxitoxin receptor of the sodium channel purified from rat bran contains three types of subunits: alpha with Mr approximately 270,000, beta 1 with Mr approximately 39,000, and beta 2 with Mr approximately 37,000. These are the only polypeptides which quantitatively co-migrate with the purified saxitoxin receptor during velocity sedimentation through sucrose gradients. beta 1 and beta 2 are often poorly resolved by gel electrophoresis in sodium dodecyl sulfate (SDS), but analysis of the effect of beta-mercaptoethanol on the migration is covalently attached to the alpha subunit by disulfide bonds while the beta 1 subunit is not. The alpha and beta subunits of the sodium channel were covalently labeled in situ in synaptosomes using a photoreactive derivative of scorpion toxin. Treatment of SDS-solubilized synaptosomes with beta-mercaptoethanol decreases the apparent molecular weight of the alpha subunit band without change in the amount of 125I-labeled scorpion toxin associated with either the alpha or beta subunit bands. These results indicate that the alpha and beta 1 subunits are labeled by scorpion toxin whereas beta 1 is not and that the beta 2 subunit is covalently attached to alpha by disulfide bonds in situ as well as in purified preparations.  相似文献   

5.
Voltage-sensitive sodium channels purified from rat brain in functional form consist of a stoichiometric complex of three glycoprotein subunits, alpha of 260 kDa, beta 1 of 36 kDa, and beta 2 of 33 kDa. The alpha and beta 2 subunits are linked by disulfide bonds. The hydrophobic properties of these three subunits were examined by covalent labeling with the photoreactive hydrophobic probe 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine [( 125I]TID) which labels transmembrane segments in integral membrane proteins. All three subunits of the sodium channel were labeled by [125I]TID when the purified protein was solubilized in mixed micelles of Triton X-100 and phosphatidylcholine (4:1). The half-time for photolabeling was approximately 7 min consistent with the half-time of 9 min for photolysis of TID under our conditions. Comparable amounts of TID per mg of protein were incorporated into each subunit. Purified sodium channels reconstituted in phosphatidylcholine vesicles were also labeled by TID with comparable incorporation per mg of protein into all three subunits. The efficiency of photolabeling of the three subunits was reduced from 39 to 44% by a 2-fold expansion of the hydrophobic phase of the reaction mixture but was unaffected by a 2-fold expansion of the aqueous phase, confirming that the photolabeling reaction took place in the lipid phase of the vesicle bilayer. The hydrophobic properties of the sodium channel subunits were examined further using phase separation in the nonionic detergent Triton X-114. Under conditions in which beta 1 is dissociated from alpha, the beta 1 subunit was preferentially extracted into the Triton X-114 phase, and the disulfide-linked alpha beta 2 complex was retained in the aqueous phase. When the disulfide bonds between the alpha and beta 2 subunits were reduced with dithioerythritol, the beta 2 subunit was also preferentially extracted into the Triton X-100 phase leaving the free alpha subunit in the aqueous phase. A preparative method for isolation of the beta 1 and beta 2 subunits was developed based on this technique. Considered together, the results of our hydrophobic labeling and phase separation experiments indicate that the alpha, beta 1, and beta 2 subunits all have substantial hydrophobic domains that may interact with the hydrocarbon phase of phospholipid bilayer membranes. Since the alpha subunit is known to be a transmembrane protein with many potential membrane-spanning segments, we conclude that the beta 1 and beta 2 subunits are likely to also be integral membrane proteins with one or more membrane-spanning segments.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
J W Schmidt  W A Catterall 《Cell》1986,46(3):437-444
The sodium channel from rat brain is a complex of alpha (260 kd), beta 1 (36 kd), and beta 2 (33 kd) subunits. The alpha and beta 2 subunits are linked by disulfide bonds. The earliest biosynthetic precursor of the alpha subunit is a 203 kd core polypeptide with sufficient high-mannose carbohydrate chains to increase its apparent size to 224 kd. It is processed to 224 kd and 249 kd precursor forms containing complex carbohydrate chains before it achieves the mature size of 260 kd. Most newly synthesized alpha subunits are not disulfide-linked to beta 2 subunits, but remain as a metabolically stable pool of intracellular subunits. alpha subunits disulfide-linked to beta 2 are found preferentially at the cell surface. A possible role for this intracellular pool as a rate-limiting step in the regulation of the cell surface density and localization of sodium channels in developing neurons is proposed.  相似文献   

7.
8.
Tandem constructs are increasingly being used to restrict the composition of recombinant multimeric channels. It is therefore important to assess not only whether such approaches give functional channels, but also whether such channels completely incorporate the subunit tandems. We have addressed this question for neuronal nicotinic acetylcholine receptors, using a channel mutation as a reporter for subunit incorporation. We prepared tandem constructs of nicotinic receptors by linking alpha (alpha2-alpha4, alpha6) and beta (beta2, beta4) subunits by a short linker of eight glutamine residues. Robust functional expression in oocytes was observed for several tandems (beta4_alpha2, beta4_alpha3, beta4_alpha4, and beta2_alpha4) when coexpressed with the corresponding beta monomer subunit. All tandems expressed when injected alone, except for beta4_alpha3, which produced functional channels only together with beta4 monomer and was chosen for further characterization. These channels produced from beta4_alpha3 tandem constructs plus beta4 monomer were identical with receptors expressed from monomer alpha3 and beta4 constructs in acetylcholine sensitivity and in the number of alpha and beta subunits incorporated in the channel gate. However, separately mutating the beta subunit in either the monomer or the tandem revealed that tandem-expressed channels are heterogeneous. Only a proportion of these channels contained as expected two copies of beta subunits from the tandem and one from the beta monomer construct, whereas the rest incorporated two or three beta monomers. Such inaccuracies in concatameric receptor assembly would not have been apparent with a standard functional characterization of the receptor. Extensive validation is needed for tandem-expressed receptors in the nicotinic superfamily.  相似文献   

9.
Voltage-gated sodium channels localize at high density in axon initial segments and nodes of Ranvier in myelinated axons. Sodium channels consist of a pore-forming alpha subunit and at least one beta subunit. beta1 is a member of the immunoglobulin superfamily of cell adhesion molecules and interacts homophilically and heterophilically with contactin and Nf186. In this study, we characterized beta1 interactions with contactin and Nf186 in greater detail and investigated interactions of beta1 with NrCAM, Nf155, and sodium channel beta2 and beta3 subunits. Using Fc fusion proteins and immunocytochemical techniques, we show that beta1 interacts with the fibronectin-like domains of contactin. beta1 also interacts with NrCAM, Nf155, sodium channel beta2, and Nf186 but not with sodium channel beta3. The interaction of the extracellular domains of beta1 and beta2 requires the region 169TEEEGKTDGEGNA181 located in the intracellular domain of beta2. Interaction of beta1 with Nf186 results in increased Nav).2 cell surface density over alpha alone, similar to that shown previously for contactin and beta2. We propose that beta1 is the critical communication link between sodium channels, nodal cell adhesion molecules, and ankyrinG.  相似文献   

10.
Cyclic AMP-dependent protein kinase catalyzes the incorporation of 3-4 mol of phosphate into the alpha subunit of rat brain sodium channels in vitro or in situ. Digestion of phosphorylated sodium channels with CNBr yielded three major phosphorylated fragments of 25, 31, and 33 kDa. These fragments were specifically immunoprecipitated with site-directed antisera establishing their location within an intracellular loop between the first and second homologous domains containing residues 448 to 630 of sodium channel RI or residues 450-639 of sodium channel RII. Five of the seven major tryptic phosphopeptides generated from intact sodium channel alpha subunits were contained in each of the 25-, 31-, and 33-kDa CNBr fragments, indicating that most cAMP-dependent phosphorylation sites are in this domain. Since CNBr digestion of sodium channels which had been metabolically labeled with 32P in intact neurons yielded the same phosphorylated fragments, the phosphorylated region we have identified is the major location of phosphorylation in situ. Only serine residues were phosphorylated by cAMP-dependent protein kinase in vitro, while approximately 16% of the phosphorylation in intact neurons was on threonine residues that must lie outside the domain we have identified. Since this domain is phosphorylated in intact neurons, our results show that it is located on the intracellular side of the plasma membrane. These results are considered with respect to models for the transmembrane orientation of the alpha subunit.  相似文献   

11.
The (Na+ + K+)-ATPase of cultured chick sensory neurons was studied with the aid of antibodies specific for this enzyme. Immunofluorescent labeling indicated the (Na+ + K+)-ATPase is evenly distributed on the neuronal cell surface; cell bodies, neurites, and growth cones were labeled with comparable intensity. Pulse-chase experiments with [35S]methionine, followed by immunoprecipitation, indicated concurrent synthesis and rapid association of the alpha (Mr = 105,000) and beta (Mr = 47,000) subunits. The alpha subunit is oligosaccharide-free while the beta subunit contains three Asn-linked oligosaccharide chains attached to a core peptide of 32,000 molecular weight. The time required for oligosaccharide processing of the newly synthesized beta subunit to endoglycosidase H-resistance suggests the (Na+ + K+)-ATPase takes 45-60 min to move from the site of polypeptide synthesis to the Golgi apparatus. Significantly less time was required for transport through the Golgi apparatus and insertion in the plasma membrane. From 30% to 55% of the newly synthesized (Na+ + K+)-ATPase did not appear on the cell surface but accumulated intracellularly. When tunicamycin was used to inhibit glycosylation of the beta subunit, there was no effect upon subunit assembly, intracellular transport, or degradation rate (t1/2 = 40 h).  相似文献   

12.
The murine transferrin receptor is a disulphide-linked dimer with three N-glycosylation sites. We have investigated the structural and functional properties of the transferrin receptor from murine plasmacytoma cells (NS-1 cells) treated with the glycosylation inhibitor, tunicamycin and the glycosylation-processing inhibitors, swainsonine and castanospermine. 1. Tunicamycin (1 microgram/ml) inhibited mannose incorporation in NS-1 cells by greater than 90%, but also inhibited methionine incorporation by up to 50%. Both swainsonine (1 microgram/ml) and castanospermine (50 micrograms/ml) resulted in mannose incorporation greater than 100% of untreated cells and neither drug affected methionine incorporation. 2. Incubation of NS-1 cells with tunicamycin resulted in a shift in the apparent molecular mass of the transferrin receptor from 96 kDa and 94 kDa to approximately 82 kDa. 3. Peptide N-glycosidase F digestion of the receptor from untreated cells resulted in the fully deglycosylated 82 kDa component as well as an 87 kDa component which represents partially deglycosylated receptor resistant to peptide N-glycosidase F digestion. 4. The receptor from swainsonine-treated cells was equally sensitive to peptide N-glycosidase F and endo-beta-N-acetylglucosaminidase H (endo H; resulting in both 87-kDa and 82-kDa components), whereas the receptor from castanospermine-treated cells was only partially sensitive to endo H. 5. Analysis of mannose- and fucose-labelled cellular glycopeptides by concanavalin-A--Sepharose chromatography showed that swainsonine (1 microgram/ml) treatment resulted in approximately 90% inhibition of the synthesis of complex N-glycans and an accumulation of fucosylated hybrid structures. In contrast, castanospermine (100 micrograms/ml) treatment resulted in only partial inhibition (60%) of the synthesis of complex N-glycans. 6. Analysis of the receptor from tunicamycin, swainsonine and castanospermine treated cells under nonreducing conditions showed a single component corresponding to the dimer, indicating that dimerisation of newly synthesised murine receptor is independent of carbohydrate. 7. The non-glycosylated receptor from tunicamycin-treated cells appears to bind transferrin as demonstrated by interaction with transferrin-Sepharose. 8. Surface expression of the receptor was not significantly altered in the presence of either swainsonine or castanospermine as judged by flow cytometry.  相似文献   

13.
The role of trimming and processing of N-linked oligosaccharides on the cell surface expression of the melanoma vitronectin receptor, a member of the integrin family of cell adhesion receptors, was examined by using specific glucosidase and mannosidase inhibitors. Inhibition of glucosidases I and II by castanospermine or N-methyldeoxynojirimycin delayed the vitronectin receptor alpha/beta chain heterodimer assembly and alpha chain cleavage and resulted in a decrease in the level of expression cell surface receptor. Conversely, the vitronectin receptor synthesized in the presence of the mannosidase I and II inhibitors, 1-deoxymannojirimycin and swainsonine, was transported normally to the cell surface with its alpha chain N-linked oligosaccharides in an endoglycosidase H-sensitive form. In the presence of swainsonine, time course studies of the cell surface replacement of control, endoglycosidase H-resistant receptor with an endoglycosidase H-sensitive form demonstrated a vitronectin receptor half-life of approximately 15-16 h. These studies provide evidence that the rates of assembly, proteolytic cleavage, and cell surface expression of the melanoma vitronectin receptor are dependent on the initial trimming of glucosyl residues from the alpha chain N-linked oligosaccharides.  相似文献   

14.
15.
Voltage-gated sodium channels consist of a pore-forming alpha subunit associated with beta1 subunits and, for brain sodium channels, beta2 subunits. Although much is known about the structure and function of the alpha subunit, there is little information on the functional role of the 16 extracellular loops. To search for potential functional activities of these extracellular segments, chimeras were studied in which an individual extracellular loop of the rat heart (rH1) alpha subunit was substituted for the corresponding segment of the rat brain type IIA (rIIA) alpha subunit. In comparison with rH1, wild-type rIIA alpha subunits are characterized by more positive voltage-dependent activation and inactivation, a more prominent slow gating mode, and a more substantial shift to the fast gating mode upon coexpression of beta1 subunits in Xenopus oocytes. When alpha subunits were expressed alone, chimeras with substitutions from rH1 in five extracellular loops (IIS5-SS1, IISS2-S6, IIIS1-S2, IIISS2-S6, and IVS3-S4) had negatively shifted activation, and chimeras with substitutions in three of these (IISS2-S6, IIIS1-S2, and IVS3-S4) also had negatively shifted steady-state inactivation. rIIA alpha subunit chimeras with substitutions from rH1 in five extracellular loops (IS5-SS1, ISS2-S6, IISS2-S6, IIIS1-S2, and IVS3-S4) favored the fast gating mode. Like wild-type rIIA alpha subunits, all of the chimeric rIIA alpha subunits except chimera IVSS2-S6 were shifted almost entirely to the fast gating mode when coexpressed with beta1 subunits. In contrast, substitution of extracellular loop IVSS2-S6 substantially reduced the effectiveness of beta1 subunits in shifting rIIA alpha subunits to the fast gating mode. Our results show that multiple extracellular loops influence voltage-dependent activation and inactivation and gating mode of sodium channels, whereas segment IVSS2-S6 plays a dominant role in modulation of gating by beta1 subunits. Evidently, several extracellular loops are important determinants of sodium channel gating and modulation.  相似文献   

16.
The alpha and beta subunits of meprins, mammalian zinc metalloendopeptidases, are extensively glycosylated; approximately 25% of the total molecular mass of the subunits is carbohydrate. The aim of this study was to investigate the roles of the N-linked oligosaccharides on the secreted form of mouse meprin A. Recombinant meprin alpha and mutants in which one of the 10 potential Asn glycosylation sites was mutated to Gln were all secreted and sorted exclusively into the apical medium of polarized Madin-Darby canine kidney cells, indicating that no specific N-linked oligosaccharide acts as a determinant for apical targeting of meprin alpha. Several of the mutant proteins had decreased enzymatic activity using a bradykinin analog as substrate, and deglycosylation of the wild-type protein resulted in loss of 75-100% activity. Some of the mutants were also more sensitive to heat inactivation. In studies with agents that inhibit glycosylation processes in vivo, tunicamycin markedly decreased secretion of meprin, whereas castanospermine and swainsonine had little effect on secretion, sorting, or enzymatic properties of meprin. When all the potential glycosylation sites on a truncated form of meprin alpha (alpha-(1-445)) were mutated, the protein was not secreted into the medium, but was retained within the cells even after 10 h. These results indicate that there is no one specific glycosylation site or type of oligosaccharide (high mannose- or complex-type) that determines apical sorting, but that core N-linked carbohydrates are required for optimal enzymatic activity and for secretion of meprin alpha.  相似文献   

17.
Shaker-related or Kv1 voltage-gated K(+) channels play critical roles in regulating the excitability of mammalian neurons. Native Kv1 channel complexes are octamers of four integral membrane alpha subunits and four cytoplasmic beta subunits, such that a tremendous diversity of channel complexes can be assembled from the array of alpha and beta subunits expressed in the brain. However, biochemical and immunohistochemical studies have demonstrated that only certain complexes predominate in the mammalian brain, suggesting that regulatory mechanisms exist that ensure plasma membrane targeting of only physiologically appropriate channel complexes. Here we show that Kv1 channels assembled as homo- or heterotetrameric complexes had distinct surface expression characteristics in both transfected mammalian cells and hippocampal neurons. Homotetrameric Kv1.1 channels were localized to endoplasmic reticulum, Kv1.4 channels to the cell surface, and Kv1.2 channels to both endoplasmic reticulum and the cell surface. Heteromeric assembly with Kv1.4 resulted in dose-dependent increases in cell surface expression of coassembled Kv1.1 and Kv1.2, while coassembly with Kv1.1 had a dominant-negative effect on Kv1.2 and Kv1.4 surface expression. Coassembly with Kv beta subunits promoted cell surface expression of each Kv1 heteromeric complex. These data suggest that subunit composition and stoichiometry determine surface expression characteristics of Kv1 channels in excitable cells.  相似文献   

18.
The separation of two photoreactive derivatives of the alpha-scorpion toxin from Leiurus quinquestriatus is described. When the two photoreactive derivatives were photolyzed separately in the presence of brain membranes containing voltage-sensitive sodium channels, one labeled the alpha subunit preferentially while the other labeled beta 1 more intensely than alpha. Batrachotoxin enhanced the efficiency of covalent labeling by the photoreactive derivatives of scorpion toxin. In all the labeling experiments, the specific incorporation of radioactive scorpion toxin was eliminated by an excess of nonradioactive scorpion toxin. The alpha polypeptide labeled in synaptosomes by photoreactive scorpion toxin was demonstrated by immunological techniques to be the same large polypeptide identified in sodium channels purified by their saxitoxin binding activity. The alpha and beta 1 subunits were detected by rapid photoaffinity labeling of a freshly prepared brain homogenate in the presence of a mixture of nine protease inhibitors, indicating that they are components of the sodium channel in intact brain tissue. The association of the covalently labeled polypeptides with the membrane was investigated by treatment of labeled synaptosomes with various agents known to remove proteins only indirectly attached to the lipid bilayer via a membrane-bound protein. In all cases, both the alpha and the beta 1 polypeptides remained in the membrane fraction following extraction. This confirms earlier proposals that the alpha polypeptide has a portion of its mass embedded within the lipid bilayer and suggests that the beta 1 polypeptide does as well.  相似文献   

19.
Epithelial sodium channels (ENaCs) mediate Na(+) entry across the apical membrane of high resistance epithelia that line the distal nephron, airway and alveoli, and distal colon. These channels are composed of three homologous subunits, termed alpha, beta, and gamma, which have intracellular amino and carboxyl termini and two membrane-spanning domains connected by large extracellular loops. Maturation of ENaC subunits involves furin-dependent cleavage of the extracellular loops at two sites within the alpha subunit and at a single site within the gamma subunit. The alpha subunits must be cleaved twice, immediately following Arg-205 and Arg-231, in order for channels to be fully active. Channels lacking alpha subunit cleavage are inactive with a very low open probability. In contrast, channels lacking both alpha subunit cleavage and the tract alphaAsp-206-Arg-231 are active when expressed in oocytes, suggesting that alphaAsp-206-Arg-231 functions as an inhibitor that stabilizes the channel in the closed conformation. A synthetic 26-mer peptide (alpha-26), corresponding to alphaAsp-206-Arg-231, reversibly inhibits wild-type mouse ENaCs expressed in Xenopus oocytes, as well as endogenous Na(+) channels expressed in either a mouse collecting duct cell line or primary cultures of human airway epithelial cells. The IC(50) for amiloride block of ENaC was not affected by the presence of alpha-26, indicating that alpha-26 does not bind to or interact with the amiloride binding site. Substitution of Arg residues within alpha-26 with Glu, or substitution of Pro residues with Ala, significantly reduced the efficacy of alpha-26. The peptide inhibits ENaC by reducing channel open probability. Our results suggest that proteolysis of the alpha subunit activates ENaC by disassociating an inhibitory domain (alphaAsp-206-Arg-231) from its effector site within the channel complex.  相似文献   

20.
The regulation of adipose tissue lipoprotein lipase (LPL) by feeding and fasting occurs through post-translational changes in the LPL protein. In addition, LPL activity and secretion are decreased when N-linked glycosylation is inhibited. To better understand the role of oligosaccharide processing in the development of LPL activity and in LPL secretion, primary cultures of rat adipocytes were treated with inhibitors of oligosaccharide processing. LPL catalytic activity from the heparin-releasable fraction of adipocytes was inhibited by more than 70%, with similar decreases in LPL mass, when cells were cultured for 24 h in the presence of either tunicamycin or castanospermine. On the other hand, deoxymannojirimycin (DMJ) and swainsonine had no effect on LPL activity. LPL secretion was examined after pulse-labeling cells with [35S]methionine. The appearance of 35S-labeled LPL in the medium was blocked by treatment of cells with tunicamycin and castanospermine, whereas secretion was not affected by DMJ or swainsonine. To examine the effect of oligosaccharide processing on LPL intracellular degradation, adipocytes were treated with tunicamycin, castanospermine, and DMJ and then pulse-labeled with [35S]methionine, followed by a chase with unlabeled methionine for 120 min. The unglycosylated [35S]LPL that was synthesized in the presence of tunicamycin demonstrated essentially no intracellular degradation. In the presence of castanospermine and DMJ, the half-life of newly synthesized LPL was increased to 81 and 113 min, as compared to 65 min in control cells. Thus, castanospermine-treated adipocytes demonstrated a decrease in LPL activity and secretion, suggesting that the glucosidase-mediated cleavage of terminal glucose residues from oligosaccharides is a critical step in LPL maturation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号