首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In mammals, heterochromatin is characterized by DNA methylation at CpG dinucleotides and methylation at lysine 9 of histone H3. It is currently unclear whether there is a coordinated transmission of these two epigenetic modifications through DNA replication. Here we show that the methyl-CpG binding protein MBD1 forms a stable complex with histone H3-K9 methylase SETDB1. Moreover, during DNA replication, MBD1 recruits SETDB1 to the large subunit of chromatin assembly factor CAF-1 to form an S phase-specific CAF-1/MBD1/SETDB1 complex that facilitates methylation of H3-K9 during replication-coupled chromatin assembly. In the absence of MBD1, H3-K9 methylation is lost at multiple genomic loci and results in activation of p53BP2 gene, normally repressed by MBD1 in HeLa cells. Our data suggest a model in which H3-K9 methylation by SETDB1 is dependent on MBD1 and is heritably maintained through DNA replication to support the formation of stable heterochromatin at methylated DNA.  相似文献   

2.
3.
4.
5.
6.
7.
8.
Small ubiquitin-related modifiers, SUMO-2/3 and SUMO-1, are involved in gene regulation and nuclear structures. However, little is known about the roles of SUMO, in heterochromatin formation of mammalian cells. Here we demonstrate that SUMOs directly interact with human MCAF1, which forms complexes with either the methyl-CpG-binding protein MBD1 or SETDB1, which trimethylates histone H3 at lysine 9 (H3-K9) in the presence of MCAF1. Modification of MBD1 with either SUMO-2/3 or SUMO-1 facilitated the interaction between MBD1 and MCAF1, suggesting that SUMOylation links the methylation of DNA and histones. In a cultured human cell line, SUMOs were localized in MBD1- and MCAF1-containing heterochromatin regions that were enriched in trimethyl-H3-K9 and the heterochromatin proteins HP1beta and HP1gamma. Specific knockdown of either SUMO-2/3 or SUMO-1 induced dissociation of MCAF1, trimethyl-H3-K9, and the HP1 proteins from the MBD1-containing heterochromatin foci, suggesting a requirement for SUMOs for heterochromatin assembly. These findings provide insights into the roles of SUMOylation in the regulation of heterochromatin formation and gene silencing.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号