首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Recombinant human interferon-gamma (Hu-IFN-gamma) produced by Chinese-hamster ovary (CHO) cells was analysed by immunoprecipitation and SDS/PAGE. Up to twelve molecular-mass variants were secreted by this cell line. Three variants were recovered after enzymic removal of all N-linked oligosaccharides or when glycosylation was inhibited by tunicamycin. The presence of three polypeptide forms rather than a single form suggested that proteolytic cleavage had occurred at two sites in both the glycosylated and non-glycosylated forms. Proteolytically cleaved IFN-gamma was more prevalent in cell lysates than in the secreted glycoprotein. In common with naturally produced IFN-gamma, both fully glycosylated IFN-gamma (asparagine residues 28 and 100 occupied) and partially glycosylated product (thought to be substituted at position Asn28) were secreted. This was deduced from the Mr of the glycosylated products and the relative amounts of sialic acid expressed by each variant. In contrast with naturally produced IFN-gamma, non-glycosylated IFN-gamma was also secreted by the transfected CHO cells. When the cells were grown in batch culture in serum-free medium under pH and dissolved-oxygen control, the proportion of non-glycosylated IFN-gamma increased from 3 to 5% after 3 h, to 30% of the total IFN-gamma present after 195 h. This change in the proportion of glycosylated protein produced was not seen when metabolically labelled IFN-gamma was incubated for 96 h with cell-free supernatant from actively growing CHO cells. This implied that an alteration in intracellular glycosylation was occurring rather than a degradation of oligosaccharide side chains after secretion. The decrease in IFN-gamma glycosylation was independent of the glucose concentration in the culture medium, but could be related to specific growth and IFN-gamma production rates, as these declined steadily after 50 h of culture, in line with the increased production of non-glycosylated IFN-gamma.  相似文献   

2.
The physiology of a recombinant Chinese hamster ovary cell line in glucose-limited chemostat culture was studied over a range of dilution rates (D = 0.008 to 0.20 h(-1)). The specific growth rate (mu) deviated from D at low dilution rates due to an increased specific death rate. Extrapolation of these data suggested a minimum specific growth rate of 0.011 h(-1) (mu(max) = 0.025 h(-1)) The metabolism at each steady state was characterized by determining the metabolic quotients for glucose, lactate, ammonia, amino acids, and interferon-gamma (IFN-gamma). The specific rate of glucose uptake increased linearly with mu, and the saturation constant for glucose (K(s)) was calculated to be 59.6 muM. There was a linear increase in the rate of lactate production with a higher yield of lactate from glucose at high growth rates. The decline in the rate of production of lactate, alanine, and serine at low growth rate was consistent with the limitation of the glycolytic pathway by glucose. The specific rate of IFN-gamma production increased with mu in a manner indicative of a growth-related product. Despite changes in the IFN-gamma production rate and cell physiology, the pattern of IFN-gamma glycosylation was similar at all except the lowest growth rates where there was increased production of nonglycosylated IFN-gamma. (c) 1993 John Wiley & Sons, Inc.  相似文献   

3.
The influence of ammonia and lactate on cell growth, metabolic, and antibody production rates was investigated for murine hybridoma cell line 163.4G5.3 during batch culture. The specific growth rate was reduced by one-half in the presence of an initial ammonia concentration of 4 mM. Increasing ammonia levels accelerated glucose and glutamine consumption, decreased ammonia yield from glutamine, and increased alanine yield from glutamine. Although the amount of antibody produced decreased with increasing ammonia concentration, the specific antibody productivity remained relatively constant around a value of 0.22 pg/cell-h. The specific growth rate was reduced by one-half at an initial lactate concentration of 55 mM. Although specific glucose and glutamine uptake rates were increased at high lacatate concentration, they showed a decrease after making corrections for medium osmolarity. The yield coefficient of lactate from glucose decreased at high lactate concentrations. A similar decrease was observed for the ammonia yield coefficient from glutamine. At elevated lactate concentrations, specific antibody productivities increased, possibly due to the increase in medium osmolarity. The specific oxygen uptake rate was insensitive to ammonia and lactate concentrations. Addition of ammonia and lactate increased the calculated metabolic energy production of the cells. At high ammonia and lactate, the contribution of glycolysis to total energy production increased. Decreasing external pH and increasing ammonia concentrations caused cytoplasmic acidification. Effect of lactate on intracellular pH was insignificant, whereas increasing osmolarity caused cytoplasmic alkalinization.  相似文献   

4.
A starvation-based dissolved oxygen (DO) transient controller was developed to supply growth-limiting substrate to high cell density fed-batch cultures of recombinant Escherichia coli. The algorithm adjusted a preexisting feed rate in proportion to the culture's oxygen demand, which was estimated from transients in the DO concentration after short periods of feed interruption. In this manner, the addition of glucose feed was precisely controlled at a rate that did not exceed the acetate production threshold, thus preventing acetate accumulation. In comparison to exponential feed algorithms commonly used in industry, the implementation of the new feeding strategy increased the final cell density from 32 to 44 g (dry cell weight).L(-1), with less than 16 mM acetate accumulated, producing an ideal culture for subsequent induction. Despite a constant starvation level and relatively low levels of acetate, experimental cultivations still tended to produce acetate towards the end of the process. The use of a simple Monod model provided an explanation as to why this may occur in high cell density cultivations and suggests how it may be overcome.  相似文献   

5.
The culture levels of glucose and CO(2) have been reported to independently have important influences on mammalian cell processes. In this work the combined effects of glucose limitation and CO(2) partial pressure (pCO(2)) on monoclonal antibody (IgG) producing Chinese Hamster Ovary cells were investigated in a perfusion reactor operated with controlled cell specific medium feed rate, pH and osmolality. Under high glucose conditions (14.3 +/- 0.8 mM), the apparent growth rate decreased (from 0.021 to 0.009 h(-1)) as the pCO(2) increased to approximately 220 mmHg, while the cell specific IgG productivity was almost unchanged. The lactate yield from glucose was not affected by pCO(2) up to approximately 220 mmHg and glucose was mainly converted to lactate. A feed medium modification from high (33 mM) to low (6 mM) glucose resulted in <0.1 mM glucose in the culture. As a result of apparently shifting metabolism towards the conversion of pyruvate to CO(2), both the ratio of lactate to glucose and the alanine production rate were lowered (1.51-1.14 and 17.7-0.56 nmol/10(6) cells h, respectively). Interestingly, when the pCO(2) was increased to approximately 140 mmHg, limiting glucose resulted in 1.7-fold higher growth rates, compared to high glucose conditions. However, at approximately 220 mmHg pCO(2) this beneficial effect of glucose limitation on these CHO cells was lost as the growth rate dropped dramatically to 0.008 h(-1) and the IgG productivity was lowered by 15% (P < 0.01) relative to the high glucose condition. The IgG galactosylation increased under glucose- limited compared to high-glucose conditions.  相似文献   

6.
Semisteady state cultures are useful for studying cell physiology and facilitating media development. Two semisteady states with a viable cell density of 5.5 million cells/mL were obtained in CHO cell cultures and compared with a fed‐batch mode control. In the first semisteady state, the culture was maintained at 5 mM glucose and 0.5 mM glutamine. The second condition had threefold higher concentrations of both nutrients, which led to a 10% increase in lactate production, a 78% increase in ammonia production, and a 30% reduction in cell growth rate. The differences between the two semisteady states indicate that maintaining relatively low levels of glucose and glutamine can reduce the production of lactate and ammonia. Specific amino acid production and consumption indicated further metabolic differences between the two semisteady states and fed‐batch mode. The results from this experiment shed light in the feeding strategy for a fed‐batch process and feed medium enhancement. The fed‐batch process utilizes a feeding strategy whereby the feed added was based on glucose levels in the bioreactor. To evaluate if a fixed feed strategy would improve robustness and process consistency, two alternative feeding strategies were implemented. A constant volume feed of 30% or 40% of the initial culture volume fed over the course of cell culture was evaluated. The results indicate that a constant volumetric‐based feed can be more beneficial than a glucose‐based feeding strategy. This study demonstrated the applicability of analyzing CHO cultures in semisteady state for feed enhancement and continuous process improvement. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

7.
Fed-batch cultures were implemented to study the metabolism of HEK-293 cells. Glucose, measured every 30 min by a FIA biosensor system, was maintained at 1 mM throughout the culture using an adaptive nonlinear controller based on minimal process modeling. The controller performed satisfactorily at both low and high cell concentrations without the need for retuning between different culture phases. Overall, lactate production was significantly reduced by maintaining a low glucose concentration, thus decreasing the rate of glycolysis. The rates of glucose and glutamine uptake as well as the lactate and ammonia production were compared to those obtained in batch mode with an initial glucose concentration of 21 mM. Basically, three phases were observed in both culture modes. The metabolic shift from the first to the second phase was characterized by a significant reduction in glucose consumption and lactate production while maximum growth rate was maintained. The specific respiration rate appeared unchanged during the first two phases, suggesting that no change occurred in the oxidative pathway capacity. In the third phase, cell growth became slower very likely due to glutamine limitation.  相似文献   

8.
Tetracycline-controlled expression plasmids that allow inducible expression of proteins in mammalian cells (Gossen & Bujard, 1992), have been used to express porcine interferon-gamma in the RK-13 rabbit kidney cell line. Following neomycin selection, stable clones produced recombinant, glycosylated porcine interferon-gamma (rGPoIFN-gamma) only after removal of tetracycline (Tc). Southern blot analysis of one clone showed that approximately 50 copies of IFN-gamma cDNA were present in the cell genome. In the absence of Tc, stable clones secreted large amounts of rGPoIFN-gamma (up to 16 microg/ml) into the medium supplemented with 10% FCS and high glucose concentration. Molecular weight comparison of 35S-Methionine, labelled rGPoIFN-gamma with natural leukocytic IFN-gamma after immunoprecipitation, revealed 4 major glycoforms with apparent Mr of 27,000; 25,000; 20,000 and 18,500, that are almost identical in both IFN-gamma species. In both cases, all 4 glycoforms resolved into 2 polypeptide monomers with apparent Mr of 16,500 and 14,500 upon deglycosylation with N-glycosydase F. The biological activity of rGPoIFN-gamma was in the same range as that of natural leukocytic PoIFN-gamma (2 x 10(6) U/mg). Eventually, this recombinant mammalian IFN-gamma should constitute a very useful substitute for leukocyte PoIFN-gamma in in vitro or in vivo experiments.  相似文献   

9.
The stable continuous overproduction of a plasmidencoded protein, beta-lactamase, for at least 50 days by Escherichia coli K-12, RB791(pKN), with release into the culture medium has been demonstrated in two-stage chemostats. The second-stage culture was continuously induced with 0.1 mM IPTG. Continuous expression of beta-lactamase could not be sustained with this strain in a single-stage chemostat because of cell death and selection for lac(-1) cells. beta-Lactamase production in the second stage was sensitive to the second-stage dilution rate and the distribution of the limiting substrate (i.e., glucose) between the first and second stages. The fraction of viable, excreting cells and the average copy number in the induced culture was measurably higher under those conditions of dilution rate and substrate distribution which yielded high beta-lactamase levels. The best operating conditions found at 20 degrees C were a first-stage dilution rate of 0.12 h(-1), a second-stage dilution rate of 0.03 h(-1), and equal glucose feed supplied to each stage. Enzymatically active beta-lactamase was produced at a level of 25% of total cellular protein with 90% excretion yielding 300 mg beta-lactamase/L that was 50% pure at an OD(600) < 6. (c) 1993 Wiley & Sons, Inc.  相似文献   

10.
Fed-batch operation for the production of t-PA using Chinese Hamster Ovary (CHO) cells was optimized using serial and parallel experimentation. The feed, an isotonic concentrate, was improved to obtain 2- to 2.5-fold increases in integrated viable cell days versus batch. With a low glucose inoculum train, the viability index was further increased up to 4.5-fold. Hydrolysates were substituted for the amino acid portion of the concentrate with no significant change in fed-batch results. The concentrate addition rate was based on a constant 4 pmol/cell.day glucose uptake rate that maintained a relatively constant glucose concentration (approximately 3 mM). Increased viable cell indices did not lead to concomitant increases in t-PA concentrations compared to batch. The fed-batch concentrate and feeding strategy were shown to be effective in hybridoma culture, where a 4-fold increase in viable cell index yielded a 4-fold increase in antibody concentration. The half-life of t-PA decreased from 43 to 15 days with decreasing cell viability (from 92% to 71%), but this was not sufficient to explain the apparent t-PA threshold. Instead, the CHO results were explained by a reduction in t-PA production at higher extracellular t-PA concentrations that limited the fed-batch maximum at 35 mg/L for the cell line investigated. Analysis of both the total and t-PA mRNA levels revealed no response to increasing extracellular t-PA concentrations upon exogenous additions. Instead, intracellular t-PA levels were increased, revealing a possible secretory pathway limitation. A new reactor configuration was developed using an acoustic filter to retain the cells in the reactor while an ultrafiltration module stripped t-PA from the clarified medium before the permeate was returned to the reactor. By adding this harvesting step, the t-PA fed-batch production was increased over 2-fold, up to a yield of 80 mg/L.  相似文献   

11.
Chinese hamster ovary cells producing recombinant human interferon-gamma were cultivated for 500 h attached to macroporous microcarriers in a perfused, fluidized-bed bioreactor, reaching a maximum cell density in excess of 3 x 10(7) cells (mL microcarrier)-1 at a specific growth rate (mu) of 0.010 h-1. During establishment of the culture, the N-glycosylation of secreted recombinant IFN-gamma was monitored by capillary electrophoresis of intact IFN-gamma proteins and by HPLC analysis of released N-glycans. Rapid analysis of IFN-gamma by micellar electrokinetic capillary chromatography resolved the three glycosylation site occupancy variants of recombinant IFN-gamma (two Asn sites occupied, one Asn site occupied and nonglycosylated) in under 10 min per sample; the relative proportions of these variants remained constant during culture. Analysis of IFN-gamma by capillary isoelectric focusing resolved at least 11 differently sialylated glycoforms over a pI range of 3.4 to 6.4, enabling rapid quantitation of this important source of microheterogeneity. During perfusion culture the relative proportion of acidic IFN-gamma proteins increased after 210 h of culture, indicative of an increase in N-glycan sialylation. This was confirmed by cation-exchange HPLC analysis of released, fluorophore-labeled N-glycans, which showed an increase in the proportion of tri- and tetrasialylated N-glycans associated with IFN-gamma during culture, with a concomitant decrease in the proportion of monosialylated and neutral N-glycans. Comparative analyses of IFN-gamma produced by CHO cells in stirred-tank culture showed that N-glycan sialylation was stable until late in culture, when a decline in sialylation coincided with the onset of cell death and lysis. This study demonstrates that different modes of capillary electrophoresis can be employed to rapidly and quantitatively monitor the main sources of glycoprotein variation, and that the culture system and operation may influence the glycosylation of a recombinant glycoprotein.  相似文献   

12.
Because the presence of sialic acid can extend circulatory lifetime, a high degree of sialylation is often a desirable feature of therapeutic glycoproteins. In this study, the incomplete intracellular sialylation of interferon-gamma (IFN-gamma), produced by Chinese hamster ovary cell culture, was minimized by supplementing the culture medium with N-acetylmannosamine (ManNAc), a direct intracellular precursor for sialic acid synthesis. By introducing 20 mM ManNAc into the culture medium, incompletely sialylated biantennary glycan structures were reduced from 35% to 20% at the Asn97 glycosylation site. This effect was achieved without affecting cell growth or product yield. The intracellular pool of CMP-sialic acid, the nucleotide sugar substrate for sialyltransferase, was also extracted and quantified by HPLC. Feeding of 20 mM ManNAc increased this intracellular pool of CMP-sialic acid by nearly thirtyfold compared with unsupplemented medium. When radiolabeled ManNAc was used to trace the incorporation of the precursor, it was found that supplemental ManNAc was exclusively incorporated into IFN-gamma as sialic acid and that, at 20 mM ManNAc feeding, nearly 100% of product sialylation originated from the supplemental precursor.  相似文献   

13.
Asparagine linked (N-linked) glycosylation is an important modification of recombinant proteins, because the attached oligosaccharide chains can significantly alter protein properties. Potential glycosylation sites are not always occupied with oligosaccharide, and site occupancy can change with the culture environment. To investigate the relationship between metabolism and glycosylation site occupancy, we studied the glycosylation of recombinant human interferon-gamma (IFN-gamma) produced in continuous culture of Chinese hamster ovary cells. Intracellular nucleotide sugar levels and IFN-gamma glycosylation were measured at different steady states which were characterized by central carbon metabolic fluxes estimated by material balances and extracellular metabolite rate measurements. Although site occupancy varied over a rather narrow range, we found that differences correlated with the intracellular pool of UDP-N-acetylglucosamine + UDP-N-acetylgalactosamine (UDP-GNAc). Measured nucleotide levels and estimates of central carbon metabolic fluxes point to UTP depletion as the cause of decreased UDP-GNAc during glucose limitation. Glucose limited cells preferentially utilized available carbon for energy production, causing reduced nucleotide biosynthesis. Lower nucleoside triphosphate pools in turn led to lower nucleotide sugar pools and reduced glycosylation site occupancy. Subsequent experiments in batch and fed-batch culture have confirmed that UDP-sugar concentrations are correlated with UTP levels in the absence of glutamine limitation. Glutamine limitation appears to influence glycosylation by reducing amino sugar formation and hence UDP-GNAc concentration. The influence of nucleotide sugars on site occupancy may only be important during periods of extreme starvation, since relatively large changes in nucleotide sugar pools led to only minor changes in glycosylation.  相似文献   

14.
Substrate limited fed batch cultures were used to study growth and overflow metabolism in hybridoma cells. A glucose limited fed batch, a glutamine limited fed batch, and a combined glucose and glutamine limited red batch culture were compared with batch cultures. In all cultures mu reaches its maximum early during growth and decreases thereafter so that no exponential growth and decreases thereafter so that no exponential growth rate limiting, although the glutamine concentration (>0.085mM) was lower than reported K(s) vales and glucose was below 0.9mM; but some other nutrients (s) was the cause as verified by simulations. Slightly more cells and antibodies were produced in the combined fed batch compared with the batch culture. The specific rates for consumption of glucose and glutamine were dramatically influenced in fed batch cultures resulting in major metabolic changes. Glucose limitation decreased lactate formation, but increased glutamine consumption and ammonium formation. Glutamine limitation decreased ammonium and alanine formation of lactate, alanine, and ammonium was negligible in the dual-substrate limited fed batch culture. The efficiency of the energy metabolism increased, as judged by the increase in the cellular yield coefficient for glucose by 100% and for glutamine by 150% and by the change in the metabolic ratios lac/glc, ala/ln, and NH(x)/ln, in the combined fed culture. The data indicate that a larger proportion of consumed glutamine enters the TCA cycle through the glutamate dehydrogenase pathway, which releases more energy from glutamine than the transamination pathway. We suggest that the main reasons for these changes are decreased uptake rates of glucose and glutamine, which in turn lead to a reduction of the pyruvate pool and a restriction of the flux through glutaminase and lactate dehydrogenase. There appears to be potential for further cell growth in the dual-substrate-limited fed batch culture as judged by a comparison of mu in the different cultures. (c) 1994 John Wiley & Sons, Inc.  相似文献   

15.
A feedback control system of the glucose feed rate in a bakers' yeast fed-batch culture was developed by keeping the ethanol concentration constant. A PID controller and on–off controller were applied and discussed with the aid of the porous Teflon tubing method. Experimental results showed the effectiveness of the control system for avoiding the glucose effect and glucose starvation. It was shown that the feedback control system developed hare could achieve a maximum specific growth rate of 0.3 h?1 or a maximum cell yield of 0.5 g cell/g glucose in the fedhyphen;batch culture.  相似文献   

16.
Vi capsular polysaccharide is synthesized during growth of Salmonella typhi Ty2 and is spontaneously released from the bacterial cells into the culture medium during culture. Vi production was dependent on cell growth and the greater the cell mass the greater the production of Vi. Using fed batch culture to optimize bacterial growth resulted is an increase in cell mass and consequently Vi production. The yield of Vi obtained in fed batch culture was 415 mg l−1, which was over three times that, obtained in batch culture. A proportion of the Vi remained cell associated in the form of a capsule and at least part of this was released from the bacterial surface by sonication. The size of the Vi polysaccharide produced was consistently high and did not change during the different phases of bacterial growth. The synthesis of Vi was also dependent upon the media components and the fermentation conditions. The presence of high concentrations of glucose at the beginning of growth inhibited the production of Vi, particularly during the stationary phase. At a concentration of 400 mM sodium phosphate the synthesis of Vi was strongly inhibited.  相似文献   

17.
The diseases caused for Clostridium perfringens are generically called enterotoxemias because toxins produced in the intestine may be absorbed into the general circulation. C. perfringens type B, grown in batch fermentation, produced toxins used to obtain veterinary vaccines. Glucose in concentrations of 1.4–111.1 mM was used to define the culture medium. The minimum concentration for a satisfactory production of vaccines against clostridial diseases was 55.6 mM. Best results were brought forth by meat and casein peptones, both in the concentration 5.0 g l?1 in combination with glucose and a culture pH maintained at 6.5 throughout the fermentation process. The production of lactic, acetic and propionic organic acids was observed. Ethanol was the metabolite produced in the highest concentration when cultures maintained steady pH of 6.5 with exception of cultures with initial glucose concentration of 1.4 mM, where the highest production was of propionic acid. Maximal cell concentration and the highest toxin title concomitantly low yield coefficient to organic acids and ethanol were obtained using basal medium containing 111.1 mM glucose under a controlled pH culture (pH) 6.5 in batch fermentations of C. perfringens type B. These data contribute to improve process for industrial toxin production allowing better condition to produce a toxoid vaccine.  相似文献   

18.
To develop a cost-effective method for the enhanced production of α-arbutin using Xanthomonas maltophilia BT-112 as a biocatalyst, different fed-batch strategies such as constant feed rate fed-batch, constant hydroquinone (HQ) concentration fed-batch, exponential fed-batch and DO-control pulse fed-batch (DPFB) on α-arbutin production were investigated. The research results indicated that DPFB was an effective method for α-arbutin production. When fermentation with DO-control pulse feeding strategy to feed HQ and yeast extract was applied, the maximum concentrations of α-arbutin and cell dry weight were 61.7 and 4.21 g/L, respectively. The α-arbutin production was 394 % higher than that of the control (batch culture) and the molar conversion yield of α-arbutin reached 94.5 % based on the amount of HQ supplied (240 mM). Therefore, the results in this work provide an efficient and easily controlled method for industrial-scale production of α-arbutin.  相似文献   

19.
The Chinese hamster ovary (CHO) cell line has great commercial importance in the production of recombinant human proteins, especially those for therapeutic use. Much attention has been paid to CHO cell population physiology in order to define factors affecting product fidelity and yield. Such studies have revealed that recombinant proteins, including human interferon-gamma (IFN-gamma), can be heterogeneous both in glycosylation and in proteolytic processing. The type of heterogeneity observed depends on the growth physiology of the cell population, although the relationship between them is complex. In this article we report results of a cytological study of the CHO320 line which expresses recombinant human IFN-gamma. When grown in suspension culture, this cell line exhibited three types of heterogeneity: (1) heterogeneity of the production of IFN-gamma within the cell population, (2) heterogeneity of the number of nuclei and mitotic spindles in dividing cells, and (3) heterogeneity of cellular environment. The last of these arises from cell aggregates which form in suspension culture: Some cells are exposed to the culture medium; others are fully enclosed within the mass with little or no direct access to the medium. Thus, live cells producing IFN-gamma are heterogeneous in their environment, with variable access to O(2) and nutrients. Within the aggregates, it appears that live cells proliferate on a dead cell mass. The layer of live cells can be several cells deep. Specific cell-cell attachments are observed between the living cells in these aggregates. Two proteins, known to be required for the formation of certain types of intercellular junctions, spectrin and vinculin, have been localized to the regions of cell-cell contact. The aggregation of the cells appears to be an active process requiring protein synthesis. (c) 1995 John Wiley & Sons, Inc.  相似文献   

20.
Dynamic optimization of hybridoma growth in a fed-batch bioreactor   总被引:4,自引:0,他引:4  
This study addressed the problem of maximizing cell mass and monoclonal antibody production from a fed-batch hybridoma cell culture. We hypothesized that inaccuracies in the process model limited the mathematical optimization. On the basis of shaker flask data, we established a simple phenomenological model with cell mass and lactate production as the controlled variables. We then formulated an optimal control algorithm, which calculated the process-model mismatch at each sampling time, updated the model parameters, and re-optimized the substrate concentrations dynamically throughout the time course of the batch. Manipulated variables were feed rates of glucose and glutamine. Dynamic parameter adjustment was done using a fuzzy logic technique, while a heuristic random optimizer (HRO) optimized the feed rates. The parameters selected for updating were specific growth rate and the yield coefficient of lactate from glucose. These were chosen by a sensitivity analysis. The cell mass produced using dynamic optimization was compared to the cell mass produced for an unoptimized case, and for a one-time optimization at the beginning of the batch. Substantial improvements in reactor productivity resulted from dynamic re-optimization and parameter adjustment. We demonstrated first that a single offline optimization of substrate concentration at the start of the batch significantly increased the yield of cell mass by 27% over an unoptimized fermentation. Periodic optimization online increased yield of cell mass per batch by 44% over the single offline optimization. Concomitantly, the yield of monoclonal antibody increased by 31% over the off-line optimization case. For batch and fed-batch processes, this appears to be a suitable arrangement to account for inaccuracies in process models. This suggests that implementation of advanced yet inexpensive techniques can improve performance of fed-batch reactors employed in hybridoma cell culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号