首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
We synthesized a Yarrowia lipolytica strain overproducing lipase for industrial applications by using long terminal repeat (zeta) of the Y. lipolytica retrotransposon Ylt1 and an allele of URA3 with a promoter deletion to construct JMP3. JMP3 is a derivative of plasmid pHSS6 carrying a NotI-NotI cassette which contains a defective URA3 allele, a polylinker sequence, and the zeta region for targeting to multiple sites in the genome of the recipient. We inserted the LIP2 gene (encoding extracellular lipase) under the control of the strong POX2 promoter into JMP3 to generate JMP6. The pHSS6 region was removed by NotI digestion prior to transformation. Two Y. lipolytica strains transformed with the JMP6 LIP2 cassette had a mean of 10 integrated copies devoid of the Escherichia coli region, corresponding to an autocloning event. The copy number in the transformants was stable even after 120 generations in nonselective and lipase-inducing conditions. The resulting strains could produce 0.5 g of active lipase per liter in the supernatant, 40 times more than the single-copy strain with the LIP2 promoter. This work provides a new expression system in Y. lipolytica that results in strains devoid of bacterial DNA and in strains producing a high level of lipase for industrial uses, waste treatment, and pancreatic insufficiency therapy.  相似文献   

2.
3.
The yeast Yarrowia lipolytica degrades efficiently low-cost hydrophobic substrates for the production of various added-value products such as lipases. To obtain yeast strains producing high levels of extracellular lipase, Y. lipolytica DSM3286 was subjected to mutation using ethyl methanesulfonate (EMS) and ultraviolet (UV) light. Twenty mutants were selected out of 1600 mutants of Y. lipolytica treated with EMS and UV based on lipase production ability on selective medium. A new industrial medium containing methyl oleate was optimized for lipase production. In the 20 L bioreactor containing new industrial medium, one UV mutant (U6) produced 356 U/mL of lipase after 24h, which is about 10.5-fold higher than that produced by the wild type strain. The properties of the mutant lipase were the same as those of the wild type: molecular weight 38 kDa, optimum temperature 37°C and optimum pH 7. Furthermore, the nucleotide sequences of extracellular lipase gene (LIP2) in wild type and mutant strains were determined. Only two silent substitutions at 362 and 385 positions were observed in the ORF region of LIP2. Two single substitutions and two duplications of the T nucleotide were also detected in the promoter region. LIP2 sequence comparison of the Y. lipolytica DSM3286 and U6 strains shows good targets to effective DNA recombinant for extracellular lipase of Y. lipolytica.  相似文献   

4.
The yeast Yarrowia lipolytica produces an extracellular lipase encoded by the LIP2 gene. However, very little is known about the mechanisms controlling its expression, especially on glucose media. In this work, the involvement of hexokinase Hxk1 in the glucose catabolite repression of LIP2 was investigated in a lipase overproducing mutant less sensitive to glucose repression. This mutant has a reduced capacity to phosphorylate hexose compared with the wild-type strain, but no differences could be observed between the HXK1 sequences in the two isolates. This suggested that the reduced phosphorylating activity of the mutant strain probably resulted from a modification in the level of HXK1 expression. However, overexpression of the HXK1 gene in this mutant led to a decrease of both LIP2 induction and extracellular lipase activity, suggesting that the hexokinase is involved in the glucose catabolite repression of LIP2 in Y lipolytica.  相似文献   

5.
Yarrowia lipolytica is an important oleaginous industrial microorganism used to produce biofuels and other value-added compounds. Although several genetic engineering tools have been developed for Y. lipolytica, there is no efficient method for genomic integration of large DNA fragments. In addition, methods for constructing multigene expression libraries for biosynthetic pathway optimization are still lacking in Y. lipolytica. In this study, we demonstrate that multiple and large DNA fragments can be randomly and efficiently integrated into the genome of Y. lipolytica in a homology-independent manner. This homology-independent integration generates variation in the chromosomal locations of the inserted fragments and in gene copy numbers, resulting in the expression differences in the integrated genes or pathways. Because of these variations, gene expression libraries can be easily created through one-step integration. As a proof of concept, a LIP2 (producing lipase) expression library and a library of multiple genes in the β-carotene biosynthetic pathway were constructed, and high-production strains were obtained through library screening. Our work demonstrates the potential of homology-independent genome integration for library construction, especially for multivariate modular libraries for metabolic pathways in Y. lipolytica, and will facilitate pathway optimization in metabolic engineering applications.  相似文献   

6.
7.
Yarrowia lipolytica requires the expression of a heterologous invertase to grow on a sucrose-based substrate. This work reports the construction of an optimized invertase expression cassette composed of Saccharomyces cerevisiae Suc2p secretion signal sequence followed by the SUC2 sequence and under the control of the strong Y. lipolytica pTEF promoter. This new construction allows a fast and optimal cleavage of sucrose into glucose and fructose and allows cells to reach the maximum growth rate. Contrary to pre-existing constructions, the expression of SUC2 is not sensitive to medium composition in this context. The strain JMY2593, expressing this new cassette with an optimized secretion signal sequence and a strong promoter, produces 4,519 U/l of extracellular invertase in bioreactor experiments compared to 597 U/l in a strain expressing the former invertase construction. The expression of this cassette strongly improved production of invertase and is suitable for simultaneously high production level of citric acid from sucrose-based media.  相似文献   

8.
In this work, we investigated the effect of codon bias and consensus sequence (CACA) at the translation initiation site on the expression level of heterologous proteins in Yarrowia lipolytica; human interferon alpha 2b (hIFN-α2b) was studied as an example. A codon optimized hIFN-α2b gene was synthesized according to the frequency of codon usage in Y. lipolytica. Both wild-type (IFN-wt) and optimized hIFN-α2b (IFN-op) genes were expressed under the control of a strong inducible promoter acyl-co-enzyme A oxidase (POX2). Protein secretion was directed by the targeting sequence of the extracellular lipase (LIP2): pre–proLIP2. Codon optimization increased protein production by 11-fold, whereas the insertion of CACA sequence upstream of the initiation codon of IFN-op construct resulted in 16.5-fold increase of the expression level; this indicates that translational efficiency plays an important part in the increase of hIFN-α2b production level. The replacement of the pre–proLIP2 signal secretion with the LIP2 pre-region sequence followed by the X-Ala/X-Pro stretch but without the pro-region also increased the secretion of the target protein by twofold, suggesting therefore that the LIP2 pro-region is not necessary for extracellular secretion of small heterologous proteins in Yarrowia lipolytica.  相似文献   

9.
Methyl oleate was used as a primary carbon source and as an alternative inducer for the production of an extracellular lipase, Lip2, in Y. lipolytica strain LgX64.81 grown in a 20-l bioreactor. The lipase-encoding gene, LIP2, was investigated during culture on methyl oleate using a pLIP2LacZ reporter fusion and we provide evidence for the involvement of methyl oleate in its regulation. Revisions requested 7 July 2005; Revisions received 30 August 2005  相似文献   

10.
Nervous necrosis virus (NNV) causes viral encephalopathy and retinopathy, a devastating disease of many species of cultured marine fish worldwide. In this study, we used the dimorphic non-pathogenic yeast Yarrowia lipolytica as a host to express the capsid protein of red-spotted grouper nervous necrosis virus (RGNNV-CP) and evaluated its potential as a platform for vaccine production. An initial attempt was made to express the codon-optimized synthetic genes encoding intact and N-terminal truncated forms of RGNNV-CP under the strong constitutive TEF1 promoter using autonomously replicating sequence (ARS)-based vectors. The full-length recombinant capsid proteins expressed in Y. lipolytica were detected not only as monomers and but also as trimers, which is a basic unit for formation of NNV virus-like particles (VLPs). Oral immunization of mice with whole recombinant Y. lipolytica harboring the ARS-based plasmids was shown to efficiently induce the formation of IgG against RGNNV-CP. To increase the number of integrated copies of the RGNNV-CP expression cassette, a set of 26S ribosomal DNA-based multiple integrative vectors was constructed in combination with a series of defective Ylura3 with truncated promoters as selection markers, resulting in integrants harboring up to eight copies of the RGNNV-CP cassette. Sucrose gradient centrifugation and transmission electron microscopy of this high-copy integrant were carried out to confirm the expression of RGNNV-CPs as VLPs. This is the first report on efficient expression of viral capsid proteins as VLPs in Y. lipolytica, demonstrating high potential for the Y. lipolytica expression system as a platform for recombinant vaccine production based on VLPs.  相似文献   

11.
Saccharomyces cerevisiae is frequently used as a bioreactor for conversion of exogenously acquired metabolites into value-added products, but has not been utilized for bioconversion of low-cost lipids such as triacylglycerols (TAGs) because the cells are typically unable to acquire these lipid substrates from the growth media. To help circumvent this limitation, the Yarrowia lipolytica lipase 2 (LIP2) gene was cloned into S. cerevisiae expression vectors and used to generate S. cerevisiae strains that secrete active Lip2 lipase (Lip2p) enzyme into the growth media. Specifically, LIP2 expression was driven by the S. cerevisiae PEX11 promoter, which maintains basal transgene expression levels in the presence of sugars in the culture medium but is rapidly upregulated by fatty acids. Northern blotting, lipase enzyme activity assays, and gas chromatographic measurements of cellular fatty acid composition after lipid feeding all confirmed that cells transformed with the PEX11 promoter–LIP2 construct were responsive to lipids in the media, i.e., cells expressing LIP2 responded rapidly to either free fatty acids or TAGs and accumulated high levels of the corresponding fatty acids in intracellular lipids. These data provided evidence of the creation of a self-regulating positive control feedback loop that allows the cells to upregulate Lip2p production only when lipids are present in the media. Regulated, autonomous production of extracellular lipase activity is a necessary step towards the generation of yeast strains that can serve as biocatalysts for conversion of low-value lipids to value-added TAGs and other novel lipid products.  相似文献   

12.
The sequences encoding the genes for endoglucanase II and cellobiohydrolase II from the fungus Trichoderma reesei QM9414 were successfully cloned and expressed in Yarrowia lipolytica under the control of the POX2 or TEF promoters, and using either the native or preproLip2 secretion signals. The expression level of both recombinant enzymes was compared with that obtained using Pichia pastoris, under the control of the AOX1 promoter to evaluate the utility of Y. lipolytica as a host strain for recombinant EGII and CBHII production. Extracellular endoglucanase activity was similar between TEF-preoproLip2-eglII expressed in Y. lipolytica and P. pastoris induced by 0.5 % (v/v) methanol, but when recombinant protein expression in P. pastoris was induced with 3 % (v/v) methanol, the activity was increased by about sevenfold. In contrast, the expression level of cellobiohydrolase from the TEF-preproLip2-cbhII cassette was higher in Y. lipolytica than in P. pastoris. Transformed Y. lipolytica produced up to 15 mg/l endoglucanase and 50 mg/l cellobiohydrolase, with the specific activity of both proteins being greater than their homologs produced by P. pastoris. Partial characterization of recombinant endoglucanase II and cellobiohydrolase II expressed in both yeasts revealed their optimum pH and temperature, and their pH and temperature stabilities were identical and hyperglycosylation had little effect on their enzymatic activity and properties.  相似文献   

13.
Triglyceride lipases catalyze the reversible degradation of glycerol esters with long-chain fatty acids into fatty acids and glycerol. In silico analysis of 5′-end flanking sequence of the gene LIP1 encoding a triglyceride lipase from the wheat head blight pathogen Fusarium graminearum revealed the presence of several cis-regulatory elements. To delineate the function of these regulatory elements, we constructed a series of deletion mutants in the LIP1 promoter region fused to the open reading frame of a green fluorescent protein (GFP) and assayed the promoter activity. Analysis of GFP expression levels in mutants indicated that a 563-bp promoter sequence was sufficient to drive the expression of LIP1 and regulatory elements responsible for the gene induction were located within the 563-372 bp region. To further investigate the regulatory elements, putative cis-acting elements spanned within the 563-372 bp region were mutated using a targeted mutagenesis approach. A CCAAT box, a CreA binding site, and a fatty acid responsive element (FARE) were identified and confirmed to be required for the basal expression of LIP1, glucose suppression and fatty acid induction, respectively.  相似文献   

14.
A genomic comparison of Yarrowia lipolytica and Saccharomyces cerevisiae indicates that the metabolism of Y. lipolytica is oriented toward the glycerol pathway. To redirect carbon flux toward lipid synthesis, the GUT2 gene, which codes for the glycerol-3-phosphate dehydrogenase isomer, was deleted in Y. lipolytica in this study. This Δgut2 mutant strain demonstrated a threefold increase in lipid accumulation compared to the wild-type strain. However, mobilization of lipid reserves occurred after the exit from the exponential phase due to β-oxidation. Y. lipolytica contains six acyl-coenzyme A oxidases (Aox), encoded by the POX1 to POX6 genes, that catalyze the limiting step of peroxisomal β-oxidation. Additional deletion of the POX1 to POX6 genes in the Δgut2 strain led to a fourfold increase in lipid content. The lipid composition of all of the strains tested demonstrated high proportions of FFA. The size and number of the lipid bodies in these strains were shown to be dependent on the lipid composition and accumulation ratio.  相似文献   

15.

Objectives

To obtain functional expression of a heterologous multifunctional carotene synthase containing phytoene synthase, phytoene dehydrogenase, and lycopene β-cyclase activities encoded by carS from Schizochytrium sp. in order to allow Yarrowia lipolytica to produce β-carotene.

Results

To increase the integration efficiency of a 3.8 kb carS under the control of P GPD promoter with a 2 kb selection marker, ura3, along with a geranylgeranyl diphosphate synthase (GGS1) expression cassette (~10 kb in total), was inserted into the Y. lipolytica chromosome, and the DNA assembler method was combined with double chromosomal deletions of ku70 and ku80. This method resulted in a 13.4-fold increase in integration efficiency compared with the original method, reaching 63% (10/16). The resulting recombinant Y. lipolytica produced 0.41 mg β-carotene per g dry cell weight, while the wild type did not produce any indicating the functionality of the multifunctional carotene synthase in Y. lipolytica.

Conclusion

Expression of GGS1 and a multifunctional carotene synthase from Schizochytrium sp. in Y. lipolytica led to β-carotene production. DNA assembler efficiency was greatly increased by the deletion of ku70 and ku80, which resulted in decreased in vivo nonhomologous end-joining (NHEJ) in Y. lipolytica.
  相似文献   

16.
The codon-optimized genes crtB and crtI of Pantoea ananatis were expressed in Yarrowia lipolytica under the control of the TEF1 promoter of Y. lipolytica. Additionally, the rate-limiting genes for isoprenoid biosynthesis in Y. lipolytica, GGS1 and HMG1, were overexpressed to increase the production of lycopene. All of the genes were also expressed in a Y. lipolytica strain with POX1 to POX6 and GUT2 deleted, which led to an increase in the size of lipid bodies and a further increase in lycopene production. Lycopene is located mainly within lipid bodies, and increased lipid body formation leads to an increase in the lycopene storage capacity of Y. lipolytica. Growth-limiting conditions increase the specific lycopene content. Finally, a yield of 16 mg g−1 (dry cell weight) was reached in fed-batch cultures, which is the highest value reported so far for a eukaryotic host.  相似文献   

17.
18.
19.
Lipase (EC 3.1.1.3) stands amongst the most important and promising biocatalysts for industrial applications. In this study, in order to realize a high-level expression of the Yarrowia lipolytica lipase gene in Pichia pastoris, we optimized the codon of LIP2 by de novo gene design and synthesis, which significantly improved the lipase expression when compared to the native lip2 gene. We also comparatively analyzed the effects of the promoter types (PAOX1 and PFLD1) and the Pichia expression systems, including the newly developed PichiaPink system, on lipase production and obtained the optimal recombinants. Bench-top scale fermentation studies indicated that the recombinant carrying the codon-optimized lipase gene syn-lip under the control of promoter PAOX1 has a significantly higher lipase production capacity in the fermenter than other types of recombinants. After undergoing methanol inducible expression for 96 h, the wet cell weight of Pichia, the lipase activity and the protein content in the fermentation broth reached their highest values of 262 g/L, 38,500 U/mL and 2.82 g/L, respectively. This study has not only greatly facilitated the bioapplication of lipase in industrial fields but the strategies utilized, such as de novo gene design and synthesis, the comparative analysis among promoters and different generations of Pichia expression systems will also be useful as references for future work in this field.  相似文献   

20.
We examined the genetic transformation of the biotechnologically relevant yeast Rhodotorula gracilis ATCC 26217 by electroporation. To evaluate the yeast transformation, we created a genomic integration cassette that was targeted to the yeast orotidine-5′-phosphate decarboxylase gene (URA3 gene) locus and composed of the zeocin-resistant gene (Sh ble gene) with the URA3 promoter and terminator of the yeast. The yeast was unable to grow on medium containing 2.0 μg/mL zeocin, even with the inoculation of a large number of cells (approximately 1.0 × 108 cells/plate). Using the integrative cassette and zeocin-containing medium, we successfully obtained yeast transformants by electroporation, and the highest transformation efficiency of approximately 40 colony-forming units/μg DNA was obtained with a 0.6-kV electrical pulse. No homologous integration of the cassette at the URA3 gene locus was detected by the analyses of uracil auxotrophy and genomic PCR of transformants, suggesting that this method is a useful tool for randomly mutating the yeast genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号