首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. We clarified the effects of early leaf abscission on the survivorship of the leaf‐mining beetle Trachys yanoi Y. Kurosawa (Coleoptera: Buprestidae) and the underlying mechanism in relation to weather conditions in Japan. Trachys yanoi is an insect pest of zelkova trees [Zelkova serrata (Thunb.) Makino (Rosales: Ulmaceae)]. Larvae burrow into zelkova leaves and feed on leaf tissue, causing early leaf abscission. 2. This study investigated the relationship between the beetle population and weather conditions over 10 years in a zelkova forest. The effects of moisture and temperature on adult emergence from early abscised leaves were examined in the laboratory and in the field. 3. The beetle population in the studied forest was negatively affected by high precipitation levels when the beetles still inhabited early abscised leaves. Fewer adults emerged from early abscised leaves under wet conditions than under dry conditions, in both laboratory and field tests. 4. These results demonstrate that early leaf abscission plays an important role in leaf‐mining beetle survivorship and population dynamics, and that the amount of precipitation when leaf‐mining beetles still inhabit early abscised leaves modulates this effect. 5. Because precipitation when leaf‐mining beetles still inhabit early abscised leaves was mainly driven by an East Asian rainy season front, the beetle population dynamics were affected by the activity of the front.  相似文献   

2.
We examined whether larvae of the gall midge Rabdophaga rigidae (Diptera: Cecidomyiidae) can modify the seasonal dynamics of the density of a leaf beetle, Plagiodera versicolora (Coleoptera: Chrysomelidae), by modifying the leaf flushing phenology of its host willow species, Salix serissaefolia and Salix eriocarpa (Salicaceae). To test this, we conducted field observations and a laboratory experiment. The field observations demonstrated that the leaf flushing phenology of the willows and the seasonal dynamics of the beetle density differed between shoots with stem galls and shoots without them. On galled shoots of both willow species, secondary shoot growth and secondary leaf production were promoted; consequently, leaf production showed a bimodal pattern and leaf production periods were 1 to 2 months longer than on non‐galled shoots. The adult beetle density on galled shoots was thus enhanced late in the season, and was found to change seasonally, synchronizing with the production of new leaves on the host willow species. From the results of our laboratory experiment, we attributed this synchrony between adult beetle density and willow leaf flush to beetles’ preference to eat new leaves rather than old. Indeed, beetles consumed five times more of the young leaves when they were fed both young and old leaves. These results indicate that stem galls indirectly enhance the adult beetle density by enhancing food quality and quantity late in the beetle‐feeding season. We therefore conclude that midge galls widen the phenological window for leaf beetles by extending the willows’ leaf flush periods.  相似文献   

3.
To determine the degree to which herbivory contributes to phenotypic variation in autumn phenology for deciduous trees, red maple (Acer rubrum) branches were subjected to low and high levels of simulated herbivory and surveyed at the end of the season to assess abscission and degree of autumn coloration. Overall, branches with simulated herbivory abscised ~7 % more leaves at each autumn survey date than did control branches within trees. While branches subjected to high levels of damage showed advanced phenology, abscission rates did not differ from those of undamaged branches within trees because heavy damage induced earlier leaf loss on adjacent branch nodes in this treatment. Damaged branches had greater proportions of leaf area colored than undamaged branches within trees, having twice the amount of leaf area colored at the onset of autumn and having ~16 % greater leaf area colored in late October when nearly all leaves were colored. When senescence was scored as the percent of all leaves abscised and/or colored, branches in both treatments reached peak senescence earlier than did control branches within trees: dates of 50 % senescence occurred 2.5 days earlier for low herbivory branches and 9.7 days earlier for branches with high levels of simulated damage. These advanced rates are of the same time length as reported delays in autumn senescence and advances in spring onset due to climate warming. Thus, results suggest that should insect damage increase as a consequence of climate change, it may offset a lengthening of leaf life spans in some tree species.  相似文献   

4.
Abstract. 1. Early abscission of mined leaves was an important mortality factor of a Phyllonorycter species (Lepidoptera: Gracillariidae) on Salix lasiolepis Benth. (Salicaceae). A larger percentage of mined leaves abscised early (34.4% in 1990; 24.5% in 1991), and Phyllonorycter survival was greatly reduced in these abscised leaves.
2. Leaf-mining by Phyllonorycter was associated with increased early leaf abscission. An egg removal experiment demonstrated that leaf mining induced this increase in leaf abscission.
3. The induction of early leaf abscission was dependent upon the timing of herbivory and simulated herbivory (mechanical damage). Early mechanical damage induced leaf abscission, late mechanical damage did not. Mines which expanded early were more likely to induce leaf abscission than mines which expanded more slowly.  相似文献   

5.
In pedunculate oak (Quercus robur L.) the architecture of the crown is strongly influenced by age and vigour of the tree. In old oak trees cladoptosis is a major mechanism on the transformation of crown architecture. Although it can be seen quite regularly, the causes and timing of shedding of twigs as well as the quantity of affected branches remain unclear. Because abscission is often used as an indicator of reduced vigour or stress in the assessment of stand and ornamental tree health, it deserves detailed investigation, especially in the context of oak decline. We studied the inter- and intra-annual variation of abscission in six stands across the eastern part of Germany in order to identify possible triggering events and controlling factors of abscission.On average, the number of twigs abscised per year increased from 1999 to 2001. While in 1999 approximately 100 abscised twigs per m2 per year were shed, this number increased to 250 per m2 in 2001. The majority of twigs was actively shed, a significant proportion of the remaining twigs was partly abscised. Only a small part of the abscised twigs had leaves attached to them. From June to September 20 per cent of the twigs had leaves, in the remaining months of the year less than 10 per cent.The analysis of almost 30,000 twig fragments over the course of 3 years demonstrated at least partial control by the tree of the process of abscission. The loss of the terminal bud and the formation of a male flower are traits correlated with abscission.Our data do not support the widely held belief that cladoptosis is mainly an immediate reaction to drought stress that reduces transpiring leaf area. The proportion of leafy twigs was quite low and the main peak of abscission occurred in late autumn, thus having little immediate effect on transpiration. In addition, we observed a time lag of 3 weeks between the onset of drought stress and increased levels of abscission.  相似文献   

6.
Leaf miners typically show non-random distributions both between and within plants. We tested the hypothesis that leaf miners on two oak species were clumped on individual host trees and individual branches and addressed whether clumping was influenced by aspects of plant quality and how clumping and/or interactions with other oak herbivores affected leaf-miner survivorship. Null models were used to test whether oak herbivores and different herbivore guilds co-occur at the plant scale. Twenty individual Quercus geminata plants and 20 Quercus laevis plants were followed over the season for the appearance of leaf miners and other herbivores, and foliar nitrogen, tannin concentration, leaf toughness and leaf water content were evaluated monthly for each individual tree. The survivorship of the most common leaf miners was evaluated by following the fate of marked mines in several combinations that involved intra- and inter-specific associations. We observed that all leaf miners studied were clumped at the plant and branch scale, and the abundance of most leaf-miner species was influenced by plant quality traits. Mines that occurred singly on leaves exhibited significantly higher survivorship than double and triple mines and leaves that contained a mine or a leaf gall and a mine and damage by chewers exhibited lowest survivorship. Although leaf miners were clumped at individual host trees, null model analyses indicated that oak herbivores do not co-occur significantly less than expected by chance and there was no evidence for biological mechanisms such as inter-specific competition determining community structure at the plant scale. Thus, despite co-occurrence resulting in reduced survivorship at the leaf scale, such competition was not strong enough to structure separation of these oak herbivore communities.  相似文献   

7.
To investigate the effects of atmospheric CO2 enrichment on physiology and autumnal leaf phenology, we exposed 3-year-old sugar maple (Acer saccharum Marsh.) seedlings to 800 (A8), 600 (A6), and 400 μL(CO2) L–1 (AA) in nine continuous stirred tank reactor (CSTR) chambers during the growing season of 2014. Leaf abscission timing, abscised leaf area percentages, leaf number, light-saturated net photosynthetic rate (PNmax), leaf area, accumulative growth rates, and biomass were determined and assessed. The results suggested the following: (1) no significant differences were found in the timing of leaf abscission in the three CO2-concentration treatments; (2) PNmax was continuously stimulated to the greatest extent in A8 at 319% and 160% in A6 until the end of the growing season, respectively; and (3) leaf number, leaf area, and accumulative height growth all significantly increased by elevated CO2, which led to a 323% increase in A8 biomass and 235% in A6 biomass after 156-d fumigation. In summary, the results suggest, the timing of leaf abscission of sugar maple in fall was not modified by CO2 enrichment, the increased carbon gain by elevated CO2 was mainly due to increased leaf area, more leaves, and the continuously enhanced high photosynthesis throughout the growing season instead of the leaf life span.  相似文献   

8.
The control of vegetative phenology in tropical trees is not well understood. In dry forest trees, leaf abscission may be enhanced by advanced leaf age, increasing water stress, or declining photoperiod. Normally, it is impossible to dissect the effects of each of these variables because most leaves are shed during the early dry season when day length is near its minimum and leaves are relatively old. The 1997 El‐Niño Southern Oscillation caused a ten‐week long, severe abnormal drought from June to August in the semi‐deciduous forests of Guanacaste, Costa Rica. We monitored the effect of this drought on phenology and water status of trees with young leaves and compared modifications of phenology in trees of different functional types with the pattern observed during the regular dry season. Although deciduous trees at dry sites were severely water stressed (Ψstem < ‐7MPa) and their mesic leaves remained wilted for more than two months, these and all other trees retained all leaves during the abnormal drought. Many trees exchanged leaves three to four months earlier than normal during the wet period after the abnormal drought and shed leaves again during the regular dry season. Irrigation and an exceptional 70 mm rainfall during the mid‐dry season 1998/1999 caused bud break and flushing in all leafless trees except dormant stem succulents. The complex interactions between leaf age and water stress, the principal determinants of leaf abscission, were found to vary widely among trees of different functional types.  相似文献   

9.
Andreas Kruess 《Oecologia》2002,130(4):563-569
Interactions between plants and their natural enemies are well studied, but investigations on the indirect interactions between plant enemies that simultaneously exploit a host plant are rare. Yet these plant-mediated interactions are important because they may affect not only the impact of plant antagonists on plant survival but may also influence the performance of the other plant exploiters. This study focused on the indirect effects of a systemic infection of creeping thistle, [irsium arvense (L.) Scop., with the necrotrophic fungus Phoma destructiva (Plowr.) on the phytophagous leaf beetle Cassida rubiginosa Müller, by examining egg deposition, food plant choice, and larval and pupal performance of the beetle. Thus, the results give a broader view than most other studies of plant-mediated effects of a pathogen on a phytophagous insect. Since both the beetle and the fungus are considered as agents for the biological control of C. arvense, the results are also of interest for applied ecology. Potted plants of C. arvense were inoculated with a conidiospore suspension of P. destructiva to cause a systemic infection of the plants. In a cage experiment, ovipositing females of C. rubiginosa showed a significant preference for healthy thistles. In dual-choice tests, adults of C. rubiginosa preferred leaf discs from healthy thistles over those from Phoma-infected thistles. The beetles also consumed significantly more leaf tissue from healthy than from infected plants. Development time from freshly hatched larvae until pupation was significantly longer for larvae fed on infected leaves. The weight of last-instar larvae and pupae was lower, and larval and pupal mortality was higher when larvae had been fed with infected compared to healthy leaves. Thus, the combined use of both potential biological control agents may be of lowered efficiency because (1) C. rubiginosa avoided infected thistles for both egg deposition and adult feeding and (2) Phoma infection negatively affected larval development and increased larval and pupal mortality of the beetle.  相似文献   

10.
Summary Cottonwood saplings were exposed to ozone or charcoal-filtered air in a closed chamber. After leaf abscission, decomposition of individual leaf discs was measured in containers of stream water. Exposure of plants to 200 ppb ozone for 5 h caused early leaf abscission and changes in the chemical composition of leaves at time of abscission. Early-abscised leaves from O3-exposed plants had higher nitrogen, but decomposed more slowly than leaves from control plants. Leaves from O3-exposed plants that abscised at the normal time had lower nitrogen content and lower specific leaf mass than control leaves, but decomposed at the same rate as leaves from control plants. The results imply that O3 exposure can alter fundamental processes important to the functioning of detritus-based aquatic ecosystems.  相似文献   

11.
Abstract.
  • 1 A univoltine herbivorous ladybird beetle Epilachna niponica (Coleoptera: Coccinellidae) shows a large variation in adult size within a population.
  • 2 Large adults had higher survival from emergence to the reproductive season, and the size-dependent adult survival was most apparent during hibernation. On the other hand, adult survival during pre-hibernation contributed little to size-dependent overall survival.
  • 3 Neither reproductive lifespan nor lifetime fecundity were a function of adult size, though large females produced larger size of egg batches.
  • 4 Size of adult beetles was significantly reduced by leaf damage to plants on which they grew up on larval stage. Since leaf herbivory increases through the season, late emerged adults that were subjected to food deterioration during the larval period were smaller than early-emerged individuals.
  相似文献   

12.
Abstract.  1. The abscission of seeds infested by insects is common in many plants and has been proposed as a defensive mechanism, although its negative consequences for insects have rarely been assessed.
2. We assessed the consequences of seed abscission studying the interactions between the holm oak Quercus ilex and the chestnut weevil Curculio elephas , its main pre-dispersal seed predator. Female weevils oviposit into the acorns and the larvae must complete their development inside a single acorn feeding on the cotyledons. The growth of the infested acorns is suppressed because they are prematurely abscised.
3. Female weevils oviposit along the acorn growing period; hence, the size of the infested acorns increased with date. The growth of the larvae inside the smaller, early infested, acorns was constrained because food (i.e. cotyledons) was frequently depleted. Larval size increased with the date along with the size of the infested acorns, but it declined slightly in the latest dates as a result of the higher conspecific competition provoked by the larger number of larvae per acorn.
4. The present results demonstrate that premature seed abscission by Q. ilex had negative consequences for C. elephas , as a smaller acorn size reduced food availability and constrained larval size, a key insect life history trait. At the same time, it is suggested that the growth suppression of infested acorns may condition the oviposition phenology of these insects according to their body size. These results need to be considered in further research in the context of the evolutionary significance of premature seed abscission as a defensive mechanism.  相似文献   

13.
Leaf phenology is important to herbivores, but the timing and extent of leaf drop has not played an important role in our understanding of herbivore interactions with deciduous plants. Using phylogenetic general least squares regression, we compared the phenology of leaves of 55 oak species in a common garden with the abundance of leaf miners on those trees. Mine abundance was highest on trees with an intermediate leaf retention index, i.e. trees that lost most, but not all, of their leaves for 2–3 months. The leaves of more evergreen species were more heavily sclerotized, and sclerotized leaves accumulated fewer mines in the summer. Leaves of more deciduous species also accumulated fewer mines in the summer, and this was consistent with the idea that trees reduce overwintering herbivores by shedding leaves. Trees with a later leaf set and slower leaf maturation accumulated fewer herbivores. We propose that both leaf drop and early leaf phenology strongly affect herbivore abundance and select for differences in plant defense. Leaf drop may allow trees to dispose of their herbivores so that the herbivores must recolonize in spring, but trees with the longest leaf retention also have the greatest direct defenses against herbivores.  相似文献   

14.
The unabated increase in global atmospheric CO(2) is expected to induce physiological changes in plants, including reduced foliar nitrogen, which are likely to affect herbivore densities. This study employs a field-based CO(2 )enrichment experiment at Kennedy Space Center, Florida, to examine plant-herbivore (insect) interactions inside eight open-topped chambers with elevated CO(2) (710 ppm) and eight control chambers with ambient CO(2). In elevated CO(2) we found decreased herbivore densities per 100 leaves, especially of leaf miners, across all five plant species we examined: the oak trees Quercus myrtifolia, Q. geminata, and Q. chapmanii, the nitrogen-fixing vine Galactia elliottii and the shrub Vaccinium myrsinites. Both direct and indirect effects of lowered plant nitrogen may influence this decrease in herbivore densities. Direct effects of lowered nitrogen resulted in increased host-plant related death and an increase in compensatory feeding: per capita herbivore leaf consumption in elevated CO(2) was higher than in ambient CO(2). Indirectly, compensatory feeding may have prolonged herbivore development and increased exposure to natural enemies. For all leaf miners we examined, mortality from natural enemies increased in elevated CO(2). These increases in host-plant induced mortality and in attack rates by natural enemies decreased leaf miner survivorship, causing a reduction in leaf miner density per 100 leaves. Despite increased leaf production in elevated CO(2) from the carbon fertilization effect, absolute herbivore abundance per chamber was also reduced in elevated CO(2). Because insects cause premature leaf abscission, we also thought that leaf abscission would be decreased in elevated CO(2). However, for all plant species, leaf abscission was increased in elevated CO(2), suggesting a direct effect of CO(2) on leaf abscission that outweighs the indirect effects of reduced insect densities on leaf abscission.  相似文献   

15.
The Japanese horned beetle Trypoxylus dichotomus septentrionalis and the Japanese stag beetles Lucanus maculifemoratus maculifemoratus and Prosopocoilus inclinatus inclinatus generally occur syntopically and aggregate on oak tree surfaces that exude sap. Securement of these sap sites might be directly linked to male reproductive success. Among the three species, it is likely that males of T. d. septentrionalis are dominant in occupation of feeding sites because of their larger body size. However, there is no clear evidence of this superiority. Moreover, if T. d. septentrionalis is dominant, the mechanism by which the two stag beetle species secure the feeding sites remains unclear. In the present study, I used body mass to compare the body size among males of T. d. septentrionalis, L. m. maculifemoratus and P. i. inclinatus. Further, to clarify the interspecific relationship between the horned beetle and the two stag beetles, I investigated the seasonality of emergence pattern of males at the feeding sites in the field. Comparison of body mass and observation of fighting behavior revealed that males of T. d. septentrionalis have an apparent superiority over males of the two stag beetle species. The seasonal emergence patterns of the two stag beetle species at the feeding sites showed bimodal distributions, and avoided the peak of emergence in T. d. septentrionalis. My results suggest that the two stag beetle species exhibit mate‐securing tactics by emerging at the feeding sites early and late during the breeding season, in order to avoid encountering T. d. septentrionalis.  相似文献   

16.
Variability in timing of the reproductive stages of Scotch broom (Cytisus scoparius) may influence synchronization and establishment of the broom seed beetle (Bruchidius villosus), a biological control agent. A sampling scheme was devised to compare the phenologies of Scotch broom at different sites in the same season and in different seasons at the same site. The synchrony of the broom seed beetle's life stages with those of the host plant was also determined. The phenology of Scotch broom varied only slightly from season to season at Lincoln, but could vary considerably between sites in the same season. At both sites where it is established, the broom seed beetle was synchronized with its host; adult beetles were present throughout the flowering period. Eggs were found on suitable green pods. The broom seed beetle appears capable of adapting to the phenology of its host and has the potential to be an effective agent for Scotch broom. Variability in phenology of the reproductive stages of Scotch broom, even at nearby sites, must be taken into account by practitioners of biological control when releasing broom seed beetles and later when sampling beetles to determine establishment.  相似文献   

17.
A warmer climate may potentially have a strong effect on the health status of European oak forests by weakening oak trees and facilitating mass reproduction of wood boring insects. We did a laboratory experiment in Slovakia to study the response of major pest beetles of oak and their parasitoids to different temperature regimes as background for predicting climatic effects and improving management tools of European oak forests. With higher temperatures the most important oak pest Scolytus intricatus emerged much earlier, which indicate that completion of a second generation and increased damage further north in European oak forests may be possible. Lower temperatures gave longer larval galleries and more offspring per parents but still lower beetle production due to semivoltine life cycle. For buprestids and longhorn beetles warmer temperatures resulted in more emerging offspring and a shift towards earlier emergence in the same season, but no emergence in the first season indicated that a change to univoltine populations is not likely. Reduced development success of parasitoids at the highest temperatures (25/30 °C) indicates a loss of population regulation for pest beetle populations. A warmer climate may lead to invasion of other population-regulating parasitoids, but also new serious pest may invade. With expected temperature increases it is recommended to use trap trees both in April and in June, and trap trees should be removed within 2 months instead 1 year as described in the current standard.  相似文献   

18.
Abstract. 1. The effects of leaf toughness on mandibular wear of the leaf beetle Plagiodera versicolora Laich. (Coleoptera: Chrysomelidae) were evaluated by feeding adult beetles young (tender) and old (tough) leaves of Salix babylonica and S. alba 'Tristis'.
2. Tough leaves erode the cutting surface of beetle jaws more so than tender leaves.
3. Beetles with worn jaws consumed leaves at a slower rate than ones with less mandibular wear.
4. Because rates of leaf consumption and egg production are positively correlated, increased mandibular wear may reduce beetle fecundity.
5. These results support the belief that leaf toughness may act as a potent defence affecting morphology, feeding behaviour, and ultimately spatial and temporal patterns of herbivores.  相似文献   

19.
The estimation of animal population size is a primary field of interest for wildlife biologists, and such numerical estimation of wild animals is a very important factor in establishing national policy towards nature. Therefore, we performed this study to estimate the population density of carabid beetles preying on soil biota at the Mongolian oak (Quercus mongolica) forests and Korean red pine (Pinus densiflora) forests of two mountains, Mt. Odae and Mt. Guryong. We used the trapping web method with pitfall traps to collect the beetles. We calculated the estimated density of a total of four carabid beetle species in two specific regions and converted them to an estimated beetle population size within a certain area by using the study area. From our estimates, one beetle species, Leptocarabus seishinensis seishinensis L., displayed statistically significant results. Although there was no appreciable difference in the makeup of different carabid beetle species between the two forest communities, the population size of the beetle species was larger in Mongolian oak forests than in Korean red pine forests. The spatial distribution of carabid beetles by forest type did not show any preference for particular spots. Our results showed that carabid beetles did not have specific home ranges and that they were not density dependent. We expect to use the raw data to recognize the response of soil organisms to changes in the habitat environment and to track the patterns of change more accurately over long passages of time.  相似文献   

20.
南京地区落叶栎林木本植物叶物候研究   总被引:7,自引:1,他引:6       下载免费PDF全文
叶物候参数长期以来被认为与植物的碳获取的最大化有关,能反映物种的资源利用策略。温带地区因为寒冷冬天的限制,延长叶寿命成为一些物种进行生长发育和繁衍的基础。为探讨叶寿命延长的可能途径(早出叶、晚落叶,或两者兼有),该研究以南京地区两个落叶栎(Quercus spp.)林为研究对象,观测了其中木本植物的出叶物候、落叶物候,并分析了它们与叶寿命之间的关系。结果发现:1)不同物种的出叶开始时间相差较大,出叶早的物种早结束出叶过程;2)不同物种的落叶开始时间相差较大,早开始落叶的物种,落叶持续时间较长,落叶结束时间则相对集中。3)相关分析和回归分析都表明,叶寿命与出叶时间和落叶时间显著关联,但早出叶对叶寿命的延长可能更为重要,因为早出叶相对于晚落叶在物种资源利用上比较具有优势。4)不同物种的出叶时间和落叶时间没有显著相关,可能因为出叶过程和落叶过程是由不同的启动因子引起。这说明延长叶寿命不一定同时通过早出叶和晚落叶来达到。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号