首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
报道了采自云南省怒江流域的蝇科棘蝇Phaonia R.-D.4新种,分别命名为球棒棘蝇Phaonia bulbiclauvla sp.nov。,畸尾棘蝇Phaonia deformicauda sp.nov.泸水棘蝇Phaomia lushuiensis sp.nov,和豹爪棘蝇Phaonia pardiungula sp.nov。,隶属于4个不同种团,模式标本保存于沈阳师范学院昆虫研究所。  相似文献   

2.
四川棘蝇属一新种(双翅目:蝇科)   总被引:2,自引:1,他引:1  
冯炎 《四川动物》1993,12(2):8-10
本文报道四川棘蝇属一新种:蒙山棘蝇,新种Phaonia mengshanensis sp.nov.。模式标本存于四川省雅安地区卫生防疫站。  相似文献   

3.
冯炎 《华东昆虫学报》2007,16(4):241-245
记述蝇科(Muscidae)妙蝇属(Myospila)的主要特征及研究现状;编制了中国四川已知的22种的检索表,并报道其中的1个新种:仿移妙蝇(Myospila mimelongata Feng,sp.nov.)。新种模式标本存于中国科学院上海植物生理生态研究所昆虫博物馆。  相似文献   

4.
报道中国四川地区蝇科阳蝇属Helina Robineau-Desvoidy,1830二新种,黑肩阳蝇Helina ateritegula,sp.nov.,拱阳蝇Helina arcuatiabdomina,sp.nov.,并对粪蝇科粪蝇属Scathophaga Meigen,1803的华西粪蝇Scathophaga chinensis (Malloch,1935)作补充描述,新种模式标本存中国科学院上海昆虫研究所昆虫标本馆。  相似文献   

5.
中国四川阳蝇属三新种(双翅目:蝇科)   总被引:3,自引:0,他引:3  
报道采自四川西部阳蝇属Helina R.D.,1830的3个新种:雅安阳蝇Helina yaanensis sp.nov.;花阳蝇He-lina floscula sp.nov.;类宽角阳蝇Helina inflatoides sp.nov.。模式标本保存于军事医学科学院微生物流行病研究所医学昆虫标本馆(北京)。  相似文献   

6.
甘肃省阳蝇属五新种:双翅目:蝇科   总被引:4,自引:0,他引:4  
本文报道采自甘肃的阳蝇属(Helina R.-D.,1830)五新种,模式标本保存于甘肃省卫生防疫站。疏纤阳蝇Helina rariciliata sp.nov.(图1)  相似文献   

7.
冯炎  邓安孝 《四川动物》2001,20(4):171-173
本文报道1984-1989年采自四川山区圆蝇属Mydaea R.-D.,1830的3个新种:峨眉山圆蝇Mydaea emeishanna sp.nov.;鬃腹圆蝇Mydaea jubiventera sp.nov.;九寨沟加蝇Mydaea jiuzhaigouensis sp.nov.。模式标本均保存于第二作者实验室。  相似文献   

8.
云南省丽蝇族二新种 (双翅目:丽蝇科)   总被引:1,自引:0,他引:1  
本文报道的丽蝇族两新种,分别隶属于蜗蝇属(Melinda Robineau-Desvoidy,1830)和拟粉蝇属(Polleniopsis Townsend,1917),模式标本均保存在中国科学院上海昆虫研究所。 一、小黑蜗蝇Melinda nigrella 新种(图1—3)  相似文献   

9.
中国有瓣蝇类三新种:(双翅目:丽蝇科,蝇科)   总被引:3,自引:0,他引:3  
本文报道采自中国四川的瓣蝇类丽蝇科蜗蝇属Melinda Robineau-Desvoidy 1新种:端钩蜗蜗Melinda apicihamata sp.nov;蝇科移属Coenosia Meigen2新种:黑杂移蝇Coenosia nigrimixta sp.nov,黄杂移蝇Coenosia flarimixta sp.nov。模式标本保存于沈阳师范学院昆虫研究所。  相似文献   

10.
报道采自中国四川西部和北部麻蝇科 Sarcophagidae 2 新种:阿坝亚麻蝇Parasarcophaga abaensis,sp.nov.;蜀西细麻蝇Pierretia shuxia,sp.nov.。模式标本存中国科学院上海生命科学研究院植物生理生态研究所。  相似文献   

11.
The chromosome numbers and karyotypes of 7 species of Smilax L. in Liliaceae (s. 1.) are cytotaxonomically studied in this work. Their karyotypic characters, distinction between the species and the chromosomal basis of sexual differentiation are discussed. The karyotypes of most species are first reported. The results are shown as follows (see Tables 1-4 for the chromosome parameters and the karyotype constitution; Fig. 1 for their idiograms): 1. Smilax nipponica Miq. The species is one of the herbaceous species distributed in East Asia. Two karyotypes, 2n = 26(type A) and 2n = 32 (type B), are found in the species (Plate 1: 1-7). The karyotype of No. 88032 (uncertain of -L--M--S- sexuality) is 2n = 26 = 2m + 6st + 6m + 4sm + 6sm + 2st. The karyotype has 4 pairs of L chromosomes, of which the first three pairs are subterminal, and the 4th is median. The karyotype belongs to 3B. No. 88045 (the male) and No. 88046 (the female) have 2n = 32. Their karyotypes are basically uniform, and both are -L--M-- S 2n=32= 2m+4sm+ 2st+ 2m+4sm+ 6m+ 10sm + 2st, also with 4 pairs of L chromosomes, but the 2nd pair is median, and thus different from the type A. The karyotype belongs to 3B. The first pair of chromosomes of the male are distinctly unequal in length, with the D. V. (0.93) of relative length between them obviously greater than that of the female (0.1). The pair seems to be of sex-chromosomes. Sixteen bivalents (n= 16) were observed at PMCs MI of No. 88045 (Plate 1: 4). The major difference between the karyotypes A and B are greater relative length of L chromosomes in the type A than in the type B, and the increase of chromosome number in the karyotype B mainly due to the increase of st chromosomes. Nakajima (1937)reports 2n= 30 for S. hederacea var. nipponica (=S. nipponica, Wang and Tang, 1980). 2. S. riparia A. DC. This species is also herbaceous, distributed in East Asia. Thirty chromosomes were found in root-tip cells (uncertain of sexuality). The kar -L--M--S-yotype is 2n = 30 = 8st + 6sm + 2st + 6m + 6sm + 2st (Plate 3: 1, 5), consisting mainly of sm and st chromosomes. There are 4 pairs of L chromosomes which are all subterminal and the m chromosomes appear to fall all into S category. Though the karyotype belongs to 3B, it is less symmetrical than that of S. nipponica. The species is karyologically rather different from S. nipponica, therefore. The first pair of chromosomes of this material are unequal in length, and it may be a male. The karyotype of this species is first reported. 3. S. sieboldii Miq. The species is a thorny climbing shrub, distributed in East Asia. At PMCs All, 16 chromosomes (n= 16) were found (Plate 2: 6), in accordance with Nakajima's (1933) report for a Japanese material. 4. S. china L. This species, a thorny climbing shrub, is of a wide distribution range mainly in East Asia and Southeast Asia. Two karyotypes were observed in different populations. (1) The population from Xikou has 2n = 96(6x) = 20st+L- -M- 6t + 6sm + 12st + 52(S) (Plate 3:7), of which the first three pairs of chromosomes are terminal, different from those in the other species. The arm ratios of both L and M chromosomes are larger than 2.0, which resembles those of S. davidiana. (2) PMCs MI of the population from Shangyu shew 15 chromosomes (n 15). The hexaploid of the species is recorded for the first time. Hsu (1967,1971) reported 2n = 30 from Taiwai and Nakajima (1937) recorded n = 30 from Japan, which indicates that the karyotype of the species varies not only in ploidy, but also in number. 5. S. davidiana A. DC. The somatic cells were found to have 32 chromosomes, and PMCs MI shew 16 bivalents (Plate 2: 1-5). The karyotype is 2n = 32=-L- -M- -S 8st + 4sm + 4st + 8sm + 8st. The karyotype belongs to 3B, and is less symmetrical than those in herbaceous species. The D. V. (0.20) of relative length between the two homologues of the first pair is slightly larger in the male than in the female (0.14), and it is thus difficult to determine whether they are sexual chromosomes or not. 6. S. glabra Roxb. The species is a non-thorny climbing shrub, distributed in East Asia and Southeast Asia. 32 chromosomes were found in somatic cells. The -L- -M- - Skaryotype is 2n= 32= 8st + 10st+6sm+8st (Plate 3: 2, 6),with only 3 pairs of sm chromosomes (12, 13 and 16th). The karyotype is more asymmetric than that of S. davidiana, although it is also of 3B (Table 1). The karyotype is first reported for the species. 7. S. nervo-marginata Hay. var. liukiuensis (Hay.) Wang et Tang The variety has a relatively narrow distribution range, mainly occurring in eastern China. The chromosomal number of somatic cells is 2n= 32 (Plate 3: 3-4). The karyotype is -L- -M- -S 2n = 32 = 2sm + 6st + 2sm + 2st + 2m + 6sm + 12st, evidently different from that of S. glabra. The first pair of chromosomes are submedian, and much longer than the 2nd to 4th pairs. The ratio in length of the largest chromosome to the smallest one is 4.3. The symmetric degree is of 3C, a unique type. The karyotype of the species is reported for the first time. In Smilax, the known basic numbers are 13, 15, 16 and 17. The two herbaceous species distributed in East Asia have three basic numbers: 13, 15 and 16, while the woody species studied mainly have 16, with no 13 recorded. Mangaly (1968) studied 8 herbaceous species in North America and reported 2n=26 for them except S. pseudo-china with 2n=30. Mangaly considered that a probably ancestral home of Smilax, both the herbaceous and woody, is in Southeast Asia and the eastern Himalayas, and speculated that the ancestral type of Sect. Coprosmanthus is possibly an Asian species, S. riparia. The karyotypes of the two herbaceous species in East Asia consist mostly of sm and m chromosomes, whereas those for the North American species are all of st chromosomes. Based on the general rule of karyotypic evolution, i.e. from symmetry to asymmetry, his speculation seems reasonable. Researches on sex-chromosomes of Smilax have been carried out since 1930 (Lindsay, 1930; Jensen, 1937; Nakajima, 1937; Mangaly, 1968), and they are generally considered to be the largest pair, but there is still no adequate evidence. The result of our observation on S. nipponica may confirm that the first pair of chromosomes of this species is XY type of sex-chromosomes. Chromosomes of the genus are small and medium-sized, varying between 1-6 μm, slightly larger in herbaceous species than in woody ones, larger in the karyotype of 2n=26 than in that of 2n=32. Based on karyotype constitution of the above 5 species, the karyotype in the genus is characterized by 4 pairs of L chromosomes and 2-5 pairs of M chromosomes, and mostly st and sm chromosomes, and by rather asymmetrical 3B type. The degree of symmetry in the above 5 species is from Sect. Coprosmanthus to Sect. Coilanthus, and herbaceous species towoody ones.  相似文献   

12.
The present paper reports the chromosome numbers and karyotypes of 5 species in Ranunculus from Jiangxi. The result is shown in Table 1-2. The chromosome numbers of R. ternatus Thunb. (2n=4x=32; 2n=2x=16=8m+2sm+6st) , R. polii Franch. (2n = 2x = 16 = 8m+2sm+6st) and R. sieboldii Miq. (2n = 8x-1 = 63 = 15m+18sm+22st+8t) are first reported. The essential points are as follows: (1) The karyotypes of R. ternatus Thunb. and R. polii Franch. are rather similar, which shows a close relationship between the two species. (2) Polyploid complexes are common in Ranunculus. (3) According to the taxonomical system of Wang Wen-cai, the karyotypes of the two species investigated in Sect. Auricomus belong to “2A” of Stebbins; that of the only species in Sect. Hecatonia belong to “2B'; the karyotypes of the two species investigated in Sect. Ranunculus belong to “3A” or “3B”. The relationships among the three sections from thekaryotype are basically consistent with those based on morphology.  相似文献   

13.
报道了国产黄耆属(Astragalus)6种植物的染色体数目和核型。结果表明,这6种黄耆属植物均为二倍体,其核型公式分别为:甘青黄耆(A.tangutlcus),2n=16=6m 8sm 2t,“3A”核型;悬垂黄耆(A.dependens),2n=16=10m 6sm,“2A”核型;四川黄耆(A.sutchuenensis),2n=16=8m 8sm,“2A”核型;萨雷古拉黄耆(A.pavlovlanus),2n=16=12m 4sm,“1A”核型;喜石黄耆(A.petraeus),2n=16=14m 2sm,“1A”核型;拟糙叶黄耆(A.pseudoscaberrimus),2n=16=14m 2sm,“1A”核型。这6种黄耆属植物的染色体数目和核型均为首次报道。  相似文献   

14.
安徽黄精属的细胞分类学研究   总被引:10,自引:3,他引:7  
邵建章  张定成  钱枫   《广西植物》1994,14(4):361-368
本文首次报道黄精属PolygonatumMill我国三种特有植物的染色体数目和核型,结果如下:安徽黄精P.anhuiense发现两个细胞型:(1)2n=24=4m+6sm+14st;(2)2n=20=4m十6sm+10st;  黄精P.langyaensy2n=18=6m+8sm+4t;距药黄精P.franchetii有三个细胞型:(1)2n=22=8m+8sm(2sc)+6st;(2)2n=20=2m+14sm+4st;(3)2n=18=4m+8sm+4st+2T,全部属3B核型。黄精属植物安徽共有10种,本文对9种黄精的染色体数目、核型进行了比较研究,发现它们可划分成三个类群,与中国植物志(第十五卷)的形态分类基本相符。  相似文献   

15.
The present paper reports the chromosome numbers and karyotypes of eight species of Sect. Rhiziridium in Allium (Liaceae). The materials were all collected from their natural populations in east Inner Mongolia, China. The karyotype analysis is made on the basis of Li et al. (1985).The results are as follows (for chromosomes parameters, voucher specimens and localities, see Table 1 and Plate 1--2 the idiograms of the eight species in Fig. 1): (1) Auium leucocephalum Turcz. The somatic chromosome number and karyotype of this species is 2n=16=12m=2sm+2st (2SAT), in Stebbinsl(1971) kayotype classification, which belongs to 2A (Plate 1: 1; Fig. 1: 1). The range of chromosome relative length varies between 8.90--15.55%. Two small satellites are attached to the short arms of the 8th pair of chromosomes. (2) A. strictum Schrader has 2n (4x) =32=16m+4sm+12st, belonging to 2B (Plate 1: 2 & Fig. 1: 2). Satellites were not observed., and the range of chromosome relative length is between 3. 67-11.00%. (3) A. ramosum L. 2n=16=14m+ 2st (2SAT), belonging to 2A (Plate 1: 3 & Fig. 1: 3), Two small satellies are attached to the short arms of the 8th pair of chromosomes. The range of chromosome relative length is between 9.17-16.39%. The chromosome number and karyotype of this species are in accordancewith those reported by Li et al. (1982) with the material from Jinshan, Beijing. (4) A. bidentatum Fisch. ex Prokh. 2n (4x) =32=24m+4sm+4T, belonging to 2B (Plate 1: 4 & Fig. 1: 4). Satellites were not observed. A small median B-chromosome was found in root-tip cells of the population growing in sandy soil, and it is the first discovery (Plate 2: 9). The species has terminal chromosomes, which are seldom seen in Sect. Rhiziridium. The range of chromosome relative length is between 3.32—9.06%. (5) A. tenuissimu L. 2n=16= 10m+4sm+2st(2SAT), belonging to 2B(Plate 1:5 & Fig. 1:5). Two large satellites are attached to the short arms of the 8th pair of chromosome. The range of chromosome relative length is between 8.27--17.56%. (6)A. anisopodium Ledeb. 2n = 16 = l2m +2sm + 2st (2SAT), belonging to 2A (Plate 2:7 & Fig. 1: 7). Two large satellites are attached to the short arms of the 8th pair of chromosomes. In somatic cells of some plants of this species, a small submedian B-chromosome was found (Plate 2: 10, 11). The range of chromosome relative length is between 8.05-17.08 %. (7) A. anisopodium Ledeb. var. zimmermannianum (Gilg) Wang et Tang 2n (4x)=32=24m+4sm+4st( 4SAT), belonging to 2A (Plate 1: 6 & Fig. 1: 6). Four large satellites are attached to the short arms of the 15 and 16th pairs of chromosomes. The range of chromosome relative length is between 4.45--8.35%. This variety is similar to A. anisopodium Ledeb. in morphological characters, and their karyotype formulas are also very similar. The present authors consider that the variety is an allotetraploid derived from A. anisopodium Ledeb. (8) A. condensatum Turcz. 2n=16=14m+2st (2SAT), belonging to 2B (Plate 2:8 & Fig. 1:8). Two. small satellites are attached to the short arms of the 6th pair of chromosomes. In a few individuals of this species median (M) B-chromosome was discovered, and the number is stable (Plate 2: 12). The range of chromosome relative length is between 7.64--17.07%. In short, the chromosome numbers of the species studied in the present work are found to be 2n=16 or 32, and the karyotypes belong to 2A or 2B, highly symmetrical. The karyotypes of Chinese materials of these species are mostly reported for the first time. Threespecies have B-chromosomes.  相似文献   

16.
A detailed study of the exchange of Fe3+ between pyrophosphate and human serum transferrin was undertaken to test the hypothesis of a generalized reaction route for exchange of Fe3+ between transferrin and chelators. The initial rate of Fe3+ transfer from pyrophosphate to apotransferrin-CO2-3 is highly sensitive to the pyrophosphate to iron ratio with a maximal rate being observed at a ratio of 3:1, consistent with the presence of slowly reactive polymeric species at ratios less than 3:1 as revealed by EPR and kinetic measurements. At a ratio of 4:1 the reaction is distinctly biphasic. The rapid first phase results in the formation of an intermediate postulated as a mixedligand complex of the type PPi-Fe3+-transferrin-CO2-3. The intermediate has a distinct EPR spectrum and an absorption spectrum similar to that of Fe3+-transferrin-CO2-3, but with a spectral maximum at 450 nm rather than 465 nm. The second phase principally arises from the slow reaction of polymeric iron-pyrophosphate with the apoprotein and has contributions from the breakdown of the intermediate formed in the first phase. The rate of formation of the intermediate shows a hyperbolic dependence on NaHCO3 and apotransferrin concentrations, the latter suggesting a rate-limiting labilization of Fe3+(PPi)3, perhaps to form species of the type Fe3+(PPi)2, prior to attack by apotransferrin-CO2-3. Multimixing stopped flow spectrophotometry was employed to test the chemical reactivity of the Fe3+ to reduction at various times during the first phase. Surprisingly, a diminution of reactivity of 1000-fold was noted after only 2% of the first phase was completed, indicating a fast initial reaction which is not observed by normal rapid flow spectrophotometry. This initial reaction may involve the binding of iron-pyrophosphate to allosteric sites on the protein. The kinetics of iron removal from Fe3+-transferrin-CO2-3 by PPi are consistent with a rate-limiting conformational change in the protein as proposed earlier.  相似文献   

17.
五种苏铁属植物的核形态   总被引:4,自引:0,他引:4  
报道了苏铁属(Cycas L.)5种植物的染色体数目和核型,除多歧苏铁外,其他种均为首次报道。5个种的体细胞中期染色体核型公式分别为:滇南苏铁C.diannanensis K(2n)=2x=22=2m 4sm 4st 12T;潭清苏铁C.tanqingii K(2n)=2x=22=2m 8sm 2st 10T;多歧苏的Cmultipinnata K(2n)=2x=22=4m 8st 2st 8T;巴兰萨苏铁C.balansae K(2n)=2x=xx=2m 4sm 6st 10T。石山苏铁C.miquelii K(2n)=22=2m 6sm(1SAT) 4st 10T;核型均属于3B型。本研究结果支持苏铁属植物的核型从不对称进化的观点;同时,支持将巴兰萨苏铁和石山苏铁归入攀枝花苏铁组的台湾苏铁亚组的观点。  相似文献   

18.
Two lake-dwelling species of paludicolen triclads from Lake Biwa-ko (Honshû, Japan) were studied taxonomically and karyologically. (1) Phagocata kawakatsui Okugawa, 1956, is an epigean species usually inhabiting shallow springs and spring-fed streams in Central Japan. In Lake Biwa-ko, animals were obtained from several bottom stations of the littoral area in the southern part of the northern basin (3–70 m in depth). Chromosome numbers and karyotype: 2x=24 (2m+2sm+2sm+2m+2sm+2m+2sm+2m+2m+2sm+2m+2m). The first pair of metacentric chromosomes is very large in size. (2) Bdellocephala annandalei Ijima et Kaburaki, 1916, an endemic species, is distributed widely in the deep areas of the northern basin (30 to over 100 m in depth). Chromosome numbers and karyotype: 2x=28 (2m+2sm+2sm+2sm+2sm+2m+2m+2m+2m+2m+2m+2m+2m+2m) with the first pair of metacentric chromosomes very long.  相似文献   

19.
Af finis C. hemsleyanae Franch. et Prain, sed caulibus scapiformibus, flori-lus flavis, majoribus, petalo antico basi saccato facile differt.Herba caespitosa circ. 30 cm longa. Rhizoma circ. 5-10 mm longum, 10 mm crassum, radicibus fibrosis, numerosis, fasciculatis. Caulis 1 usque numerosus, scapiformis, simplex, efoliolatus, interdum basi unifoliatus. Folia basalia numerosa, circ. 20 cm longa, petiolis circ. 15 cm longis basi marginato-expansis, plus minu-sve carnosulis, in sicco purpureo-brunneis, laminis circ. 5 cm longis 5-6 cm latis viridibus, subtus glaucescentibus, biternatis, pinnis brevipetiolulatis, pinnulis sessilibus vel subsessilibus, 2.5-3.5 cm longis, 2 - 3 cm latis bitripartitis, segmentis lanccolatis, saepe trilobatis.  相似文献   

20.
Eight species in eight genera of Liliaceae from Zhejiang were cytotaxonomically studied in this work. The karyotypes of Chinese materials of these species are mostly reported for the first time. The results are shown as follows (see Table 2-4 for chromosome parameters of them): 1. Disporum sessile D. Don Sixteen chromosomes are counted at metaphase of roottip cells.The Karyotype formula is 2n=16=2lm+2sm+4st+2sm+3sm+ 1sm(SAT)+2st (Plate 1: 2-3, see Fig. 1:1 for its idiogram). The Karyotype belongs to 3B in Stebbins’ (1971) karyotype classification, and consists of four pairs of larger chromosomes (1-4) and four pairs of smaller chromosomes (5-8). One SAT-chromosome is situated at the sixth pair. The chromosomes range between 4.85-16.63μm. The karyotypic constitution is similar to that of Japanese material reported by Noguchi (1974). Chang and Hsu (1974) reported 2n=14=13st+1sm and 2n= 16=2m + 13st + 1sm for the material from Taiwan under the name of D. shimadai Hay. (=D. sessile D. Don). Compared with our result of D. sessile, the differences are obvious. 2. Polygonatum odoratum (Mill.) Druce PMCs diakinesis shows eleven bivalents, n = 11, 5 large and 6 small (Plate 2:5). The meiosis is normal. The majority of reports of this species are 2n=20, with a few 2n=22 and 30 (see Table 1). The materials from southen Siberia and the Far East in USSR are all of 2n= 20. Our result is the same as recorded by Jinno (1966) in the Japanese material and by Li (1980) from Beijing. Ge (1987) reported 2n=20 in the cultivated individuals of Shandong, China, showing that both 2n=20 and 22 exist in China. 3. Scilla scilloides (Lindl.) Druce This species has the somatic chromosome number 2n=18 (Plate 1: 4-6, see Fig. 1:2 for its idiogram), of which two groups of chromosomes can be recognized, i.e. the 1 st -5 th pairs of large and the 6 th-9th pairs of small chromosomes. A distinct character of the karyotype is that two satellites are attached to the short arms of the 1st pair of chromosomes. The degree of asymmetry is of 3C. The karyotype formula is 2n = 18 = 2sm (SAT) + 6st + 2t+ 6m + 2sm. The chromosomes range from 2.02 to 11.93 μm. The Previous counts on the species are 2n = 16, 18, 26, 34, 35, 36 and 43 (see Table 1). The present investigation confirms Noda’s and Haga’s results. The species is considered to be of two genomes, namely A(x = 8) and B(x = 9). Our result shows a genome composition of BB, having a pair of large SAT-chromosomes. Chang and Hsu (1974) reported 2n = 34 from a population of Taiwan, an amphidiploid (AABB), Karyotypes of other Chinese populations are worth further researches. 4. Tricyrtis macropoda Miq. The chromosome number of somatic cells is 2n= 26, and PMCs MII shows 13 bivalents (n= 13) (Plate 3:1-3, see Fig. 1:3 for its idiogram). The karyotype formula is 2n= 26= 6m + 10sm + 6st + 4st (or t), which is composed of chromosomes: 4L + 22S in size. The degree of asymmetry is of 3B. No centromeres of the 12th and 13th pairs of chromosomes were observed at metaphase, and the chromosomes may be of st or t. Nakamura (1968) reported 2n= 26(4L+ 22S)= 2sm+ 2sm-st+ 14st-sm+ 8st for T. macropoda Miq. and 2n= 26(4L+ 22S)= 8m+ 2sm+2sm-st+ 2st-sm+ 12st for its ssp. affinis, both from Japan. It is clear that the major character of their karyotypes, i. e. 4L + 22S, is consistent with that reported here. Based on the previous and present reports, all Tricyrtis species studied are remarkably uniform in the basic karyotype, i. e. 4L + 22S. 5. Allium macrostemon Bunge. The present observation on the root-tip cells of the species shows 2n = 32 (Plate 3: 4-5, see Fig. 1:4 for its idiogram). The karyotype formula is 2n (4x)= 32= 26m + 6sm, which belongs to 2B, being of high symmetry. Except the 6th, 10th and 13th pairs of chromosomes all the are metacentric. Chromosomes of this species are large, ranging from 5.94 to 18.06 μm. Our result agrees with Kawano’s (1975) report under the name of A. grayi Regel ( = A. macrostemon, Wang and Tang 1980). 6. Asparagus cochinchinensis (Lour.) Merr. Ten bivalents were observed in PMCs MI, n=10 (Plate 1: 1). The present result confirms the number of a population of Taiwan recorded by Hsu (1971). 7. Ophiopogon japonicus (L. f.) Ker-Gawl. The species from Mt. Taogui, Hangzhou, is found to have 2n (2x)=36=22m + 14sm (Plate 2: 1,5, see Fig. 1:5 for its idiogram) which belongs to 2B. The karyotype is composed of 2 medium-sized chromosomes with metacentric centromeres and 34 small chromosomes, ranging from 1.34 to 4.92 μm. The populations from Mt. Tianzhu and Mt. Yuling, Zhejiang, are found to be aneuploids at tetraploid level (2n=64-70). It is interesting that Nagamatsu (1971) found the karyotypes of Japanese materials to be 2n= 67 and 68, also showing unsteady 4x karyotypes of this species. In the previous. reports (see Table 1), the chromosome numbers of this species are mainly 2n = 72, besides 2n = 36 recorded by Sato (1942) from Japan. 8. Liriope platyphylla Wang et Tang The somatic complement of the species collected from Mt. Tianzhu, Hangzhou, is 2n = 36 (Plate 2: 3-4, see Fig. 1:6 for its idiogram). The karyotype is 2n(2x) = 36 = 16m + 20sm, belonging to 2B type. The chromosomes are small except the medium-sized, 1st pair and the range is from 1.27 to 5.19μm. The material from Mt. Yuling, Zhejiang, is found to have a variety of chromosome numbers (2n= 60-71), as observed in Ophiopogon japonicus. Hasegawa (1968) reported the karyotype of 2n = 72 (4x) from Japan The 2x karyotype is first recorded. This genus is closely related to Ophiopogon. Based on the Hasegawa’s and present studies, all the species in these two genera are remarkably uniform in karyo-type. Therefore, the taxonomy of the two genera is worth further researches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号