首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pha-2 mutant was isolated in 1993 by Leon Avery in a screen for worms with visible defects in pharyngeal feeding behavior. In pha-2 mutant worms, the pharyngeal isthmus is abnormally thick and short and, in contrast to wild-type worms, harbors several cell nuclei. We show here that pha-2 encodes a homeodomain protein and is homologous to the vertebrate homeobox gene, Hex (also known as Prh). Consistent with a function in pharyngeal development, the pha-2 gene is expressed in the pharyngeal primordium of Caenorhabditis elegans embryos, particularly in pm5 cells that form the bulk of the isthmus. We show that in the pha-2 mutant there is a failure of the pm5 cells to elongate anteriorly while keeping their nuclei within the nascent posterior bulb to form the isthmus during the 3-fold embryonic stage. We also present evidence that pha-2 regulates itself positively in pm5 cells, that it is a downstream target of the forkhead gene pha-4, and that it may also act in the isthmus as an inhibitor of the ceh-22 gene, an Nkx2.5 homolog. Finally, we have begun characterizing the regulation of the pha-2 gene and find that intronic sequences are essential for the complete pha-2 expression profile. The present report is the first to examine the expression and function of an invertebrate Hex homolog, that is, the C. elegans pha-2 gene.  相似文献   

2.
3.
Organ development is a complex process involving the coordination of cell proliferation, differentiation, and morphogenetic events. Using a screen to identify genes that function coordinately with lin-35/Rb during animal development, we have isolated a weak loss-of-function (LOF) mutation in pha-1. lin-35; pha-1 double mutants are defective at an early step in pharyngeal morphogenesis leading to an abnormal pharyngeal architecture. pha-1 is also synthetically lethal with other class B synthetic multivulval (SynMuv) genes including the C. elegans E2F homolog, efl-1. Reporter analyses indicate that pha-1 is broadly expressed during embryonic development and that its functions reside in the cytoplasm. We also provide genetic and phenotypic evidence to support the model that PHA-1, a novel protein, and UBC-18, a ubiquitin-conjugating enzyme that we have previously shown to function with lin-35 during pharyngeal development, act in parallel pathways to regulate the activity of a common cellular target.  相似文献   

4.
5.
6.
Caenorhabditis elegans PEB-1 is a novel DNA-binding protein expressed in most pharyngeal cell types and outside the pharynx in the hypodermis, hindgut, and vulva. Previous RNAi analyses indicated that PEB-1 is required for normal morphology of these tissues and growth; however, the peb-1 null phenotype was unknown. Here we describe the deletion mutant peb-1(cu9) that not only exhibits the morphological defects observed in peb-1(RNAi) animals, but also results in penetrant larval lethality characterized by defects in pharyngeal function and molting. Consistent with a function in molting, we found that PEB-1 was detectable in all hypodermal and hindgut cells underlying the cuticle. Comparison to molting-defective lrp-1(ku156) mutants revealed that the peb-1(cu9) mutants were particularly defective in shedding the pharyngeal cuticle, and this defect likely contributed to feeding defects and lethality. Most markers of pharyngeal cell differentiation examined were expressed normally in peb-1(cu9) mutants; however, g1 gland cell expression of a kel-1Colon, two colonsgfp reporter was reduced. As g1 gland cells have prominent functions during molting, we suggest defective gland cell differentiation contributes to peb-1(cu9) molting defects. In comparison, other peb-1 mutant phenotypes, including hindgut abnormalities, appeared independent of the molting defect. Similar phenotypes resulted from late loss of pha-4 function, suggesting that PEB-1 and PHA-4 have common functions in some tissues where they are co-expressed.  相似文献   

7.
Migration of plant-parasitic nematode infective larval stages through soil and invasion of roots requires perception and integration of sensory cues culminating in particular responses that lead to root penetration and parasite establishment. Components of the chemoreceptive neuronal circuitry involved in these responses are targets for control measures aimed at preventing infection. Here we report, to our knowledge, the first isolation of cyst nematode ace-2 genes encoding acetylcholinesterase (AChE). The ace-2 genes from Globodera pallida (Gp-ace-2) and Heterodera glycines (Hg-ace-2) show homology to ace-2 of Caenorhabditis elegans (Ce-ace-2). Gp-ace-2 is expressed most highly in the infective J2 stage with lowest expression in the early parasitic stages. Expression and functional analysis of the Globodera gene were carried out using the free-living nematode C. elegans in order to overcome the refractory nature of the obligate parasite G. pallida to many biological studies. Caenorhabditis elegans transformed with a GFP reporter construct under the control of the Gp-ace-2 promoter exhibited specific and restricted GFP expression in neuronal cells in the head ganglia. Gp-ACE-2 protein can functionally complement its C. elegans homologue. A chimeric construct containing the Ce-ace-2 promoter region and the Gp-ace-2 coding region and 3′ untranslated region was able to restore a normal phenotype to the uncoordinated C. elegans double mutant ace-1;ace-2. This study demonstrates conservation of AChE function and expression between free-living and plant-parasitic nematode species, and highlights the utility of C. elegans as a heterologous system to study neuronal aspects of plant-parasitic nematode biology.  相似文献   

8.
Tbx1 has been implicated as a candidate gene responsible for defective pharyngeal arch remodeling in DiGeorge/Velocardiofacial syndrome. Tbx1(+/-) mice mimic aspects of the DiGeorge phenotype with variable penetrance, and null mice display severe pharyngeal hypoplasia. Here, we identify enhancer elements in the Tbx1 gene that are conserved through evolution and mediate tissue-specific expression. We describe the generation of transgenic mice that utilize these enhancer elements to direct Cre recombinase expression in endogenous Tbx1 expression domains. We use these Tbx1-Cre mice to fate map Tbx1-expressing precursors and identify broad regions of mesoderm, including early cardiac mesoderm, which are derived from Tbx1-expressing cells. We test the hypothesis that fibroblast growth factor 8 (Fgf8) functions downstream of Tbx1 by performing tissue-specific inactivation of Fgf8 using Tbx1-Cre mice. Resulting newborn mice display DiGeorge-like congenital cardiovascular defects that involve the outflow tract of the heart. Vascular smooth muscle differentiation in the great vessels is disrupted. This data is consistent with a model in which Tbx1 induces Fgf8 expression in the pharyngeal endoderm, which is subsequently required for normal cardiovascular morphogenesis and smooth muscle differentiation in the aorta and pulmonary artery.  相似文献   

9.
10.
11.
12.
13.
The teashirt gene encodes a protein with three widely spaced zinc finger motifs that is crucial for specifying trunk identity in Drosophila embryos. Here, we describe a gene called tiptop, which encodes a protein highly similar to Teashirt. We have analyzed the expression patterns and functions of these two genes in the trunk of the embryo. Initially, teashirt and tiptop expressions are detected in distinct domains; teashirt in the trunk and tiptop in parts of the head and tail. In different mutant situations, we show that, in the trunk and head, they repress each other's expression. Unlike teashirt, we found that deletion of tiptop is homozygous viable and fertile. However, embryos lacking both gene activities display a more severe trunk phenotype than teashirt mutant embryos alone. Ectopic expression of either gene produces an almost identical phenotype, indicating that Teashirt and Tiptop have, on the whole, common activities. We conclude that Teashirt and Tiptop repress each other's expression and that Teashirt has a crucial role for trunk patterning that is in part masked by ectopic expression of Tiptop.  相似文献   

14.
Previous studies have suggested a role of the homeodomain Six family proteins in patterning the developing vertebrate head that involves appropriate segmentation of three tissue layers, the endoderm, the paraxial mesoderm and the neural crest cells; however, the developmental programs and mechanisms by which the Six genes act in the pharyngeal endoderm remain largely unknown. Here, we examined their roles in pharyngeal pouch development. Six1-/- mice lack thymus and parathyroid and analysis of Six1-/- third pouch endoderm demonstrated that the patterning of the third pouch into thymus/parathyroid primordia is initiated. However, the endodermal cells of the thymus/parathyroid rudiments fail to maintain the expression of the parathyroid-specific gene Gcm2 and the thymus-specific gene Foxn1 and subsequently undergo abnormal apoptosis, leading to a complete disappearance of organ primordia by E12.5. This thus defines the thymus/parathyroid defects present in the Six1 mutant. Analyses of the thymus/parathyroid development in Six1-/-;Six4-/- double mutant show that both Six1 and Six4 act synergistically to control morphogenetic movements of early thymus/parathyroid tissues, and the threshold of Six1/Six4 appears to be crucial for the regulation of the organ primordia-specific gene expression. Previous studies in flies and mice suggested that Eya and Six genes may function downstream of Pax genes. Our data clearly show that Eya1 and Six1 expression in the pouches does not require Pax1/Pax9 function, suggesting that they may function independently from Pax1/Pax9. In contrast, Pax1 expression in all pharyngeal pouches requires both Eya1 and Six1 function. Moreover, we show that the expression of Tbx1, Fgf8 and Wnt5b in the pouch endoderm was normal in Six1-/- embryos and slightly reduced in Six1-/-;Six4-/- double mutant, but was largely reduced in Eya1-/- embryos. These results indicate that Eya1 appears to be upstream of very early events in the initiation of thymus/parathyroid organogenesis, while Six genes appear to act in an early differentiation step during thymus/parathyroid morphogenesis. Together, these analyses establish an essential role for Eya1 and Six genes in patterning the third pouch into organ-specific primordia.  相似文献   

15.
In the pituitary, the transition from proliferating progenitor cell into differentiated hormone producing cell is carefully regulated in a time-dependent and spatially-restricted manner. We report that two targets of Notch signaling, Hes1 and Prop1, are needed to maintain progenitors within Rathke's pouch and for the restriction of differentiated cells to the ventral pituitary. We observed ACTH and αGSU producing cells that had prematurely differentiated within Rathke's pouch along with correlated ectopic expression of Mash1 only when both Prop1 and Hes1 were lost. We also discovered that downregulation of N-cadherin expression in cells as they transition from Rathke's pouch to the anterior lobe appears to be essential for their movement. In the Prop1 mutant, cells are trapped in Rathke's pouch and N-cadherin expression remains high. Also, Slug, a marker of epithelial-to-mesenchymal transition, is absent in the dorsal anterior lobe. When Hes1 is lost in the Prop1 mutant, N-cadherin is downregulated and cells are able to exit Rathke's pouch but have lost their migrational cues and form ectopic foci surrounding Rathke's pouch. Our data reveal important overlapping functions of Hes1 and Prop1 in cell differentiation and movement that are critical for pituitary organogenesis.  相似文献   

16.
17.
18.
19.
In C. elegans, the newly identified ace-3 is the third gene affecting acetylcholinesterase (AChE) activity. ace-3 II specifically affects class C AChE and is unlinked to ace-1 X or ace-2 I, which affect the other two AChE classes (A and B, respectively). Strains homozygous for an ace-3 mutation have no apparent behavioral or developmental defect; ace-1 ace-3 and ace-2 ace-3 double mutants are also nearly wild type. In contrast, ace-1 ace-2 ace-3 triple mutant animals are paralyzed and developmentally arrested; their embryonic development is relatively unimpaired, but they are unable to grow beyond the hatching stage. Based on the analysis of genetic mosaics, we conclude that in the absence of ace-2 and ace-3 function, the expression of ace-1(+) in muscle cells, but not in neurons, is essential for postembryonic viability.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号