首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We previously demonstrated that IL-2 promotes the adhesion of NK cells to endothelial cells (EC) and that EC are readily lysed by lymphokine-activated killer (LAK) cells in vitro, suggesting that cell mediated endothelial injury may contribute to the capillary leak syndrome observed in patients treated with IL-2. In this investigation, we sought to determine the effects of EC activation on the in vitro susceptibility of EC to LAK cell-mediated cytolysis. Despite increased binding of CD16+ lymphocytes to TNF-activated EC monolayers, prior exposure of EC to any of several IL-2-inducible cytokines including TNF-alpha, IL-1 beta, and IFN-gamma not only failed to render the EC more vulnerable to cytolysis but increased their resistance to LAK cells in 111Indium release cytolysis assays. This decrement in susceptibility to cytolysis resulting from prior exposure to cytokines preceded any detectable increase in HLA class I or II Ag expression. In cold target competition experiments with LAK cell effectors and radiolabeled K562 target cells, TNF-primed EC were no more competitive than unstimulated EC, and in assays with unstimulated PBMC effectors, the addition of unlabeled TNF-activated EC actually increased the cytolysis of the radiolabeled tumor cells. The effects of various cytokines and lymphocyte preparations on EC permeability were also evaluated. In these experiments, saphenous vein EC were cultured on porous filter disks, exposed to cytokines or lymphocytes, and the diffusion of 125I-BSA through the filters was then measured. Exposure to IL-2, IFN-gamma, or TNF-alpha did not increase the diffusion of the BSA through the EC-coated filters, whereas LAK cells markedly increased their permeability. Consistent with the results of the cytolysis assays, pretreatment of the EC with TNF, IL-1, or IFN-gamma diminished the LAK cell-induced increase in BSA diffusion. These results suggest that although circulating IL-2-inducible cytokines such as TNF and IFN-gamma may activate EC in vivo and contribute to lymphocyte margination and lymphopenia, they may not be directly responsible for the IL-2-induced capillary leak syndrome and may actually protect EC from LAK cell-mediated injury.  相似文献   

2.
When cultured with native or recombinant interleukin 2 (IL 2), human lymphoid cells proliferate and acquire the ability to lyse both NK-sensitive and NK-resistant tumor targets. Such IL 2-activated killer (IAK) cells generally do not destroy nonmalignant nontransformed cells. Due to their apparent specificity for tumor cells, adoptive immunotherapeutic trials of IAK cells and IL 2 have been initiated, with promising results. However, infusion of high doses of IL 2 causes systemic toxicity in patients and experimental animals resulting in the development of a vascular leakage syndrome. Certain aspects of such toxicity suggest IL 2-induced, cell-mediated destruction of normal tissue. This study examines the interaction between IL 2-induced human lymphoid cells and endothelial cells (EC). IL 2, in a dose-dependent manner, causes lymphocytes to strongly adhere to EC, but not to tumor cells, fibroblasts, or epithelial cells. In addition, these IL 2-activated lymphocytes were highly cytotoxic not only to NK-resistant Daudi cells but also to vascular and corneal EC. The IAK cells caused lysis of not only human EC but also bovine EC. Although IAK cells did not display significant adherence to normal human fibroblasts or epithelial cells, when brought together by 50 X G centrifugation, these targets were lysed by IAK cells. The ability to lyse EC was not confined to any single subpopulation of IL 2-activated lymphocytes. The lysis of EC was mediated by both IL 2-activated large granular lymphocytes and small agranular lymphocytes. Furthermore, cells within both CD4+ and CD8+ sublineages of T cells, and also non-T subpopulations, mediated IL 2-induced cytolysis of EC. The destruction of EC by IAK cells may contribute in part to the systemic toxicity associated with infusions of high doses of IL 2.  相似文献   

3.
The accumulation of T lymphocytes at the site of chronic inflammation depends on a number of factors including adherence of T cells to vascular endothelial cells (EC) and endothelial permeability. We examined the effects of human gamma delta + T lymphocytes on the permeability of EC to macromolecules and characterized the cell surface molecules that are involved in these interactions. In this model, the flux of [125I]albumin was measured across the EC monolayer after a short-term culture with cloned gamma delta cells. Our results show that coculture of activated, but not resting, gamma delta cells with EC enhances endothelial permeability by a cytolytic process. Pretreating gamma delta cells with monoclonal antibodies directed at either LFA-1 or VLA-4 molecules or pretreating EC with monoclonal antibodies directed against either ICAM-1 or VCAM-1 molecules significantly inhibited gamma delta cell-mediated enhancement in endothelial permeability. This indicated that VLA-4/VCAM-1 and LFA-1/ICAM-1 adhesion pathways participate in gamma delta cell-EC interaction.  相似文献   

4.
mAbs were raised in mice against cultured human endothelial cells (EC) and screened by indirect immunofluorescence for their ability to stain intercellular contacts. One mAb denoted 7B4 was identified which, out of many cultured cell types, specifically decorated cultured human EC. The antigen recognized by mAb 7B4 is bound at the appositional surfaces of cultured EC only as they become confluent and is stably expressed at intercellular boundaries of confluent monolayers. EC recognition specificity was maintained when the antibody was assayed by immuno-histochemistry in tissue sections of many normal and malignant tissues and in blood vessels of different size and type. The antigen recognized by 7B4 was enriched at EC intercellular boundaries similarly in vitro and in situ. In vitro, addition of mAb 7B4 to confluent EC increased permeation of macromolecules across monolayers even without any obvious changes of cell morphology. In addition, when EC permeability was increased by agents such as thrombin, elastase, and TNF/gamma IFN, its distribution pattern at intercellular contact rims was severely altered. mAb 7B4 immunoprecipitated a major protein of 140 kD from metabolically and surface-labeled cultured EC extracts which appeared to be an integral membrane glycoprotein. On the basis of its distribution in cultured cells and in tissues in situ, 7B4 antigen is distinct from other described EC proteins enriched at intercellular contacts. NH2-terminal sequencing of the antigen, immunopurified from human placenta, and sequencing of peptides from tryptic peptide maps revealed identity to the cDNA deduced sequence of a recently identified new member of the cadherin family (Suzuki, S., K. Sano, and H. Tanihara. 1991. Cell Regul. 2:261-270.) These data indicate that 7B4 antigen is an endothelial-specific cadherin that plays a role in the organization of lateral endothelial junctions and in the control of permeability properties of vascular endothelium.  相似文献   

5.
The common occurrence of fibrin deposits in chronic inflammatory lesions suggests a possible role for thrombin in the mobilization of mononuclear cell infiltrates. For this reason, the effect of thrombin on the binding of mononuclear cells to endothelial cells (EC) was investigated. Incubation of confluent monolayers of human umbilical vein endothelial cells with thrombin markedly enhanced EC adhesiveness for both T lymphocytes and U937 cells (a monocyte-like cell line) in a time- and dose-dependent fashion. This effect was EC specific: 1) treatment of the T cells or the U937 cells with thrombin did not stimulate their adherence to EC, and 2) treatment of human foreskin fibroblasts with thrombin did not stimulate their inherently low adhesiveness for T cells. Fixation of EC monolayers with paraformaldehyde after pre-incubation with thrombin did not affect the increased adhesiveness for T cells. mAb against the LFA-1 antigen (mAb 60.3 (anti-CD18) or mAb TS1/22 (anti-CD11a), which inhibit the binding of T cells to unstimulated EC, failed to block the increased adhesion induced by thrombin, indicating that the increased binding induced by thrombin is similar to that induced by IL-1 and TNF, which showed similar resistance. These results suggest that thrombin may have a role in the extravascular emigration of mononuclear cells from post-capillary venules by virtue of its ability to stimulate the adhesiveness of EC for both lymphocytes and monocytes.  相似文献   

6.
Adhesion of lymphocytes to endothelial cells (EC) is the requisite first element in the multistep process of transmigration from blood across the postcapillary venules. Selective expression of cell adhesion molecules (CM) by microvascular EC in lymphoid organs (e.g., lymph nodes) and during tissue inflammation modulates this traffic in a site-directed manner. CAM synthesis by EC is regulated in turn by cytokines released in the local microenvironment. Studies done largely with human umbilical vein EC have implicated IL-1, IFN-gamma, and TNF-alpha as cytokines which promote leukocyte adhesion to EC. In the work reported here, the responses of cultured microvascular EC derived from macaque lymph nodes to IL-1beta, IL-2, IFN-gamma, and IL-4 were examined. Increases in lymphocyte adhesion after preculture of microvascular EC in IL-1beta or IFN-gamma were typically 2-to 4-fold above controls and comparable to those reported for human umbilical vein EC. IL-2 had no effect. In contrast, IL-4 markedly enhanced adhesion to microvascular EC. IL-4-induced adhesion was observed as early as 4 h after induction, plateaued by 24 h, was stable through 72 h of culture, but decayed to basal levels within 72 h after removal of IL-4 from the cultures. IL-1beta, but not IL-2 or IFN-gamma, synergistically enhanced the action of IL-4 on cultured microvascular EC to promote lymphocyte binding. Adhesion triggered in this manner required de novo protein synthesis. However, the avidity of IL-4-activated microvascular EC for lymphocytes, and analyses of kinetics, cation and temperature dependence, and/or lack of blockade with mAb to endothelial leukocyte adhesion molecule-1, intra-cellular adhesion molecule-1, and MECA-79 indicated that these CAM were not central to the phenomenon. To aid identification of the relevant CAM, mAb specific to IL-4-induced microvascular EC were produced. One of these, 6G10, blocked up to 90% of lymphocyte adhesion to IL-4-induced microvascular EC, immunoprecipitated an IL-4-induced cell-surface molecule of 110-kDa molecular mass, and reacted specifically with Chinese hamster ovary cells transfected with human vascular cell adhesion molecule-1. Our results suggest that IL-4 may have potent effects on lymphocyte recirculation in vivo.  相似文献   

7.
An important event in the migration of lymphocytes out of the blood is their adherence to endothelial cells (EC). In inflammatory sites cytokines activate EC and promote lymphocyte EC adherence and migration. Small peritoneal exudate lymphocytes (sPEL) preferentially migrate from the blood to cutaneous delayed-type hypersensitivity reactions and to sites injected with IFN-gamma, IFN-alpha/beta, and TNF-alpha, rather than to peripheral lymph nodes. The basis of this migration is sPEL adherence to cytokine-activated EC. To study this adhesion mAb to rat sPEL were screened for inhibition of sPEL adherence to IFN-gamma-stimulated EC. One mAb, TA-2, inhibited IFN-gamma-stimulated adherence to EC by 60%. This antibody had no effect on the baseline adherence of sPEL to unstimulated EC. Treatment of sPEL, but not EC, with TA-2-inhibited adhesion. TA-2 also inhibited adhesion to EC activated with mIL-1 alpha, TNF-alpha, and LPS, and the adhesion of spleen T cells to activated EC. The TA-2 Ag was expressed on virtually all lymph node, spleen, and sPEL lymphocytes but sPEL expressed two to three times higher levels than lymph node lymphocytes, and the highest levels were found on CD4+ and CD45R- memory T cells. TA-2 immunoprecipitated a group of four polypeptides with molecular mass of 150, 130, 83, and 66 kDa. Finally, TA-2 inhibited sPEL adhesion to TNF-alpha and IL-1 stimulated human umbilical vein EC to the same extent as an anti-human VCAM-1 mAb, and combinations of TA-2 and anti-VCAM-1 were not different from treatment with either antibody alone. Thus, TA-2 appears to recognize rat VLA-4 based on immunoprecipitation, immunofluorescence, and lymphocyte EC studies. VLA-4 mediates the adhesion of rat lymphocytes to rat microvascular EC stimulated with IFN-gamma, mIL-1 alpha, TNF-alpha, and LPS. VLA-4 is important in the increased adhesion of sPEL to EC and the enhanced sPEL migration to inflammation may in part be explained by increased expression of VLA-4 on these cells.  相似文献   

8.
Hantaviruses infect human endothelial cells and cause two vascular permeability-based diseases: hemorrhagic fever with renal syndrome and hantavirus pulmonary syndrome. Hantavirus infection alone does not permeabilize endothelial cell monolayers. However, pathogenic hantaviruses inhibit the function of alphav beta3 integrins on endothelial cells, and hemorrhagic disease and vascular permeability deficits are consequences of dysfunctional beta3 integrins that normally regulate permeabilizing vascular endothelial growth factor (VEGF) responses. Here we show that pathogenic Hantaan, Andes, and New York-1 hantaviruses dramatically enhance the permeability of endothelial cells in response to VEGF, while the nonpathogenic hantaviruses Prospect Hill and Tula have no effect on endothelial cell permeability. Pathogenic hantaviruses directed endothelial cell permeability 2 to 3 days postinfection, coincident with pathogenic hantavirus inhibition of alphav beta3 integrin functions, and hantavirus-directed permeability was inhibited by antibodies to VEGF receptor 2 (VEGFR2). These studies demonstrate that pathogenic hantaviruses, similar to alphav beta3 integrin-deficient cells, specifically enhance VEGF-directed permeabilizing responses. Using the hantavirus permeability assay we further demonstrate that the endothelial-cell-specific growth factor angiopoietin 1 (Ang-1) and the platelet-derived lipid mediator sphingosine 1-phosphate (S1P) inhibit hantavirus directed endothelial cell permeability at physiologic concentrations. These results demonstrate the utility of a hantavirus permeability assay and rationalize the testing of Ang-1, S1P, and antibodies to VEGFR2 as potential hantavirus therapeutics. The central importance of beta3 integrins and VEGF responses in vascular leak and hemorrhagic disease further suggest that altering beta3 or VEGF responses may be a common feature of additional viral hemorrhagic diseases. As a result, our findings provide a potential mechanism for vascular leakage after infection by pathogenic hantaviruses and the means to inhibit hantavirus-directed endothelial cell permeability that may be applicable to additional vascular leak syndromes.  相似文献   

9.
The pathogenetic mechanisms underlying hemorrhagic fevers are not fully understood, but hemorrhage, activation of coagulation, and shock suggest vascular instability. Here, we demonstrate that Marburg virus (MBG), a filovirus causing a severe form of hemorrhagic fever in humans, replicates in human monocytes/macrophages, resulting in cytolytic infection and release of infectious virus particles. Replication also led to intracellular budding and accumulation of viral particles in vacuoles, thus providing a mechanism by which the virus may escape immune surveillance. Monocytes/macrophages were activated by MBG infection as indicated by tumor necrosis factor alpha (TNF-alpha) release. Supernatants of monocyte/macrophage cultures infected with MBG increased the permeability of cultured human endothelial cell monolayers. The increase in endothelial permeability correlated with the time course of TNF-alpha release and was inhibited by a TNF-alpha specific monoclonal antibody. Furthermore, recombinant TNF-alpha added at concentrations present in supernatants of virus-infected macrophage cultures increased endothelial permeability in the presence of 10 micron H2O2. These results indicate that TNF-alpha plays a critical role in mediating increased permeability, which was identified as a paraendothelial route shown by formation of interendothelial gaps. The combination of viral replication in endothelial cells (H.-J. Schnittler, F. Mahner, D. Drenckhahn, H.-D. Klenk, and H. Feldmann, J. Clin. Invest. 19:1301-1309, 1993) and monocytes/macrophages and the permeability-increasing effect of virus-induced cytokine release provide the first experimental data for a novel concept in the pathogenesis of viral hemorrhagic fever.  相似文献   

10.
K S Mark  D W Miller 《Life sciences》1999,64(21):1941-1953
TNF-alpha is a cytokine that produces increased permeability in the peripheral vasculature; however, little is known about the effects of TNF-alpha on the blood-brain barrier (BBB). Using primary cultured bovine brain microvessel endothelial cells (BBMEC) as an in vitro model of the BBB, this study shows that TNF-alpha produces a reversible increase in the permeability of the brain microvessel endothelial cells. The BBMEC monolayers were pre-treated with 100 ng/ml of TNF-alpha for periods ranging from 2 to 12 hours. Permeability was assessed using three molecular weight markers, fluorescein (376 MW), fluorescein-dextran (FDX-4400; 4400 MW), and FDX-70000 (MW 70000). The permeability of BBMEC monolayers to all three fluorescent markers was increased two-fold or greater in the TNF-alpha treatment group compared to control monolayers receiving no TNF-alpha. Significant changes in permeability were also observed with TNF-alpha concentrations as low as 1 ng/ml. These results suggest that TNF-alpha acts directly on the brain microvessel endothelial cells in a dynamic manner to produce a reversible increase in permeability. Exposure of either the lumenal or ablumenal side of BBMEC monolayers to TNF-alpha resulted in similar increases in permeability to small macromolecules, e.g. fluorescein. However, when a higher molecular weight marker was used (e.g. FDX-3000), there was a greater response following lumenal exposure to TNF-alpha. Together, these studies demonstrate a reversible and time dependent increase in brain microvessel endothelial cell permeability following exposure to TNF-alpha. Such results appear to be due to TNF's direct interaction with the brain microvessel endothelial cell.  相似文献   

11.
Atrial natriuretic peptide (ANP) has been shown to reduce hypoxia-induced pulmonary vascular leak in vivo, but no explanation of a mechanism has been offered other than its vasodilatory and natriuretic actions. Recently, data have shown that ANP can protect endothelial barrier functions in TNF-alpha-stimulated human umbilical vein endothelial cells. Therefore, we hypothesized that ANP actions would inhibit pulmonary vascular leak by inhibition of TNF-alpha secretion and F-actin formation. Bovine pulmonary microvascular (MVEC) and macrovascular endothelial cell (LEC) monolayers were stimulated with hypoxia, TNF-alpha, or bacterial endotoxin (LPS) in the presence or absence of ANP, and albumin flux, NF-kappa B activation, TNF-alpha secretion, p38 mitogen-activated protein kinase (MAPK), and F-actin (stress fiber) formation were assessed. In Transwell cultures, ANP reduced hypoxia-induced permeability in MVEC and TNF-alpha-induced permeability in MVEC and LEC. ANP inhibited hypoxia and LPS increased NF-kappa B activation and TNF-alpha synthesis in MVEC and LEC. Hypoxia decreased activation of p38 MAPK in MVEC but increased activation of p38 MAPK and stress fiber formation in LEC; TNF-alpha had the opposite effect. ANP inhibited an activation of p38 MAPK in MVEC or LEC. These data indicate that in endothelial cell monolayers, hypoxia activates a signal cascade analogous to that initiated by inflammatory agents, and ANP has a direct cytoprotective effect on the pulmonary endothelium other than its vasodilatory and natriuretic properties. Furthermore, our data show that MVEC and LEC respond differently to hypoxia, TNF-alpha-stimulation, and ANP treatment.  相似文献   

12.
Tumour necrosis factor alpha (TNF-alpha) and interleukin 4 (IL-4) selectively synergise in inducing expression of the mononuclear cell adhesion receptor VCAM-1 (vascular cell adhesion molecule-1) on human umbilical vein endothelial cells (HUVEC), which results in increased adhesiveness of HUVEC for T lymphocytes. This process may be crucial for adherence of circulating lymphocytes prior to their passage from the blood into inflammatory tissues. IL-4 also amplifies production of interleukin 6 (IL-6) and monocyte chemotactic protein-(MCP-1) from TNF-alpha-activated HUVEC. In the present study we demonstrate that IL-4 enhances production of granulocyte-macrophage colony-stimulating factor (GM-CSF) from TNF-alpha-stimulated HUVEC. Moreover, using cultured adult saphenous vein and umbilical artery endothelial cells, we show identical effects of IL-4 on TNF-alpha-induced responses to those observed with endothelial cells of foetal origin. Additionally, we report here that TNF-alpha and interferon gamma (IFN-gamma) synergise in the induction of both the lymphocyte adhesion receptor VCAM-1, and the TNF-alpha-inducible neutrophil adhesion receptor intercellular adhesion molecule-1, on all three endothelial cell types studied. In contrast, we found that GM-CSF secretion by endothelial cells treated with IFN-gamma plus TNF-alpha was markedly decreased when compared to the response induced by TNF-alpha alone. These results suggest that the combined actions of several cytokines, acting sequentially or in concert, may exert differential effects on activation and accumulation of circulating lymphocytes at sites of inflammation.  相似文献   

13.
Administration of lymphokine-activated killer (LAK) cells in combination with interleukin 2 (IL-2) has been effective in reducing tumor mass in humans, but has been accompanied by significant toxicity. We used a chronic awake sheep model to investigate the cause of the vascular leak syndrome associated with IL-2 administration. Sheep repeatedly infused with human recombinant IL-2 (hrIL-2) developed mild pulmonary hypertension, systemic hypotension, acidemia, hypoxemia, and increased flow of protein rich lung lymph. We hypothesized that LAK cells may damage lung endothelium in vivo and cause increased lung vascular permeability. Sheep peripheral blood and lung lymph lymphocytes incubated in vitro with hrIL-2 generated cytotoxic activity for human K-562 cells and sheep pulmonary microvascular endothelial cells. In addition, cytotoxic effector cells were isolated from the peripheral blood of a sheep which had received hrIL-2. These observations suggest that LAK cells possess the ability to damage endothelial cells and may contribute to an increased pulmonary vascular permeability observed following hrIL-2 infusion in sheep.  相似文献   

14.
Vascular endothelial cell adhesion molecule 1 (VCAM-1) is an adherence molecule that is induced on endothelial cells by cytokine stimulation and can mediate binding of lymphocytes or tumor cells to endothelium. Because these interactions often occur at the level of the microvasculature, we have examined the regulation of expression of VCAM-1 in human dermal microvascular endothelial cells (HDMEC) and compared it to the regulation of VCAM-1 in large vessel human umbilical vein endothelial cells (HUVEC). Both cell populations were judged pure as assessed by expression of von Willebrand factor and uptake of acetylated low density lipoprotein. Expression of VCAM-1 was not detectable on either unstimulated HDMEC or HUVEC when assessed by ELISA or flow cytometry. Stimulation of either HDMEC or HUVEC with TNF-alpha resulted in a time- and dose-dependent induction of VCAM-1. However, although TNF-alpha-induced cell surface and mRNA expression of VCAM-1 in HDMEC was transient, peaking after 16 h of stimulation, TNF stimulation led to persistently elevated cell surface expression of VCAM-1 on HUVEC. IL-1 alpha also induced cell surface expression of VCAM-1 on HUVEC in a time- and dose-dependent manner, but stimulation of HDMEC with IL-1 alpha at doses up to 1000 U/ml failed to induce significant cell surface expression. However, IL-1 alpha induced time- and dose-dependent increases in ICAM-1 on HDMEC. Similarly, IL-4 induced VCAM-1 expression and augmented TNF-alpha-induced expression on HUVEC but did not affect VCAM-1 expression on HDMEC. Binding of Ramos cells to cytokine-stimulated endothelial cell monolayers correlated with VCAM-1 induction. Increased binding was seen after stimulation of HDMEC with TNF-alpha, which was blocked by anti-VCAM-1 mAb, but no increases in binding were noted after stimulation of HDMEC monolayers with IL-1 alpha. These data provide additional evidence for the existence of endothelial cell heterogeneity and differences in cell adhesion molecule regulation on endothelial cells derived from different vascular beds.  相似文献   

15.
Tumor necrosis factor (TNF)-alpha is a key mediator of sepsis-associated multiorgan failure, including the acute respiratory distress syndrome. We examined the role of protein tyrosine phosphorylation in TNF-alpha-induced pulmonary vascular permeability. Postconfluent human lung microvascular and pulmonary artery endothelial cell (EC) monolayers exposed to human recombinant TNF-alpha displayed a dose- and time-dependent increase in transendothelial [(14)C]albumin flux in the absence of EC injury. TNF-alpha also increased tyrosine phosphorylation of EC proteins, and several substrates were identified as the zonula adherens proteins vascular endothelial (VE)-cadherin, and beta-catenin, gamma-catenin, and p120 catenin (p120(ctn)). Prior protein tyrosine kinase (PTK) inhibition protected against the TNF-alpha effect. TNF-alpha activated multiple PTKs, including src family PTKs. Prior PTK inhibition with the src-selective agents PP1 and PP2 each protected against approximately 60% of the TNF-alpha-induced increment in [(14)C]albumin flux. PP2 also blocked TNF-alpha-induced tyrosine phosphorylation of VE-cadherin, gamma-catenin, and p120(ctn). To identify which src family kinase(s) was required for TNF-alpha-induced vascular permeability, small interfering RNA (siRNA) targeting each of the three src family PTKs expressed in human EC, c-src, fyn, and yes, were introduced into the barrier function assay. Only fyn siRNA protected against the TNF-alpha effect, whereas the c-src and yes siRNAs did not. These combined data suggest that TNF-alpha regulates the pulmonary vascular endothelial paracellular pathway, in part, through fyn activation.  相似文献   

16.
The accumulation of mononuclear cells at sites of chronic inflammation is dependent on a number of factors including localized adherence of lymphocytes to vascular endothelial cells (EC), cytokine-mediated increased adhesiveness of endothelium, chemotactic factors and endothelial permeability. The present study investigates two of the above attributes of lymphocyte-EC interaction: namely, the ability of maturationally distinct subpopulations of human T lymphocytes to adhere to vascular EC and to increase vascular endothelial permeability to macromolecules in an in vitro model. Thus, human T lymphocytes were separated into CD4+ CD8-helper/inducer, CD4- CD8+ cytotoxic/suppressor, CD29+ CD45RA- CD45RO+ memory, and CD29- CD45RA+ CD45RO- naive/virgin T subpopulations, were activated with PHA and PMA, and then examined for their adherence to EC and also for their effect on endothelial permeability. Upon activation, cells within each of the above four subpopulations exhibited increased adherence to EC. In contrast, resting CD29+ CD45RA- CD45RO+ memory T lymphocytes exhibited two to three times greater ability to adhere to EC than their CD29- CD45RA+ CD45RO- naive/virgin counterparts. Consistent with their increased adherence to EC, CD29+ CD45RO+ memory T lymphocytes, when activated, significantly increased endothelial permeability to albumin. Although activated CD45RA+ naive T lymphocytes exhibited increased adherence to EC, these cells failed to increase significantly endothelial permeability. Similar to their polyclonal counterparts, Ag-specific CD4+ CD29+ CD45RO+ T cell clones, but not their actively released mediators, also increased endothelial permeability via a noncytolytic mechanism(s). This ability of CD29+ CD45RO+ memory T lymphocytes to augment endothelial permeability may facilitate their transendothelial migration into extravascular space. These observations may provide additional insights into molecular mechanism(s) underlying pathophysiology of localized chronic inflammatory responses in general and more specifically selective accumulation of CD29+/CD45RO+ memory T lymphocytes at sites of chronic inflammation such as rheumatoid synovium.  相似文献   

17.
Lymphocyte function-associated Ag-1 (LFA-1) or CD11a/CD18 mediates lymphocyte adhesion to cultured vascular endothelial cells (EC). Thus, LFA-1 likely plays a major role in lymphocyte migration out of the blood, but there is little information on this in vivo. Small peritoneal exudate lymphocytes (sPEL) and lymph node (LN) lymphoblasts adhere to cytokine-activated EC and preferentially migrate to cutaneous inflammatory sites. The role of LFA-1 in the adherence and in vivo migration of these T cells was determined. Because of a lack of anti-rat LFA-1, mAb were prepared to rat T cells. One mAb, TA-3, inhibited homotypic aggregation; T cell proliferation to Ag, alloantigens, and mitogens; stained all leukocytes; and immunoprecipitated 170- and 95-kDa polypeptides from lymphocytes and neutrophils. TA-3 binding to lymphocytes also required Ca2+, but not Mg2+. Thus, TA-3 appears to react with rat LFA-1. TA-3 inhibited spleen T cell adhesion to unstimulated EC by 30% and to IFN-gamma, TNF-alpha, IL-1 alpha, and LPS stimulated EC by 50 to 60% but inhibited sPEL EC adhesion by only 10%. TA-3 also strongly inhibited anti-CD3-stimulated LN T cell adherence. The migration of spleen T cells to delayed-type hypersensitivity and skin sites injected with LPS, poly I:C, IFN-gamma, IFN-alpha/beta, and TNF was inhibited by 72 to 88% by TA-3, and was decreased by 50% to peripheral LN. TA-3 caused less but still 50 to 60% inhibition of sPEL migration to inflamed skin. Lymphoblast migration to skin was inhibited 40 to 80% and to PLN by 30%. Migration of lymphocytes from all sources to mesenteric LN was inhibited by 32 to 60%. In conclusion, LFA-1 mediates much of the adherence of spleen T cells and lymphoblasts to EC in vitro, most of the migration of these cells to dermal inflammation and about 50% of the homing of LN and spleen T cells to peripheral and mesenteric LN. sPEL are less dependent on LFA-1 for adhesion to EC in vitro and for migration to inflamed skin and LN in vivo.  相似文献   

18.
When cultured with native or recombinant human interleukin 2 (IL 2), human peripheral blood non-adherent mononuclear cells (NAMNC) acquire the ability to lyse both NK-sensitive and NK-resistant tumor target cells. The development of these IL 2-activated killer (IAK) cells, also known as LAK, is observed in the absence of exogenous antigen or mitogen. This study describes the ability of various subpopulations of human peripheral blood NAMNC with defined surface phenotype to generate the IAK activity. Human NAMNC were separated into various subpopulations on the basis of the ability to bind monoclonal antibodies, activated with IL 2, and were examined for the cytolytic effect on various tumor target cells. Although CD16+ (Leu-11+) NK cells from NAMNC could become IAK cells when cultured with IL 2, removal of these cells from NAMNC had no effect on the latter's ability to generate the IAK effect. When CD16- NAMNC were separated into CD2+ E rosette-forming T cells (ERFC) and CD2- non-T (non-ERFC) subpopulations, both subpopulations generated the IAK activity. The ability of monoclonal antibody-defined subpopulations of T and non-T cells to generate IAK cells was then examined. Both CD4+ and CD8+ subsets isolated by either positive or negative selection generated the IAK activity. Similarly, CD20+ (B1+) B cells and CD20- non-T (null) cells developed into IAK cells when cultured with IL 2. In contrast, Leu-7+ T cells failed to generate the IAK activity. CD4+ and CD8+ subsets were additionally separated into narrower subpopulations by using monoclonal antibodies anti-Leu-8 and 9.3 respectively, and were examined for their ability to generate IAK cells. Precursors of IAK cells were derived from each of the four: CD4+, Leu-8+ (inducer), CD4+, Leu-8- (helper/amplifier), CD8+, 9.3+ (cytolytic), and CD8+, 9.3- (suppressor) subpopulations of T cells. Thus, the IAK activity appears to be derived from phenotypically heterogeneous and otherwise functionally diverse human lymphoid cells and is not confined to any single subpopulation.  相似文献   

19.
《The Journal of cell biology》1996,134(4):1075-1087
Little is known about how lymphocytes migrate within secondary lymphoid organs. Stromal cells and their associated reticular fibers form a network of fibers that radiate from high endothelial venules to all areas of the lymph node and may provide a scaffold for lymphocyte migration. We studied interactions of lymphocytes with cultured human tonsillar stromal cells and their extracellular matrix using shear stress to distinguish transient interactions from firm adhesion. Tonsillar lymphocytes and SKW3 T lymphoma cells tethered and rolled on monolayers of cultured tonsillar stromal cells and their matrix. A significant proportion of these rolling interactions were independent of divalent cations and were mediated by CD44 binding to hyaluronan, as shown by inhibition with mAb to CD44, soluble hyaluronan, as hyaluronidase treatment of the substrate, and O-glycoprotease treatment of the rolling cells. O-glycoprotease treatment of the substrate also blocked binding completely to stromal matrix and partially to stromal monolayers. SKW3 cells tethered and rolled on plastic-immobilized hyaluronan, confirming the specificity of this interaction. By contrast, monolayers of resting or stimulated human umbilical vein endothelial cells failed to support CD44- and hyaluronan-dependent rolling. SKW3 cells added under flow conditions to frozen sections of human tonsil bound and rolled along reticular fibers in the presence of EDTA. Rolling was blocked by either CD44 mAb or hyaluronan. We propose that lymphocytes migrating through secondary lymphoid organs may use CD44 to bind to hyaluronan immobilized on stromal cells and reticular fibers.  相似文献   

20.
In vivo, MHC class I-restricted injury of allogeneic tissue or cells infected by intracellular pathogens occurs in the absence of classical cytolytic effector mechanisms and Ab. Modulation of the target cell adhesion to matrix may be an additional mechanism used to injure vascular or epithelial cells in inflammation. We studied the mechanisms of human umbilical vein endothelial cell (EC) detachment from matrix-coated plastic following contact by concanamycin A-treated lymphocytes as an in vitro model of perforin-independent modulation of EC basement membrane adhesion. Human PBL were depleted of monocytes, stimulated, then added to an EC monolayer plated on either fibronectin or type I collagen matrices. Activated, but not resting, PBL induced progressive EC detachment from the underlying matrix. Injury of the EC monolayer required direct cell contact with the activated lymphocytes because no detachment was seen when the PBL were placed above a Transwell membrane. Moreover plasma membranes prepared from activated but not resting PBL induced EC detachment. Adherent EC stimulated with activated PBL did not show evidence of apoptosis using TUNEL and annexin V staining at time points before EC detachment was observed. Finally, neither the matrix metalloproteinase inhibitors o-phenanthroline and BB-94 nor aprotinin blocked EC detachment. However, activation of EC beta1 integrin using mAb TS2/16 or Mg2+ decreased EC detachment. These data indicate that cell-cell contact between activated PBL and EC reduces adhesion of EC to the underlying matrix, at least in part by inducing changes in the affinity of the endothelial beta 1 integrin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号