首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Metagenomics is an emerging microbial systems science that is based on the large-scale analysis of the DNA of microbial communities in their natural environments. Studies of metagenomes are revealing the vast scope of biodiversity in a wide range of environments, as well as new functional capacities of individual cells and communities, and the complex evolutionary relationships between them. Our examination of this science focuses on the ontological implications of these studies of metagenomes and metaorganisms, and what they mean for common sense and philosophical understandings of multicellularity, individuality and organism. We show how metagenomics requires us to think in different ways about what human beings are and what their relation to the microbial world is. Metagenomics could also transform the way in which evolutionary processes are understood, with the most basic relationship between cells from both similar and different organisms being far more cooperative and less antagonistic than is widely assumed. In addition to raising fundamental questions about biological ontology, metagenomics generates possibilities for powerful technologies addressed to issues of climate, health and conservation. We conclude with reflections about process-oriented versus entity-oriented analysis in light of current trends towards systems approaches.  相似文献   

2.
The last century has seen enormous environmental degradation: many populations are in drastic decline, and their ecosystems have been vastly altered. There is an urgent need to understand the causes of the decline, how the species interact with other components of the environment, and how ecosystem integrity is determined. A brief review of marine systems emphasizes the importance of natural sciences to understanding the systems and finding solutions. These environmental crises coincide with the virtual banishment of natural sciences in academe, which eliminate the opportunity for both young scientists and the general public to learn the fundamentals that help us predict population levels and the responses by complex systems to environmental variation. Science and management demands that complex systems be simplified, but the art of appropriate simplification depends on a basic understanding of the important natural history. It seems unlikely that meaningful conservation and restoration can be accomplished unless we recover the tradition of supporting research in and the teaching of natural history. We must reinstate natural science courses in all our academic institutions to insure that students experience nature first-hand and are instructed in the fundamentals of the natural sciences.  相似文献   

3.
Sean B. Carroll’s new book, The Serengeti Rules: The Quest to Discover How Life Works and Why it Matters, is a well-written mix of history of science and philosophy of biology. In his book, Carroll articulates a set of ecological generalisations, the Serengeti Rules, which are supposed to make salient the structures in ecosystems that ensure the persistence of those ecosystems. In this essay review, I evaluate Carroll’s use of the controversial concept of regulation and his thesis that ecosystems have a natural balance comparable to that of human bodies. My conclusion is optimistic. Carroll’s generalisations provide a tool-kit for building relatively simple models that are accurate enough to be widely applied in experimental ecology and conservation science, guiding interventions upon unhealthy ecosystems.  相似文献   

4.
Kant's conception of organisms as natural purposes raises a challenge to the adequacy of mechanistic explanation in biology. Certain features of organisms appear to be inexplicable by appeal to mechanical law alone. Some biological phenomena, it seems, can only be accounted for teleologically. Contemporary evolutionary biology has by and large ignored this challenge. It is widely held that Darwin's theory of natural selection gives us an adequate, wholly mechanical account of the nature of organisms. In contemporary biology, the category of the organism plays virtually no explanatory role. Contemporary evolutionary biology is a science of sub-organismal entities-replicators. I argue that recent advances in developmental biology demonstrate the inadequacy of sub-organismal mechanism. The category of the organism, construed as a 'natural purpose' should play an ineliminable role in explaining ontogenetic development and adaptive evolution. According to Kant the natural purposiveness of organisms cannot be demonstrated to be an objective principle in nature, nor can purposiveness figure in genuine explain. I attempt to argue, by appeal to recent work on self-organization, that the purposiveness of organisms is a natural phenomenon, and, by appeal to the apparatus of invariance explanation, that biological purposiveness provides genuine, ineliminable biological explanations.  相似文献   

5.
This paper examines how in the 'Critique of teleological judgment' Kant characterized the concept of natural purpose in relation to and in distinction from the concepts of nature and the concept of purpose he had developed in his other critical writings. Kant maintained that neither the principles of mechanical science nor the pure concepts of the understanding through which we determine experience in general provide adequate conceptualizations of the unique capacities of organisms. He also held that although the concept of natural purpose was derived through reflection upon an analogy to human purposive activity in artistic production and moral action, it articulates a unique notion of intrinsic purposiveness. Kant restricted his critical reflections on organisms to phenomena that can be given to us in experience, criticizing speculations on their first origins or final purpose. But I argue that he held that the concept of natural purpose is a product of the reflecting power of judgment, rather than an empirical concept, and represents only the relation of things to our power of judgment. Yet it is necessary for the identification of organisms as organized and self-organizing, and as subject to unique norms and causal relations between parts and whole.  相似文献   

6.
David Reznick 《Genetica》1993,91(1-3):79-88
Progress in any area of biology has generally required work on a variety of organisms. This is true because particular species often have characteristics that make them especially useful for addressing specific questions. Recent progress in studying the evolutionary biology of senescence has been made through the use of new species, such asCaenorhabditis elegans andDrosophila melanogaster, because of the ease of working with them in the laboratory and because investigators have used theories for the evolution of aging as a basis for discovering the underlying mechanisms.I describe ways of finding new model systems for studying the evolutionary mechanisms of aging by combining the predictions of theory with existing information about the natural history of organisms that are well-suited to laboratory studies. Properties that make organisms favorable for laboratory studies include having a short generation time, high fecundity, small body size, and being easily cultured in a laboratory environment. It is also desirable to begin with natural populations that differ in their rate of aging. I present three scenarios and four groups of organisms which fulfill these requirements. The first two scenarios apply to well-documented differences in age/size specific predation among populations of guppies and microcrustacea. The third is differences among populations of fairy shrimp (anostraca) in habitat permanence. In all cases, there is an environmentla factor that is likely to select for changes in the life history, including aging, plus a target organism which is well-suited for laboratory studies of aging.  相似文献   

7.
Given the dramatic pace of change of our planet, we need rapid collection of environmental data to document how species are coping and to evaluate the impact of our conservation interventions. To address this need, new classes of “born digital” biodiversity records are now being collected and curated many orders of magnitude faster than traditional data. In addition to the millions of citizen science observations of species that have been accumulating over the last decade, the last few years have seen a surge of sensor data, with eMammal's camera trap archive passing 1 million photo‐vouchered specimens and Movebank's animal tracking database recently passing 1.5 billion animal locations. Data from digital sensors have other advantages over visual citizen science observation in that the level of survey effort is intrinsically documented and they can preserve digital vouchers that can be used to verify species identity. These novel digital specimens are leading spatial ecology into the era of Big Data and will require a big tent of collaborating organizations to make these databases sustainable and durable. We urge institutions to recognize the future of born‐digital records and invest in proper curation and standards so we can make the most of these records to inform management, inspire conservation action and tell natural history stories about life on the planet.  相似文献   

8.
Recent work in the philosophy of biology has attempted to clarify and defend the use of the biodiversity concept in conservation science. I argue against these views, and give reasons to think that the biodiversity concept is a poor fit for the role we want it to play in conservation biology on both empirical and conceptual grounds. Against pluralists, who hold that biodiversity consists of distinct but correlated properties of natural systems, I argue that the supposed correlations between these properties are not tight enough to warrant treating and measuring them as a bundle. I additionally argue that deflationary theories of biodiversity don’t go far enough, since a large proportion of what we value in the environment falls outside bounds of what could reasonably be called “diversity”. I suggest that in current scientific practice biodiversity is generally an unnecessary placeholder for biological value of all sorts, and that we are better off eliminating it from conservation biology, or at least drastically reducing its role.  相似文献   

9.
Estimating rates of speciation and extinction, and understanding how and why they vary over evolutionary time, geographical space and species groups, is a key to understanding how ecological and evolutionary processes generate biological diversity. Such inferences will increasingly benefit from phylogenetic approaches given the ever‐accelerating rates of genetic sequencing. In the last few years, models designed to understand diversification from phylogenetic data have advanced significantly. Here, I review these approaches and what they have revealed about diversification in the natural world. I focus on key distinctions between different models, and I clarify the conclusions that can be drawn from each model. I identify promising areas for future research. A major challenge ahead is to develop models that more explicitly take into account ecology, in particular the interaction of species with each other and with their environment. This will not only improve our understanding of diversification; it will also present a new perspective to the use of phylogenies in community ecology, the science of interaction networks and conservation biology, and might shift the current focus in ecology on equilibrium biodiversity theories to non‐equilibrium theories recognising the crucial role of history.  相似文献   

10.
The study of the natural history of gelatinous zooplankton (‘gelata’) reached a high point at the end of the 19th century, when scientists first began to understand the phylogenetic and ecological links between cnidarians and ctenophores. Siphonophores, carefully figured in their entirety, and gauze-like lobate ctenophores too fragile to touch, were described by the dozens. In the ensuing years, focus on zooplankton shifted toward more ‘industrial’ goals such as quantitative sampling using plankton nets. While plankton scientists were busy summing tattered parts, they lost sight of the whole jellies themselves, and a crustaceocentric view of the ocean came to dominate. During this period, the most dramatic breakthroughs in cnidarian research came from laboratory studies of neurobiology, physiology, and development, particularly of certain model organisms. Now, at the turn of this century, we have the opportunity to bring gelata back into primacy. Submersibles and remotely operated vehicles allow us to study entire life histories of organisms that we did not even know existed. The tools of molecular biology allow us to answer questions about development, evolution, and phylogeny that had reached a stalemate. Even in the surface waters, where it might be thought that there is little left to learn, in situ observations have revealed unexpected interactions and hidden diversity. The critical roles that these organisms play in the health of the oceans, their position at the crux of many evolutionary debates, and the tools for biotechnology that they provide, have led to resurgent public appreciation and awareness. Although advanced tools do not necessitate good science, we have few excuses for failing to bring about another golden age of gelata. A plenary address of the 7th International Conference on Coelenterate Biology.  相似文献   

11.
Biodiversity conservation is one of the grand challenges facing society. Many people interested in biodiversity conservation have a background in wildlife biology. However, the diverse social, cultural, political, and historical factors that influence the lives of people and wildlife can be investigated fully only by incorporating social science methods, ideally within an interdisciplinary framework. Cultural hierarchies of knowledge and the hegemony of the natural sciences create a barrier to interdisciplinary understandings. Here, we review three different projects that confront this difficulty, integrating biological and ethnographic methods to study conservation problems. The first project involved wildlife foraging on crops around a newly established national park in Gabon. Biological methods revealed the extent of crop loss, the species responsible, and an effect of field isolation, while ethnography revealed institutional and social vulnerability to foraging wildlife. The second project concerned great ape tourism in the Central African Republic. Biological methods revealed that gorilla tourism poses risks to gorillas, while ethnography revealed why people seek close proximity to gorillas. The third project focused on humans and other primates living alongside one another in Morocco. Incorporating shepherds in the coproduction of ecological knowledge about primates built trust and altered attitudes to the primates. These three case studies demonstrate how the integration of biological and social methods can help us to understand the sustainability of human–wildlife interactions, and thus promote coexistence. In each case, an integrated biosocial approach incorporating ethnographic data produced results that would not otherwise have come to light. Research that transcends conventional academic boundaries requires the openness and flexibility to move beyond one’s comfort zone to understand and acknowledge the legitimacy of “other” kinds of knowledge. It is challenging but crucial if we are to address conservation problems effectively.  相似文献   

12.
In the context of aging European conservation institutions rewilding has emerged as a popular and scientific expression of new directions in ecology and conservation management associated with the restoration of ecosystem function through reassembly of trophic levels involving the reintroduction of large mammals. It introduces a radical new natural archetype that evokes a positive environmentalism. The Oostvaardersplassen experiment in the Netherlands demonstrates the agency of rewilding for nature development and engaging diverse publics in debates on what is natural and the future of conservation policy. If conservation is to retain its cultural and policy visibility and influence in a 21st century multi‐cultural Europe, our conservation institutions and the natures we value must adapt. In this forum I frame rewilding as an asset for institutional adaptation that is being constrained by substantive institutional and societal resistance. I argue the need for strategic investment in a European network of experimental rewilding sites. These would bring rewilding into densely populated areas, develop the science and practice of ecosystem restoration, and promote public debate on nature conservation futures. The ‘Fitness check’ of European nature conservation legislation mandated in 2014 is a case of high politics. In this situation, compromise and negotiation is inevitable and the environmental lobby needs something to advocate as well as defend. A rewilding agenda could fulfil this need.  相似文献   

13.
Having been selected to be among the exquisitely talented scientists who won the Sandra K. Masur Senior Leadership Award is a tremendous honor. I would like to take this opportunity to make the case for a conviction of mine that I think many will consider outdated. I am convinced that we need more curiosity-driven basic research aimed at understanding the principles governing life. The reasons are simple: 1) we need to learn more about the world around us; and 2) a robust and diverse basic research enterprise will bring ideas and approaches essential for developing new medicines and improving the lives of humankind.When I was a graduate student, curiosity-driven basic research ruled. Studying mating-type switching in budding yeast, for example, was exciting because it was an interesting problem: How can you make two different cells from a single cell in the absence of any external cues? We did not have to justify why it is important to study what many would now consider a baroque question. Scientists and funding agencies alike agreed that this was an exciting biological problem that needed to be solved. I am certain that all scientists of my generation can come up with similar examples.Open in a separate windowAngelika AmonSince the time I was a graduate student, the field of biological research has experienced a revolution. We can now determine the genetic makeup of every species in a week or so and have an unprecedented ability to manipulate any genome. This revolution has led to a sense that we understand the principles governing life and that it is now time to apply this knowledge to cure diseases and make the world a better place. While applying knowledge to improve lives and treat diseases is certainly a worthwhile endeavor, it is important to realize that we are far from having a mechanistic understanding of even the basic principles of biology. What the genomic revolution brought us are lists, some better than others. We now know how many coding genes define a given species and how many protein kinases, GTPases, and so forth there are in the various genomes we sequenced. This knowledge, however, does not even scratch the surface of understanding their function. When I browse the Saccharomyces cerevisiae genome database (my second-favorite website), I am still amazed how many genes there are that have not even been given a name.To me the most important achievement the new genome-sequencing and genome-editing technologies brought us is that nearly every organism can be a model organism now. We can study and manipulate the processes that most fascinate us in the organisms in which they occur, with the exception, of course, of humans. Thus, I believe that the golden era of basic biological research is not behind us but in front of us, and we need more people who will take advantage of the tools that have been developed in the past three decades. I am therefore hoping that many young people will chose a career in basic research and find an exciting question to study. The more of us there are, the more knowledge we will acquire, and the higher the likelihood we will discover something amazing and important. There is so much interesting biology out there that we should strive to understand. Some of my favorite unanswered questions are: What are the biological principles underlying symbiosis and how did it evolve? Why is sleep essential? Why do plants, despite an enormous regenerative potential, never die of cancer? Why do brown bears, despite inactivity, obesity, and high levels of cholesterol, exhibit no signs of atherosclerosis? How do sharks continuously produce teeth?One could, of course, argue that the knowledge we have accumulated over the past 50 years provides a reasonable framework, and it is now time to leave basic science and model organisms behind and focus on what matters—curing diseases, developing methods to produce energy, cleaning up the oceans, preventing global warming, building biological computers, designing organisms, or engineering whatever the current buzz is about. Like David Botstein, who eloquently discussed the importance of basic research in these pages in 2012 (Botstein, 2012 ), I believe that the notion that we already know enough is wrong and the current application-centric view of biology is misguided. Experience has taught us over and over that we cannot predict where the next important breakthrough will be emerge. Many of the discoveries that we consider groundbreaking and that have brought us new medicines or improved our lives in other ways are the result of curiosity-driven basic research. My favorite example is the discovery of penicillin. Alexander Fleming, through the careful study of his (contaminated) bacterial plates, enabled humankind to escape natural selection. More recent success stories such as new cures for hepatitis C, the human papillomavirus vaccine, the HIV-containment regimens, or treatments for BCR-ABL induced chronic myelogenous leukemia have also only been possible because of decades of basic research in model organisms that taught us the principles of life and enabled us to acquire the methodologies critical to develop these treatments. Although work from my own lab on the causes and consequences of chromosome mis-segregation in budding yeast has not led to the development of new treatments, it has taught us a lot about how an imbalanced karyotype, a hallmark of cancer, affects the physiology of cancer cells and creates vulnerabilities in cancer cells that could represent new therapeutic targets.These are but a few examples for why it is important that we scientists must dedicate ourselves to the pursuit of basic knowledge and why we as a society must make funding basic research a priority. Achieving the latter requires that we scientists tell the public about the importance of what we are doing and explain the potential implications of basic research for human health. At the same time, it will be important to manage expectations. We must explain that not every research project will lead to the development of new medicines and that we cannot predict where the next big breakthroughs will materialize. We must further make it clear that this means we have to fund a broad range of basic research at a healthy level. Perhaps a website that collects examples of how basic research has led to breakthroughs in medicine could serve as a showcase for such success stories, bringing the importance of what we do to the public.While conducting research to improve the lives of others is certainly a worthy motivation, it is not the main reason why I get up very early every morning to go to the lab. To me, gaining an understanding of a basic principle in the purest Faustian terms is what I find most rewarding and exciting. Designing and conducting experiments, pondering the results, and developing hypotheses as to how something may work is most exciting, the idea that I, or nowadays the people in my lab, may be (hopefully) the first to discover a new aspect of biology is the best feeling. It is these rare eureka moments, when you first realize how a process works or when you discover something that opens up a new research direction, that make up for all the woes and frustrations that come with being an experimental scientist in an expensive discipline.For me, having a career in curiosity-driven basic research has been immensely rewarding. It is my hope that basic research remains one of the pillars of the American scientific enterprise, attracting the brightest young minds for generations to come. We as a community can help to make this a reality by telling people what we do and highlighting the importance of our work to their lives.  相似文献   

14.
This paper examines how in the ‘Critique of teleological judgment’ Kant characterized the concept of natural purpose in relation to and in distinction from the concepts of nature and the concept of purpose he had developed in his other critical writings. Kant maintained that neither the principles of mechanical science nor the pure concepts of the understanding through which we determine experience in general provide adequate conceptualizations of the unique capacities of organisms. He also held that although the concept of natural purpose was derived through reflection upon an analogy to human purposive activity in artistic production and moral action, it articulates a unique notion of intrinsic purposiveness. Kant restricted his critical reflections on organisms to phenomena that can be given to us in experience, criticizing speculations on their first origins or final purpose. But I argue that he held that the concept of natural purpose is a product of the reflecting power of judgment, rather than an empirical concept, and represents only the relation of things to our power of judgment. Yet it is necessary for the identification of organisms as organized and self-organizing, and as subject to unique norms and causal relations between parts and whole.  相似文献   

15.
Ethical debate on the killing of kangaroos has polarised conservation and animal welfare science, yet at the heart of these scientific disciplines is the unifying aim of reducing harm to non-human animals. This aim provides the foundation for common ground, culminating in the development of compassionate conservation principles that seek to provide mechanisms for achieving both conservation and welfare goals. However, environmental decision-making is not devoid of human interests, and conservation strategies are commonly employed that suit entrenched positions and commercial gain, rather than valuing the needs of the non-human animals in need of protection. The case study on the wild kangaroo harvest presents just such a dilemma, whereby a conservation strategy is put forward that can only be rationalised by ignoring difficulties in the potential for realising conservation benefits and the considerable welfare cost to kangaroos. Rather than an open debate on the ethics of killing game over livestock, in this response I argue that efforts to bring transparency and objectivity to the public debate have to date been obfuscated by those seeking to maintain entrenched interests. Only by putting aside these interests will debate about the exploitation of wildlife result in humane, compassionate, and substantive conservation benefits.  相似文献   

16.
New challenges to human, animal, and ecosystem health demand novel solutions: New diseases are emerging from new configurations of humans, their domestic animals and wildlife; new pressures on once robust and resilient ecosystems are compromising their integrity; synthetic compounds and engineered organisms, new to the natural world, are spreading unpredictably around the globe. Globalization provides opportunities for infectious organisms to gain access to new hosts, changing in distribution and virulence. What type of training should be developed to provide professionals with the right tools to meet these challenges? In this article, we offer recommendations for developing academic programs in conservation medicine. We discuss the need for, and the advantages to, using a conservation medicine approach to address real world situations and present illustrations of how this is applied today. We suggest a core set of skills that are needed in a conservation medicine practitioner, and recommend key considerations for designing new conservation medicine training programs. We review existing programs that offer conservation medicine content, and provide examples of where opportunities exist for those interested in pursuing a conservation medicine career.  相似文献   

17.
David Hull has demonstrated a marvelous ability to annoy everyone who caresabout science (or should), by forcing us to confront deep truths about howscience works. Credit, priority, precularities, and process weave together tomake the very fabric of science. As Hull's studies reveal, the story is bothmessier and more irritating than those limited by a single disciplinaryperspective generally admit. By itself history is interesting enough, andphilosophy valuable enough. But taken together, they do so much in tellingus about science and by puncturing the comfortable popular illusion abouthow science works. Ultimately, David Hull shows by his example thathistory and philosophy of science can make science better. I agree, and withits focus on the history of science in particular, this paper explores why.  相似文献   

18.
E Moreno 《PloS one》2012,7(7):e39054
Synthetic biology is an area of biological research that combines science and engineering. Here, I merge the principles of synthetic biology and regulatory evolution to create a new species with a minimal set of known elements. Using preexisting transgenes and recessive mutations of Drosophila melanogaster, a transgenic population arises with small eyes and a different venation pattern that fulfils the criteria of a new species according to Mayr's Biological Species Concept. The population described here is the first transgenic organism that cannot hybridize with the original wild type population but remains fertile when crossed with other identical transgenic animals. I therefore propose the term "synthetic species" to distinguish it from "natural species", not only because it has been created by genetic manipulation, but also because it may never be able to survive outside the laboratory environment. The use of genetic engineering to design artificial species barriers could help us understand natural speciation and may have practical applications. For instance, the transition from transgenic organisms towards synthetic species could constitute a safety mechanism to avoid the hybridization of genetically modified animals with wild type populations, preserving biodiversity.  相似文献   

19.
Studies of conservation biology involving tiger beetles have become increasingly common in the last 15 years. Governments and NGOs in several countries have considered tiger beetles in making policy decisions of national conservation efforts and have found tiger beetles useful organisms for arguing broad conservation issues. We trace the evolution of the relationship between tiger beetle studies and conservation biology and propose that this history may in itself provide a model for anticipating developments and improvements in the ability of conservation biology to find effective goals, gather appropriate data, and better communicate generalizations to non-scientific decision makers, the public, and other scientists. According to the General Continuum of Scientific Perspectives on Nature model, earliest biological studies begin with natural history and concentrate on observations in the field and specimen collecting, followed by observing and measuring in the field, manipulations in the field, observations and manipulations in the laboratory, and finally enter theoretical science including systems analysis and mathematical models. Using a balance of historical and analytical approaches, we tested the model using scientific studies of tiger beetles (Coleoptera: Cicindelidae) and the field of conservation biology. Conservation biology and tiger beetle studies follow the historical model, but the results for conservation biology also suggest a more complex model of simultaneous parallel developments. We use these results to anticipate ways to better meet goals in conservation biology, such as actively involving amateurs, avoiding exclusion of the public, and improving language and style in scientific communication. CXLV, Studies of Tiger Beetles  相似文献   

20.
A change occurring in commercial aquaria is transforming them from centers of entertainment to places that emphasize education, science, and wildlife conservation. If this transformation is to be authentic, it must be based on a greater understanding of the animals in their captive environment. A stronger scientific basis for husbandry management, education, and conservation is needed. A systems approach to aquariology, aimed at both the individual holding facility and the aquarium institution, is suggested. A science of “aquariology,” i.e., the study of animals in controlled aquatic systems, needs to be advanced, and a program instituted in which research, management, education, and conservation goals are integrated. Aquarium science should emphasize an ecosystem approach and consider the evolutionary history of the species held. Exhibits could focus on the role of organisms in ecosystems to better encourage public understanding and support for aquatic conservation. A systems approach could also facilitate communications among managers, staff, and outside experts, as well as contribute to the long-term care of the organisms and their capacity to adapt. A systems approach is essential if the aquarium image is based more on understanding and conserving aquatic life and less on public relations and exploitation of wild species. © 1993 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号