首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The occurrence of three forms, I, II, and III, of exo-beta-D-glucuronidase of the fungus Kobayasia nipponica was demonstrated. These three forms were purified 1,905-fold, 857-fold, and 357-fold, respectively. Forms I, II, and III of exo-beta-D-glucuronidase behaved differently on heparin-Sepharose chromatography, and differed in optimum pH (3.5, 3.2, and 2.6, respectively), pH-stability, Km (0.22, 0.16, and 0.13 mM, respectively), and Vmax (V) values. Their molecular weights, as estimated by gel filtration through Sephacryl S-200, were all 70,000; polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate gave a value of 72,000. These three forms were very active towards 1-4 linked beta-D-glucuronans, (Formula: see text) and (Formula: see text), but weak or inactive towards protuberic acid and several glycosaminoglycans.  相似文献   

2.
Human seminal plasma contain two forms of beta-glucuronidase (beta-D-glucuronidase glucuronosohydrolase, EC 3.2.1.31) which are present in the ratio of 4:1. The major form of beta-glucuronidase with a slow moving band in electrophoresis was purified to homogeneity as revealed by polyacrylamide gel electrophoresis, double immunodiffusion and immunoelectrophoresis. The major form of beta-glucuronidase shows dual optimum pH at 4.3 and 4.7 with a dip in the activity at pH 4.5. The Km of this form of beta-glucuronidase is dependent on pH and was found to be 0.95, 3.08 and 0.67 mM at pH 4.4, 4.5 and 4.7, respectively. The major form of beta-glucuronidase from seminal plasma is stable at 55 degrees C for 30 min but it denatures at 65 degrees C. Heat denaturation is faster at acidic pH (4.7) than at alkaline pH (7.8). However, the activity of enzyme increased linearly with increase in temperature up to 70 degrees C during incubation with substrate. Cu, Ag, Hg and Ni salts inhibited enzyme activity significantly at 0.1 and 1.0 mM concentration, but the inhibition of HgCl2 was protected by cysteine. 1,4-D-Saccharic acid lactone and ascorbic acid inhibited seminal beta-glucuronidase competitively, yielding Ki values of 1.7 . 10(-3) mM and 10.3 mM, respectively. Though fructose and mannose also showed significant inhibition of beta-glucuronidase at 10-100 mM, glucose did not show any effect. The molecular weight of the major form of beta-glucuronidase was found to be 279 000, and it appears to be composed of four subunits each having a molecular weight of 74 000.  相似文献   

3.
Lipase, an enzyme that hydrolyzes triacylglycerol, has been purified and characterized. The purification procedure includes ethanol precipitation and chromatographies on Sephacryl-200 HR, high resolution anion-exchange (mono Q) and Polybuffer exchanger 94. With this procedure, two forms of lipases from Geotrichum candidum were obtained. Lipase I (main enzyme) and lipase II (minor enzyme) were purified 35-fold with a 62% recovery in activity and 94-fold with a 18% recovery in activity, respectively. Their molecular weights have been estimated by polyacrylamide gel electrophoresis under denaturing conditions and by molecular sieving under native conditions at 56,000. Lipase I and II had optimum pH values of 6.0 and 6.8 and isoelectric points of 4.56 and 4.46, respectively. The enzymes are stable at a pH range of 6.0 to 8.0. Monovalent ions had little effect on both enzyme activities, while divalent ions at concentrations above 50 mM inhibited the lipase activities in a concentration-dependent manner. Sodium dodecyl sulfate at a concentration lower than 10 mM completely inhibited the lipase activity.  相似文献   

4.
Rat preputial gland beta-glucuronidase [ED 3.2.1.31] was purified by ammonium sulfate precipitation, ethanol fractionation, gel filtration on Sephadex G-200 and crystallization. The purified enzyme appeared homogeneous on electrophoresis in polyacrylamide gel, and on analytical ultracentrifugation and had a molecular weight of approximately 320,000, and a sedimentation coefficient of 12S. SDS polyacrylamide gel electrophoresis indicated that the enzyme consisted of subunits with molecular weight of 79,000, so the native enzyme appeared to be a tetramer. The Km with p-nitrophenyl beta-D-glucosiduronic acid as substrate was about 0.53 mM. The enzyme had a single pH optimum at 4.5. The enzyme had a very low content of sulphur-containing amino acid and contained 5.7 per cent carbohydrate, consisting of mannose, glucose, fucose, galactose, and glucosamine in a ratio of 44;9;6;2;41. Sialic acid was not detected in the crystallized enzyme.  相似文献   

5.
Three forms of alpha-glucosidase, I, II, and III, have been purified from the whole body extract of adult flies of Drosophila melanogaster in yields of 2.1, 5.3, and 6.7%, respectively. The purification procedures involved ammonium sulfate fractionation, Con A-Sepharose 4B affinity chromatography, DEAE-Sepharose CL-6B ion exchange chromatography, Sephacryl S-200 gel filtration, and preparative gel electrophoresis. Each purified enzyme showed a single band on polyacrylamide gel on both protein and enzyme activity staining. The molecular weights of alpha-glucosidases I, II, and III were estimated to be 200,000, 56,000, and 76,000, respectively, by gel filtration. SDS gels indicated that alpha-glucosidases II and III were each composed of a single polypeptide chain, whereas alpha-glucosidase I was composed of two identical subunits. Both alpha-glucosidases II and III hydrolyzed sucrose and p-nitrophenyl-alpha-D-glucoside (PNPG), but alpha-glucosidase I hydrolyzed PNPG to a much lesser extent than sucrose. For sucrose the pH optima of alpha-glucosidases I, II, and III were pH 6.0, 5.0, and 6.0 and the Km values were 13.1, 8.9, and 10 mM, respectively. For PNPG the pH optima of alpha-glucosidases II and III were pH 5.5 and 6.5 and the Km values were 0.77 and 0.21 mM, respectively.  相似文献   

6.
Midgut glands of abalone Haliotis discus contained two acid phosphatases [orthophosphoric-monoester phosphohydrolase (acid optimum), EC 3.1.3.2] separable by phosphocellulose column chromatography. They were designated as acid phosphatases I and II in order of elution and were purified 99- and 290-fold, respectively. Purified acid phosphatase II was nearly homogeneous as judged by polyacrylamide gel electrophoresis. The substrate specificity of acid phosphatase I was narrow, whereas that of acid phosphatase II was broad. Good substrates for acid phosphatase I included p-nitrophenyl phosphate, phosphoenolpyruvate, inorganic pyrophosphate, and nucleoside di- and triphosphates. The acid phosphatases did not require any metal ion for maximum activity and were inhibited by Zn2+, Cu2+ and Hg2+. Fluoride and arsenate were potent inhibitors of both enzymes. The pH optima of acid phosphatases I and II were 5.9 and 5.5, respectively. The molecular weights of acid phosphatases I and II were estimated to be 28,000 and 100,000, respectively, by gel filtration on Sephadex G-100. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis suggested that acid phosphatase II consists of two identical subunits.  相似文献   

7.
Two aminopeptidases (I and II), hydrolysing basic termini, were purified to homogeneity (as judged by polyacrylamide gel electrophoresis) from human quadriceps muscle by anion-exchange chromatography and preparative electrophoresis. The electrophoretic migration rate of II was approximately 80% of that of I. Both enzymes had the following properties: optimum activity was at pH 6.5; addition of 0.15 M Cl- or Br- anions resulted in a 20-fold or 10-fold increase in activity respectively. There was little or no increase in activity on the addition of other anions, or divalent cations (0.05-5mM). Approximately 50% inhibition of activity was obtained in the presence of bestatin (0.1 microM), rho-hydroxymercuriphenylsulphonic acid (0.1 microM), EDTA (10 mM), 1,10-phenanthroline (100 microM), N-ethylmaleimide (1 mM) and But-Thr-Phe-Pro (0.5 mM). The molecular mass was 72 000 Da (gel filtration). Only the arginyl and lysyl 7-amino-4-methylcoumarin (Amc) derivatives were appreciably hydrolysed; approximate Km values for the reaction of I and II with these substrates (10-250 microM) were estimated as follows: Arg-Amc, KmI = 70 microM, KmII = 270 microM; Lys-Amc KmI = 280 microM, KmII = 400 microM. Both enzymes hydrolysed dipeptides with Arg or Lys as the NH2-terminal amino acid, however this was not an absolute requirement for dipeptide hydrolysis. The action of I and II on physiologically active oligopeptides was very restricted, with only bradykinin, proangiotensin and neurotensin being appreciably degraded. The breakdown of these peptides did not occur by classical aminopeptidase action (i.e. hydrolysis of the NH2-terminal residues), but via cleavage of internal peptide bonds. These results suggest that I and II may be isoenzymes of a Cl- -requiring, thiol-type aminopeptidase, which hydrolyses basic termini. These enzymes may act primarily as dipeptidases, with a very restricted mode of action in the degradation of naturally occurring oligopeptides.  相似文献   

8.
The lysosomal form (L form) of beta-glucuronidase was purified 6,500-fold from the liver of C57BL/6J mice with high yield. Purified enzyme was homogeneous as judged by polyacrylamide gel electrophoresis in the presence or absence of sodium dodetcyl sulfate. The microsomal forms of beta-glucuronidase were spontaneously converted to the L form. The purified L form is a tetramer of molecular weight of 280,000 to 300,000, composedd of four identical subunits of 75,000 molecular weight. The enzyme contains a high content of arginine and glutamic acid and a very low content of sulfur-containing amino acids. Approximately 7% of the enzyme molecule is compose of carbohydrate. Sugars in the L form are glucosamine, mannose, galactose, and glucose. Sialic acid and fucose are absent in the enzyme.  相似文献   

9.
Properties of glutamate dehydrogenase purified from Bacteroides fragilis   总被引:2,自引:0,他引:2  
The dual pyridine nucleotide-specific glutamate dehydrogenase [EC 1.4.1.3] was purified 37-fold from Bacteroides fragilis by ammonium sulfate fractionation, DEAE-Sephadex A-25 chromatography twice, and gel filtration on Sephacryl S-300. The enzyme had a molecular weight of approximately 300,000, and polymeric forms (molecular weights of 590,000 and 920,000) were observed in small amounts on polyacrylamide gel disc electrophoresis. The molecular weight of the subunit was 48,000. The isoelectric point of the enzyme was pH 5.1. This glutamate dehydrogenase utilized NAD(P)H and NAD(P)+ as coenzymes and showed maximal activities at pH 8.0 and 7.4 for the amination with NADPH and with NADH, respectively, and at pH 9.5 and 9.0 for the deamination with NADP+ and NAD+, respectively. The amination activity with NADPH was about 5-fold higher than that with NADH. The Lineweaver-Burk plot for ammonia showed two straight lines in the NADPH-dependent reactions. The values of Km for substrates were: 1.7 and 5.1 mM for ammonium chloride, 0.14 mM for 2-oxoglutarate, 0.013 mM for NADPH, 2.4 mM for L-glutamate, and 0.019 mM for NADP+ in NADP-linked reactions, and 4.9 mM for ammonium chloride, 7.1 mM for 2-oxoglutarate, 0.2 mM for NADH, 7.3 mM for L-glutamate, and 3.0 mM for NAD+ in NAD-linked reactions. 2-Oxoglutarate and L-glutamate caused substrate inhibition in the NADPH- and NADP+-dependent reactions, respectively, to some extent. NAD+- and NADH-dependent activities were inhibited by 50% by 0.1 M NaCl. Adenine nucleotides and dicarboxylic acids did not show remarkable effects on the enzyme activities.  相似文献   

10.
Two molecular forms of glutamine synthetase localized in the cytoplasm and in chloroplasts, respectively, were detected in pumpkin leaves. Ammonium infiltrated into intact pumpkin leaves activated the synthesis of both enzyme forms. Glutamine synthetase from chloroplasts and the cytoplasmic enzyme were purified to homogeneity by ammonium sulfate fractionation, ion-exchange chromatography on DEAE-cellulose DE-32, selective adsorption on potassium phosphate gel and preparative electrophoresis in polyacrylamide gel. The molecular weights of both forms of glutamine synthetase as determined by gel-filtration through Sephacryl S-200 are equal to 370,000 and 480,000, respectively. During SDS polyacrylamide gel electrophoresis the enzymes from both sources produced polypeptide chains with respective molecular weights of 50,000 and 58,000. The amino acid composition of the enzymes differed considerably. The content of alpha-helix moities in the chloroplast and cytoplasmic enzyme made up to 17% and 34%, respectively. In the presence of Mg+ the pH optima for the enzymes were equal to 7.75 and 7.25, respectively, and the Km values for L-glutamate were 46 and 13 mM, respectively. It may be concluded that the enzyme forms under study are isoenzymes.  相似文献   

11.
Purification and properties of human placental acid lipase   总被引:1,自引:0,他引:1  
Two peaks of lysosomal acid lipase activity were purified from normal human placenta. Acid lipase I, with an estimated molecular weight of 102 500, was purified 1016-fold while acid lipase II, with an estimated molecular weight of 30 600, was purified 3031-fold. The final yields of enzyme activity for acid lipase I and II were 0.9% and 2.2% respectively. The purity of the final preparations was documented by demonstration of a single protein band on polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Both preparations of the purified enzyme demonstrated activity towards triolein, cholesteryl oleate and the artificial substrate 4-methylumbelliferyl oleate. Examination of Km values, thermal stability, pH optima, and electrophoretic mobility revealed similar properties for the two enzyme peaks. The response of the two enzyme preparations to inhibitors was similar with both being significantly inhibited by 0.2 M NaCl, 0.2 M KCl, 5 mM HgCl2 and 5 mM p-chloromercuribenzoate. The activity of the two preparations as assayed with either triolein or cholesterol oleate was not significantly affected by the addition of bovine serum albumin. In contrast, the 4-methylumbelliferyl oleate activity of both preparations was significantly inhibitred by albumin. These findings support the hypothesis that the same enzyme or enzymes are responsible for the intralysosomal hydrolysis of triacylglycerols and cholesterol esters in human tissues.  相似文献   

12.
Two GM1-beta-galactosidases, beta-galactosidases I, and II, have been highly purified from bovine brain by procedures including acetone and butanol treatments, and chromatographies on Con A-Sepharose, PATG-Sepharose, and Sephadex G-200. beta-Galactosidase I was purified 30,000-fold and beta-galactosidase II 19,000-fold. Both enzymes appeared to be homogeneous, as judged from the results of polyacrylamide disc gel electrophoresis. Enzyme I had a molecular weight of 600,000-700,000 and enzyme II one of 68,000, as determined on gel filtration. On sodium dodecyl sulfate polyacrylamide slab gel electrophoresis under denaturing conditions, enzyme II gave a single band with a molecular weight of 62,000, while enzyme I gave two minor bands with molecular weights of 32,000 and 20,000 in addition to the major band at 62,000. Both enzymes liberated the terminal galactose from GM1 ganglioside and lactosylceramide but not from galactosylceramide. Enzyme I showed a pH optimum of 4.0 and was heat stable, while enzyme II showed a pH optimum of 5.0 and lost 50% of its activity in 15 min at 45 degrees C. Enzyme I showed a pI of 4.2 and enzyme II one of 5.9.  相似文献   

13.
Some molecular properties of asparagine synthetase from rat liver   总被引:1,自引:0,他引:1  
Asparagine synthetase purified from rat liver reveals two species (slower migrating band I and faster migrating band II) when subjected to polyacrylamide gel electrophoresis under nondenaturing conditions (S. Hongo and T. Sato (1981) Anal. Biochem. 114, 163-166). We have investigated some molecular properties of these species. Elution of band I from the gel and re-electrophoresis showed that band I yielded band II similar to that of the initial run. Peptide maps by limited proteolysis were very similar and amino acid compositions were also alike in the two species. L-Lysine was identified as the sole NH2-terminal amino acid in both the species. By cross-linking experiments the enzyme was shown to be a dimeric protein. When the purified enzyme was subjected to isoelectric focusing the enzyme activity and protein focused at pH 6.0 in a single peak. These results demonstrate that rat liver asparagine synthetase is composed of two identical subunits. The enzyme, inactivated by storage at -20 degrees C for about 3 months, showed aggregated forms in polyacrylamide gel electrophoresis, and was reactivated markedly by the addition of dithiothreitol.  相似文献   

14.
B Droba  M Droba 《Folia biologica》1992,40(1-2):67-71
Two forms (I and II) of beta-N-acetyl-D-glucosaminidase from cock seminal plasma and one form (III) from spermatozoa were separated by chromatofocusing. The active enzyme forms I and II had pI values of 6.6 and 6.3, respectively, while form III had two subforms with pI values of 6.3 and 6.1, as determined by polyacrylamide gel electrofocusing. The molecular weights were 76,000 for forms I and III and 32,000 for form II. The optimum pH of enzyme forms I and III ranged from 3.6 to 4.0. In contrast, form II showed one distinct maximum at pH 3.7. The Km values obtained with p-nitrophenyl-beta-N-acetyl-D-glucosaminide as substrate were 0.35, 0.28, and 0.39 mM for forms I, II, and III, respectively. It is assumed that both cock spermatozoa and cock seminal plasma contain a common, enzymatically active beta-N-acetyl-D-glucosaminidase subunit with M(r) about 32,000 and pI 6.3.  相似文献   

15.
Purification and properties of Escherichia coli dihydrofolate reductase.   总被引:5,自引:0,他引:5  
Dihydrofolate reductase has been purified 40-fold to apparent homogeneity from a trimethoprim-resistant strain of Escherichia coli (RT 500) using a procedure that includes methotrexate affinity column chromatography. Determinations of the molecular weight of the enzyme based on its amino acid composition, sedimentation velocity, and sodium dodecyl sulfate gel electrophoresis gave values of 17680, 17470 and 18300, respectively. An aggregated form of the enzyme with a low specific activity can be separated from the monomer by gel filtration; treatment of the aggregate with mercaptoethanol or dithiothreitol results in an increase in enzymic activity and a regeneration of the monomer. Also, multiple molecular forms of the monomer have been detected by polyacrylamide gel electrophoresis. The unresolved enzyme exhibits two pH optima (pH 4.5 and pH 7.0) with dihydrofolate as a substrate. Highest activities are observed in buffers containing large organic cations. In 100 mM imidazolium chloride (pH 7), the specific activity is 47 mumol of dihydrofolate reduced per min per mg at 30 degrees. Folic acid also serves as a substrate with a single pH optimum of pH 4.5. At this pH the Km for folate is 16 muM, and the Vmax is 1/1000 of the rate observed with dihydrofolate as the substrate. Monovalent cations (Na+, K+, Rb+, and Cs+) inhibit dihydrofolate reductase; at a given ionic strength the degree of inhibition is a function of the ionic radius of the cation. Divalent cations are more potent inhibitors; the I50 of BaCl2 is 250 muM, as compared to 125 mM for KCl. Anions neither inhibit nor activate the enzyme.  相似文献   

16.
An acid phosphatase species which is activated by Fe2+ was purified 3,700-fold from rat spleen by chromatography on columns containing Blue-Sepharose, concanavalin A-Sepharose, Sephadex G-100, and CM-Sephadex. The enzyme hydrolyzed aryl phosphates, nucleoside di- and triphosphates, phosphoproteins, and thiamine pyrophosphate with Km values of 10(-4) to 10(-3) M at an optimal pH of 5.0-5.8. Co-purification of the acid phosphatase and acid phosphoprotein phosphatase indicated that they were identical. The purified enzyme was glycoprotein in nature, showing four heterogeneous forms on acid polyacrylamide gel electrophoresis (pI values, 7.8, 8.0, 8.3, and 8.5), but it gave a molecular weight of 33,000 on sodium dodecyl sulfate-gel electrophoresis and gel permeation chromatography. The enzyme had a purple color (lambda max 545 nm) and contained 2 iron atoms per enzyme molecule. Among reductants, ascorbic acid and Fe2+ were the best activators, although their combined effect was not additive. Fe2+ and ascorbic acid both changed the purple enzyme into the same active form (lambda max 515 nm), giving almost the same kinetic constants for substrates and for inhibitors such as molybdate, phosphate and fluoride. However, low concentrations of Fe2+, from 0.01 mM to 1.0 mM, immediately and reversibly activated the enzyme, whereas high concentrations of ascorbic acid over 1 mM were required for maximal activation, which was slow and irreversible.  相似文献   

17.
Prolylcarboxypeptidase was purified from human kidney 1200-fold with 18% yield. The enzyme had no cathepsin A activity and appeared to be homogeneous in gel electrophoresis. The molecular weight of prolylcarboxypeptidase was estimated to be 115,000 by gel filtration. Under denaturing conditions the enzyme dissociated into subunits of 45,000 and 66,500 molecular weight. The enzyme cleaved benzyloxycarbonyl (Cbz)-Pro-Phe, representing the COOH-terminal end of angiotensin II and des-Asp1-angiotensin II (angiotensin III), at a rate of 31 micronmol/h/mg of protein. The rate of hydrolysis increased when phenylalanine in the N-protected dipeptide was replaced with alanine, valine, or leucine or when the octapeptide angiotensin II or the heptapeptide angiotensin III were the substrates. The enzyme also cleaved the angiotensin II antagonist saralasin (Sar1-Ala8-angiotensin II). The Km values were 1 mM, 2mM, and 0.77 mM with Cbz-Pro-Phe, angiotensin II, and angiotensin III, respectively. The enzyme had an acid pH optimum (4.5 to 5.5), but hydrolyzed angiotensin III at pH 7 at 50% of the optimal rate. Prolylcarboxypeptidase was inhibited by diisopropyl phosphorofluoridate and pepstatin, but not by sequestering agents or -SH reagents.  相似文献   

18.
beta-Alanine aminotransferase from rabbit liver has been purified 1,700-fold over the initial liver extract. The purified enzyme was shown to be homogeneous by disc electrophoresis and SDS polyacrylamide electrophoresis. The molecular weight of the purified enzyme determined by gel filtration was 95,000 +/- 5,700 and the subunit molecular weight was 48,000 +/- 2,100. The enzyme showed absorption maxima at 282, 330, and 414 nm and contained only 1 mol of pyridoxal 5'-phosphate/mol of dimer. The pH optimum for enzyme activity was 8.8 and the Km values for beta-alanine and 2-oxoglutaric acid were calculated to be 3.9 and 1.4 mM, respectively. The enzyme catalyzed transamination of various omega-amino acids with 2-oxoglutaric acid, which was a favourable amino acceptor. beta-Alanine, gamma-aminobutyric acid, and beta-aminoisobutyric acid, which are naturally occurring substrates, were preferred amino donors, but taurine, alanine, ornithine, spermine, and spermidine were not. 6-Azauracil inhibited the enzyme activity with a Ki of approximately 1.5 mM. From the above properties, beta-alanine aminotransferase from rabbit liver was seen to closely resemble with 4-aminobutyrate aminotransferase from liver and brain.  相似文献   

19.
NAD-dependent lactaldehyde dehydrogenase, catalyzing an oxidation of lactaldehyde to lactate, was purified approximately 70-fold from cell extracts of Saccharomyces cerevisiae with a 28% yield of activity. The enzyme was homogeneous on polyacrylamide gel electrophoresis. The relative molecular mass of the enzyme was estimated to be 40 000 on Sephadex G-150 column chromatography and on sodium dodecyl sulfate/polyacrylamide gel electrophoresis. The enzyme was most active at pH 6.5, 60 degrees C and specifically oxidized L-lactaldehyde to L-lactate in the presence of NAD. The Km values for L-lactaldehyde and NAD were 10 mM and 2.9 mM, respectively. The purest enzyme was extremely unstable and almost completely inactivated during storage at -20 degrees C, pH 7.5. For the reactivation of the enzyme, halide ions such as Cl-, I- and Br- were required.  相似文献   

20.
Rat liver beta-glucuronidase (EC 3.2.1.31), both from microsomal and lysosomal fractions, were purified about 9500-fold over the homogenate with high yield using affinity chromatography prepared by coupling purified specific immunoglobulin G against rat preputial gland beta-glucuronidase to Sepharose 2B and isoelectric focusing. The purified enzymes appeared homogeneous on electrophoresis in polyacrylamide gel and had a molecular weight of approximately 310000. In dodecylsulfate polyacrylamide gel electrophoresis, the microsomal beta-glucuronidase showed a single band corresponding to a molecular weight of 79000, while the lysosomal beta-glucuronidase had three distinct bands which consisted of one major and two minor bands corresponding to molecular weight of 79000, 74000, and 70000, respectively. A broad pH activity curve with a single optimum at pH 4.4 was observed in both the microsomal and the lysosomal beta-glucuronidases. Immunological gel diffusion technique with rabbit antiserum against rat liver lysosomal beta-glucuronidase revealed that both enzymes had the same or quite similar antigenic determinants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号