首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 20-mer bridged oligodeoxynucleotides containing short oligomers joined by the hexamethylenediol and hexaethylene glycol linkers were shown to form complementary DNA/DNA and RNA/DNA complexes whose thermostability depends on the length and number of the nonnucleotide linkers. Hybrid complexes of the bridged oligonucleotides proved to be substrates for theE. coli ribonuclease H. The presence of one-three nonnucleotide linkers in a 20-mer decreased the hydrolysis efficacy only 1.2–1.4-fold. It is the composition of the RNA cleavage products that was influenced the most significantly by the nonnucleotide linkers. RNase H simultaneously hydrolyzed the RNA 3′-ends of each hybrid duplex involving a bridged oligonucleotide. The presence of an inverted 3′-3′-phosphodiester bond at the 3′-end of the oligodeoxyribonucleotide only slightly affected the RNase H activity. For the previous report, see [1].  相似文献   

2.
The properties of new chimeric oligodeoxynucleotides made of short sequences (tetramers, pentamers, octamers, and decamers) bridged by hexamethylenediol and hexaethylene glycol linkers have been investigated. These chimeric oligonucleotides showed an improved resistance toward snake venom 3'-phosphodiesterase, with an increased stability when a terminal 3'-3'-internucleotide phosphodiester bond is present. It also has been demonstrated that the hybrid complexes formed by bridged oligonucleotides and a complementary 20-mer RNA are able to elicit the activity of ribonuclease H (RNase H) from Escherichia coli. The substrate properties of chimeric oligonucleotides depend on the length of the oligonucleotide fragments bridged by linkers. Introduction of a nonnucleotide spacer into the native oligonucleotide only slightly hampers the extent of the RNA hydrolysis in the hybrid complexes, whereas a modification of the site of reaction is observed as a possible consequence of the steric disturbance due to the aliphatic linkers. Hence, these new chimeric oligonucleotides, namely, short oligonucleotide fragments bridged by nonnucleotide linkers, demonstrate a favorable combination of exonuclease resistance and high substrate activity toward RNase H. As a consequence, these chimeric oligonucleotides could be proposed as new, promising analogs to be used in the antisense strategy.  相似文献   

3.
4.
We studied the E. coli RNase H cleavage of a 5'-labeled RNA fragment within two hybrid duplexes with identical sequences, one of which is formed by RNA and a 20-mer oligodeoxyribonucleotide (RNA/p20), whereas the second, by RNA and a tandem of short oligodeoxyribonucleotides (octanucleotide: (RNA/tandem). It was shown that RNA in the RNA/p20 complex is hydrolyzed from the 3'-end to yield consecutively the 17-, 14-, 11-, 8-, and 5-mer 5'-labeled fragments. On hydrolysis of RNA in complex RNA/tandem, the same products were registered, but their accumulation rates in this case differed. Thus, the initial rates of accumulation of the 17- and 8-mer were close. Moreover, the accumulation of the final 5-mer differed considerably: in the RNA/tandem complex it appeared within first minutes of the reaction, but only after a considerable lag period in complex RNA/p20. These data testify that the tandem is involved not only in the consecutive accumulation of the shortened products (which is characteristic of complexes including extended oligonucleotides) but also in the parallel accumulation. This results from hydrolysis of each duplex segment formed by RNA and the short oligonucleotide of the tandem. Although the order of recognition and cleavage of RNA target by ribonuclease H depends on the type of the hybrid duplex, the destruction of RNA target within complex RNA/tandem and in complex with the full-size oligonucleotide occurs with a close effectiveness.  相似文献   

5.
To clarify the mechanism by which the RNA portion of a DNA/RNA hybrid is specifically hydrolyzed by ribonuclease H (RNase H), the binding of a DNA/RNA hybrid, a DNA/DNA duplex, or an RNA/RNA duplex to RNase HI from Escherichia coli was investigated by 1H-15N heteronuclear NMR. Chemical shift changes of backbone amide resonances were monitored while the substrate, a hybrid 9-mer duplex, a DNA/DNA 12-mer duplex, or an RNA/RNA 12-mer duplex was titrated. The amino acid residues affected by the addition of each 12-mer duplex were almost identical to those affected by the substrate hybrid binding, and resided close to the active site of the enzyme. The results reveal that all the duplexes, hybrid-, DNA-, and RNA-duplex, bind to the enzyme. From the linewidth analysis of the resonance peaks, it was found that the exchange rates for the binding were different between the hybrid and the other duplexes. The NMR and CD data suggest that conformational changes occur in the enzyme and the hybrid duplex upon binding.  相似文献   

6.
We studied theE. coli RNase H cleavage of a 5′-labeled RNA fragment within two hybrid duplexes with identical sequences, one of which is formed by RNA and a 20-mer oligodeoxyribonucleotide (RNA/p20) whereas the second, by RNA and a tandem of short oligodeoxyribonucleotides (octanucleotide : tetranucleotide : octanucleotide) (RNA/tandem). It was shown that RNA in the RNA/p20 complex is hydrolyzed from the 3′-end to yield consecutively the 17-, 14-, 11-, 8-, and 5-mer 5′-labeled fragments. On hydrolysis of RNA in complex RNA/tandem, the same products were registered but their accumulation rates in this case differed. Thus, the initial rates of accumulation of the 17- and 8-mer were close. Moreover, the accumulation of the final 5-mer differed considerably: in the RNA/tandem complex it appeared within first minutes of the reaction but only after a considerable lag period in complex RNA/p20. These data testify that the tandem is involved not only in the consecutive accumulation of the shortened products (which is characteristic of complexes including extended oligonucleotides) but also in the parallel accumulation. This results from hydrolysis of each duplex segment formed by RNA and the short oligonucleotide of the tandem. Although the order of recognition and cleavage of RNA target by ribonuclease H at certain bonds depends on the type of the hybrid duplex, the destruction of RNA target within complex RNA/tandem and in complex with the full-size oligonucleotide occurs with a close effectiveness.  相似文献   

7.
A series of DNA-linked RNases H, in which the 15-mer DNA is cross-linked to the Thermus thermophilus RNase HI (TRNH) variants at positions 135, 136, 137 and 138, were constructed and analyzed for their abilities to cleave the complementary 15-mer RNA. Of these, that with the DNA adduct at position 135 most efficiently cleaved the RNA substrate, indicating that position 135 is the most appropriate cross-linking site among those examined. To examine whether DNA-linked RNase H also site-specifically cleaves a highly structured natural RNA, DNA-linked TRNHs with a series of DNA adducts varying in size at position 135 were constructed and analyzed for their abilities to cleave MS2 RNA. These DNA adducts were designed such that DNA-linked enzymes cleave MS2 RNA at a loop around residue 2790. Of the four DNA-linked TRNHs with the 8-, 12-, 16- and 20-mer DNA adducts, only that with the 16-mer DNA adduct efficiently and site-specifically cleaved MS2 RNA. Primer extension revealed that this DNA-linked TRNH cleaved MS2 RNA within the target sequence.  相似文献   

8.
9.
The syntheses and RNA cleavage efficiencies of a new series of oligonucleotide conjugates of Cu(II)-serinol-terpyridine and 1,3-propanediol are reported. These reagents, termed ribozyme mimics, were designed such that they would yield multiple unpaired RNA residues directly opposite the site of the RNA cleavage catalyst upon ribozyme mimic-RNA duplex formation. This design effect was implemented using the 1,3-propanediol linker 3, which mimics the three-carbon spacing between the 5'- and 3'-hydroxyls of a natural nucleotide. Incorporation of one or more of these 1,3-propanediol linkers at positions directly adjacent to the serinol-terpyridine modification in the ribozyme mimic DNA strand resulted in cleavage at multiple phosphates in a complementary 31-mer RNA target sequence. The linkers effectively created artificial mismatches in the RNA-DNA duplexes, rendering the opposing RNA residues much more susceptible to cleavage via the transesterification/hydrolysis pathway. The RNA cleavage products produced by the various mimics correlated directly with the number and locations of the linkers in their DNA strands, and the most active ribozyme mimic in the series exhibited multiple turnover in the presence of excess 31-mer RNA target.  相似文献   

10.
11.
To construct a DNA-linked RNase H, which cleaves RNA site-specifically at high temperatures, the 15-mer DNA, which is complementary to the polypurine-tract sequence of human immunodeficiency virus-1 RNA (PPT-RNA), was cross-linked to the unique thiol group of Cys135 in the Thermus thermophilus RNase HI variant. The resultant DNA-linked enzyme (d15-C135/TRNH), as well as the d15-C135/ERNH, in which the RNase H portion of the d15-C135/TRNH is replaced by the Escherichia coli RNase HI variant, cleaved the 15-mer PPT-RNA site-specifically. The mixture of the unmodified enzyme and the unlinked 15-mer DNA also cleaved the PPT-RNA but in a less strict manner. In addition, this mixture cleaved the PPT-RNA much less effectively than the DNA-linked enzyme. These results indicate that the cross-linking limits but accelerates the interaction between the enzyme and the DNA/RNA substrate. The d15-C135/TRNH cleaved the PPT-RNA more effectively than the d15-C135/ERNH at temperatures higher than 50 degrees C. The d15-C135/TRNH showed the highest activity at 65 degrees C, at which the d15-C135/ERNH showed little activity. Such a thermostable DNA-linked RNase H may be useful to cleave RNA molecules with highly ordered structures in a sequence-specific manner.  相似文献   

12.
13.
Antisense activity in living cells has been thought to occur via a mechanism involving both DNA-mediated hybridization arrest of target mRNA and RNase H-mediated mRNA digestion. Therefore an ideal antisense agent should be permeable to the cell and possess capacities (1) to form a thermally stable duplex in vivo with its target, (2) to discriminate between mRNAs with different degrees of complementarity, and (3) to form antisense/RNA complexes that are susceptible to RNase H hydrolysis. A trisamine-modified deoxyuridine derivative of a novel phosphorothioate DNA 15-mer that meets all these criteria is described here. Compared with the unmodified phosphorothioate oligomer, the phosphorothioate derivative exhibits a higher antisense activity as well as reduced cytotoxicity in cells infected with HIV-1. Our data suggest that the melting temperature (T(m)) between antisense DNA and the target mRNA is not only one of the factors contributing to this derivative's improved antisense activity. Also important are an enhanced ability to discriminate between sequences and an increased susceptibility of the DNA/mRNA complex to RNase H hydrolysis. These results will be useful in designing more active, clinically useful antisense drugs.  相似文献   

14.
Y Hayase  H Inoue  E Ohtsuka 《Biochemistry》1990,29(37):8793-8797
In order to cleave RNA at specific positions in Escherichia coli formylmethionine tRNA, RNase H and complementary chimeric oligonucleotides consisting of DNA and 2'-O-methyl-RNA (Inoue et al. (1987) FEBS Lett. 215, 327] were used. Specific cleavages in the D loop, anticodon loop, T psi C loop, anticodon stem, and acceptor stem were investigated. Virtually unique hydrolyses with RNase H were observed at the T psi C loop, anticodon stem, and acceptor stem when relatively longer chimeric oligonucleotides (20-mer) were used. An efficient cleavage at the anticodon was obtained with a chimeric 13-mer when the higher structure of the tRNA was broken by hybridization with a 20-mer at the acceptor as well as the T psi C stem region. It was found that stabilities of hybrids with chimeric oligonucleotides and the presence of minor nucleosides affect the cleavage of tRNA by this approach.  相似文献   

15.
16.
Caged antisense oligodeoxynucleotides (asODNs) are synthesized by linking two ends of linear oligodeoxynucleotides using a photocleavable linker. Two of them (H30 and H40) have hairpin-like structures which show a large difference in thermal stability (ΔTm = 17.5°C and 11.6°C) comparing to uncaged ones. The other three (C20, C30 and C40) without stable secondary structures have the middle 20 deoxynucleotides complementary to 40-mer RNA. All caged asODNs have restricted opening which provides control over RNA/asODN interaction. RNase H assay results showed that 40-mer RNA digestion could be photo-modulated 2- to 3-fold upon light-activation with H30, H40, C30 and C40, while with C20, RNA digestion was almost not detectable; however, photo-activation triggered >20-fold increase of RNA digestion. And gel shift assays showed that it needed >0.04 μM H40 and 0.5 μM H30 to completely bind 0.02 μM 40-mer RNA, and for C40 and C30, it needed >0.2 μM and 0.5 μM for 0.02 μM 40-mer RNA binding. However, even 4 μM C20 was not able to fully bind the same concentration of 40-mer RNA. By simple adjustment of ring size of caged asODNs, we could successfully photoregulate their hybridization with mRNA and target RNA hydrolysis by RNase H with light activation.  相似文献   

17.
The kinetic properties of Escherichia coli ribonuclease H (RNase H) were investigated using oligonucleotide substrates that consist of a short stretch of RNA, flanked on either side by DNA (DNA-RNA-DNA). In the presence of a complementary DNA strand, RNase H cleavage is restricted to the short ribonucleotide stretch of the DNA/RNA heteroduplex. The DNA-RNA-DNA substrate utilized for kinetic studies: (formula; see text) is cleaved at a single site (decreases) in the presence of a complementary DNA strand, to generate (dT)7-(rA)2-OH and p-(rA)2-(dT)9. Anion exchange high performance liquid chromatography was used to separate and quantitate the cleavage products. Under these conditions, RNase H-specific and nonspecific degradation products could be resolved. Kinetic parameters were measured under conditions of 100% hybrid formation (1.2-1.5 molar excess of complementary DNA, T much less than Tm). A linear double reciprocal plot was obtained, yielding a Km of 4.2 microM and a turnover number of 7.1 cleavages per s per RNase H monomer. The kinetic properties of substrate analogs containing varying lengths of RNA (n = 3-5) and 2'-O-methyl modifications were also investigated. Maximal turnover was observed with DNA-RNA-DNA substrates containing a minimum of four RNA residues. Kcat for the rA3 derivative was decreased by more than 100-fold. The Km appeared to decrease with the size of the internal RNA stretch (n = 3-5). No significant difference in turnover number of Km was observed when the flanking DNA was replaced with 2'-O-methyl RNA, suggesting that RNase H does not interact with this region of the heteroduplex.  相似文献   

18.
A circular RNA-DNA enzyme obtained by in vitro selection   总被引:1,自引:0,他引:1  
A circular RNA-DNA enzyme with higher activity to target RNA cleavage and higher stability than that of the hammerhead ribozyme in the presence of RNase A was obtained by in vitro selection. The molecule is composed of a catalytic domain of 22-mer ribonucleotides derived from the hammerhead ribozyme and a fragment of 55-mer deoxyribonucleotides. The DNA fragment contains two substrate-binding domains (9-mer and 6-mer, respectively) and a "regulation domain" (assistant 40-mer DNA with 20-mer random deoxyribonucleotides sequence), which probably play the role in the regulation of flexibility and rigidity of the circular RNA-DNA enzyme. The above results suggest that the circular RNA-DNA enzyme will have a great prospect in gene-targeting therapies.  相似文献   

19.
Preparations of RNA-directed DNA polymerase purified from RNA tumor viruses by standard methods generally contain trace amounts of single-stranded RNA endonucleolytic activity detectable only by relatively sensitive methods. This contaminating RNase activity has been found to be completely inhibited when RNA-directed DNA polymerase reactions are carried out in the presence of low concentrations of bentonite. Under these conditions, only minimal inhibition of the DNA polymerase and RNase H activities of the RNA-directed DNA polymerase was observed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号