首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The oxidation of rat red blood cells (RBC) by molecular oxygen was performed in an aqueous suspension with an azo compound as a free-radical initiator. The RBC were oxidized at a constant rate by a free-radical chain mechanism, resulting in hemolysis. The extent of hemolysis was proportional to the concentration of free radical. alpha-Tocopherol in RBC membranes suppressed the oxidation and hemolysis to produce an induction period. Tocopherol was constantly consumed during the induction period, and hemolysis developed when tocopherol concentrations fell below a critically low level. Among the membrane lipids, phosphatidylethanolamine, phosphatidylserine, and arachidonic acids were predominantly oxidized in the absence of tocopherol. In the presence of tocopherol, however, such lipid changes were suppressed during a 120-min incubation even when hemolysis started. Membrane proteins as well as lipids were oxidized. The formation of proteins with high molecular weight and concomitant decrease of the low-molecular-weight proteins were observed on gel electrophoresis with the onset of hemolysis. This study clearly showed the damage of RBC membranes caused by oxygen radical attack from outside of the membranes, and suggested that membrane tocopherol even below a critically low level could suppress lipid oxidation but that it could not prevent protein oxidation and hemolysis.  相似文献   

2.
Three different types of red blood cells (RBC) were used: (i) RBC from sheep having genetically high GSH (ii) RBC from sheep with genetically low GSH and (iii) RBC from high-GSH sheep treated with CDNB to deplete GSH. Incubation of these RBC with t-butyl hydroperoxide (tBHP, 3 mM) for 10 min caused the formation of TBARS, oxidation of haemoglobin and degradation and aggregation of membrane proteins in RBC from low-GSH sheep and GSH-depleted RBC. By contrast, RBC from high-GSH sheep (normal RBC) did not show the degradation and aggregation of membrane proteins within the first 10 min. Dithiothreitol (DTT) was highly effective in preventing the tBHP-mediated oxidation of haemoglobin, the formation of TBARS and the degradation and aggregation of membrane proteins in both normal RBC and low-GSH RBC. However, DTT did not provide protection in GSH-depleted RBC or normal RBCs in the presence of 1.5 mM mercaptosuccinate (MCS), a potent inhibitor of GSH peroxidase (GSHPx). The ability of GSH to prevent the oxidation of haemoglobin and the degradation and aggregation of membrane proteins was abolished in the presence of MCS. These results indicate that the protective function of DTT involves a GSH-dependent mechanism. Both GSH and GSHPx play key roles in this enzymatic system. In the light of the complete protection of RBC against oxidation induced by tBHP in the presence of DTT or GSH, the GSH/GSHPx system appears to act directly as a tBHP scavenger. The activities of four well-known antioxidants, Butylated hydroxytoluene, ascorbate, alpha-tocopherol and desferrioxamine were also tested in this study to cast further light on the role of free radical scavenging in protection from tBHP mediated free radical insult.  相似文献   

3.
Acetone may induce oxidative stress leading to disturbance of the biochemical and physiological functions of red blood cells (RBCs) thereby affecting membrane integrity. Vitamin E (vit E) is believed to function as an antioxidant in vivo protecting membranes from lipid peroxidation. The aim of the present study was the evaluation of possible protective effects of vit E treatment against acetone-induced oxidative stress in rat RBCs. Thirty healthy male Wistar albino rats, weighing 200–230 g and averaging 12 weeks old were randomly allotted into one of three experimental groups: Control (A), acetone-treated (B) and acetone + vit E-treated groups (C), each containing ten animals. Group A received only drinking water. Acetone, 5% (v/v), was given with drinking water to B and C groups. In addition, C group received vit E dose of 200 mg/kg/day i.m. The experiment continued for 10 days. At the end of the 10th day, the blood samples were obtained for biochemical and morphological investigation. Acetone treatment resulted in RBC membrane destruction and hemolysis, increased thiobarbituric acid reactive substance (TBARS) levels in plasma and RBC, and decreased RBC vit E levels. Vit E treatment decreased elevated TBARS levels in plasma and RBC and also increased reduced RBC vit E levels, and prevented RBC membrane destruction and hemolysis. In conclusion, vit E treatment appears to be beneficial in preventing acetone-induced oxidative RBC damage, and therefore, it can improve RBC rheology.  相似文献   

4.
《Free radical research》2013,47(5):291-298
An excess of copper is the cause of hemolysis in a number of clinical conditions. Incubation of human erythrocyte (RBC) suspensions with copper (II) causes the formation of methemoglobin, lipid peroxidation and hemolysis.

A new variant of the thiobarbituric acid (TBA) method, which minimizes the formation of interfering chromophores, was used to detect lipid peroxidation. Lipid peroxidation precedes hemolysis and the antioxidant vitamins C and E, which inhibit lipid peroxidation, also inhibit hemolysis. Consequently lipid peroxidation appears to be the cause of RBC destruction. Lipid peroxidation arises mostly from the oxidation of oxyhemoglobin by copper as it is inhibited in RBCs with carbon monoxyhemoglobin or methemoglobin. A direct interaction of copper with the red cell membrane seems to play only a minor role. Copper effects depend on the presence of free SH groups. Lipid peroxidation is probably initiated by activated forms of oxygen as it is increased by an inhibitor of catalase and reduced by hydroxyl radical scavengers. With higher copper concentrations hemolysis is greater: its mechanism appears different as lipid peroxidation is smaller but hemoglobin alterations, namely precipitation, are more pronounced.  相似文献   

5.
Erythrocytes prepared from riboflavin- and tocopherol-deficient (RT?) and from control rats were used to investigate the mechanism of oxidative hemolysis by the factors of favism. RT? erythrocytes have a defense system against the oxidative stress which is blocked either where regeneration of GSH occurs or the scavenging of the radicals from the membrane is prevented. The oxidative factors used were isouramil, divicine and diamide. When RT? erythrocytes were treated with isouramil, GSH decreased to undetectable levels and was not regenerated. Complete hemolysis occurred, but no oxidation of SH groups of membrane proteins or formation of spectrin polymers was detected. A similar effect was observed with diamide. However, SH groups of membrane proteins were completely oxidized and spectrin polymers were formed. Extensive lipid peroxidation was also detected together with a 30% fall in the arachidonic acid level. Control erythrocytes treated with either isouramil or diamide were not hemolyzed. When treated with isouramil, after a fall in the first few minutes, the GSH level was completely regenerated after 20 min. Incubation with diamide caused extensive oxidation of SH groups of membrane proteins and formation of spectrin polymers. No lipid peroxidation was detected after treatment with isouramil, but the same decrease of arachidonic acid occurred as in RT? erythrocytes. These results support the hypothesis that oxidative hemolysis by the factors of favism is caused by uncontrolled peroxidation of membrane lipids.  相似文献   

6.
An excess of copper is the cause of hemolysis in a number of clinical conditions. Incubation of human erythrocyte (RBC) suspensions with copper (II) causes the formation of methemoglobin, lipid peroxidation and hemolysis.

A new variant of the thiobarbituric acid (TBA) method, which minimizes the formation of interfering chromophores, was used to detect lipid peroxidation. Lipid peroxidation precedes hemolysis and the antioxidant vitamins C and E, which inhibit lipid peroxidation, also inhibit hemolysis. Consequently lipid peroxidation appears to be the cause of RBC destruction. Lipid peroxidation arises mostly from the oxidation of oxyhemoglobin by copper as it is inhibited in RBCs with carbon monoxyhemoglobin or methemoglobin. A direct interaction of copper with the red cell membrane seems to play only a minor role. Copper effects depend on the presence of free SH groups. Lipid peroxidation is probably initiated by activated forms of oxygen as it is increased by an inhibitor of catalase and reduced by hydroxyl radical scavengers. With higher copper concentrations hemolysis is greater: its mechanism appears different as lipid peroxidation is smaller but hemoglobin alterations, namely precipitation, are more pronounced.  相似文献   

7.
Besides erythema and sunburn reactions, UVB stress can promote erythrocyte extravasation from skin capillaries and hemolysis, and photosensitized hemoglobin can in turn lead to an overload of free radicals in dermis which exacerbates photodamage. The objective of this study was to investigate in rat erythrocytes (RBC) the pattern of events leading to membrane peroxidation and hemolysis following UVB insult (1.5-8.5 J/cm2), and the protective action of grape seed procyanidins. UVB causes a dramatic dose-dependent decrease of intracellular glutathione (paralleled by the formation of pro-oxidant ferryl-hemoglobin), of intramembrane vitamin E and of membrane fluidity, then a rise of conjugated dienes (CD), and thiobarbituric acid-reactive substances (TBARS) and finally a strong hemolytic effect. Procyanidins prevent membrane peroxidation (but not intracellular GSH depletion nor ferryl-hemoglobin formation), with a minimal effective concentration of 0.1 microM (IC50 for TBARS and CD after 120 min UVB exposure: 0.71 microM and 0.56 microM) and dose-dependently delay the onset of hemolysis, by 30 min at 0.1 mciroM, by 90 and 120 min at 0.5 and 1.0 microM. Epigallocatechin-3-O-gallate (EGCG) and catechin, typical constituents of the fraction, were significantly less potent. This since procyanidins (1 microM) inhibit the formation of phospholipid hydroperoxides of the inner (phosphatidylserine, phosphatidylethanolamine) and outer (phosphatidylcholine) layers of the RBC membrane (HPLC analysis), suppress the decrease in membrane fluidity due to lipid and protein thiol oxidation and spare vitamin E from consumption in a dose-dependent manner (0.1-1 microM). Hence procyanidins, preserving membrane phospholipids, since their strong antilipoperoxidant activity, may maintain in vivo the integrity of RBC in sub-epidermal capillaries and effectively counteract in dermis the onset/exacerbation of the UVB-induced skin photodamage.  相似文献   

8.
The effectiveness of radiation-generated HO
radicals in initiating erythrocyte hemolysis in the presence of oxygen and under anaerobic conditions and prehemolytic structural changes in the plasma-erythrocyte membrane were studied. Under anaerobic conditions the efficacy of HO
radicals in induction of hemolysis was 16-fold lower than under air. In both conditions, hemolysis was the final consequence of changes of the erythrocyte membrane. Preceding hemolysis, the dominating process under anaerobic conditions was the aggregation of membrane proteins. The aggregates were principally formed by -S-S- bridges. A decrease in spectrin and protein of band 3 content suggests their participation in the formation of the aggregates. These processes were accompanied by changes in protein conformation determined by means of 4-maleimido-2,2,6,6-tetramethylpiperidine-N-oxyl (MSL) spin label attached to membrane proteins. Under anaerobic conditions, in the range of prehemolytical doses, the reaction of HO
with lipids caused a slight (10-16%) increase in fluidity of the lipid bilayer in its hydrophobic region with a lack of lipid peroxidation. However, in the presence of oxygen, hemolysis was preceded by intense lipid peroxidation and by profound changes in the conformation of membrane proteins. At the radiation dose that normally initiates hemolysis a slight aggregation of proteins was observed. Changes were not observed in particular protein fractions. It can be suggested the cross-linking induced by HO
radicals under anaerobic conditions and a lack of lipid peroxidation are the cause of a decrease in erythrocyte sensitivity to hemolysis. Contrary, under aerobic conditions, molecular oxygen suppresses cross-linking, catalysing further steps of protein and lipid oxidation, which accelerate hemolysis.  相似文献   

9.
Oxidative stress is a recognized factor of ischemia reperfusion injury. It shares damage of lipids (LPO) and proteins (PPO), and consequently might cause changes in activity of transport systems. Global 15 min ischemia followed by 2, 24 and 48 hour reperfusion was induced by four-vessel occlusion in Wistar rats of both sexes. Levels of TBARS and conjugated dienes as parameters of LPO were analyzed in forebrain homogenates. Concentrations of total free sulfhydryl (SH) groups and emission spectra of tryptophan were measured to quantify PPO. Our results indicate that lipid peroxidation and protein oxidation occurs mainly during the period of reperfusion. However, significant increase in the level of conjugated dienes can be detected already after 15 min ischemia. Attack of proteins by free radicals leads to modification in structure of proteins seen as a decrease of free SH groups and tryptophan fluorescence. Ischemia/reperfusion induces formation of lipid peroxidation products as well as protein modifications.  相似文献   

10.
The healthy intact polymorphonuclear leukocytes (PMNs) were labeled with 4-maleimide-TEMPO spin labeling compound (MAL) to study the effects of oxygen radicals produced by phorbol myristate acetate (PMA)-stimulated PMNs on the conformation of sulfhydryl (SH) groups of PMN membrane proteins. The lipid peroxidation induced by PMA-stimulated PMNs was detected by evaluating the formation of malonaldehyde (MDA) with the thiobarbituric acid (TBA) test. From the experiments of luminol-dependent chemiluminescence (CL) and fluorometry, it was found that Chinese herbs schizandrin B (Sin B) and quercetin (Q) possessed scavenging properties for oxygen radicals produced during the PMN respiratory burst. These two herbs can also inhibit the conformation changes in SH binding sites on the PMN membrane proteins caused by oxygen radicals produced by the PMNs themselves. They also decreased the amount of MDA, which was a final product formed during lipid peroxidation.  相似文献   

11.
Toxic effects imposed to human erythrocytes by low density lipoproteins carrying phthalocyanines used in photodynamic therapy (PDT) of tumors are described. This study was aimed at evaluating cytotoxic effects induced by reactive species produced locally in photosensitizer-loaded lipoproteins and further transferred to the cells. The experimental set up designed to examine these interactions starts with the loading of human plasma with the photosensitizer, the subsequent rapid purification and dialysis of the LDL fraction and incubation with human erythrocytes. This experimental model was assessed by following leakage of endogenous K+ from cells, electrochemical detection of oxygen, spectroscopic determination of conjugated dienes, phthalocyanine, SH groups and hemoglobin, analysis of fatty acids by gas chromatography and identification of a-tocopherol by HPLC. Photosensitizer-loaded lipoproteins become more susceptible to oxidation, exhibiting shorter lag phases of lipid oxidation, higher rates of oxidation and increased loss of endogenous alpha-tocopherol when challenged with peroxyl radicals and copper, as compared with native lipoproteins from the same plasma sample. Incubation of photosensitized lipoproteins with erythrocytes under light (>560 nm) results in a sigmoidal efflux of K+ followed by hemolysis. The phenolic antioxidant caffeic acid inhibits lipoprotein oxidation induced by peroxyl radicals, either in native or photosensitizer-loaded fractions, delays hemolysis of erythrocytes and partially prevents membrane loss of SH groups in ghosts, but not the efflux of K+. Mechanistically, a chain lipid peroxidation reaction does not participate in the toxic effects to cells but a specific pool of membrane SH groups sensitive to caffeic acid is likely to be involved. This study suggests that an oxidative stress occurring locally in phthalocyanine-loaded low density lipoproteins may further induce cytotoxic effects by targeting specific SH groups at the cell membrane level. The physiological relevance of these findings and the beneficial use of antioxidants are discussed in the context of PDT.  相似文献   

12.
The present study is designed to test our hypothesis that the ingestion of Uncaria sinensis (US), the main medicinal plant of Choto-san (Diao-teng-san, CS), would protect red blood cell (RBC) membrane from free radical-induced oxidation if polyphenolics in US could be absorbed and circulated in blood. When incubated with RBC suspension, Choto-san extract (CSE) and Uncaria sinensis extract (USE) exhibited strong protection for RBC membrane against hemolysis induced by 2,2-azo-bis (2-amidinopropane) dihydrochloride (AAPH), an azo free-radical initiator. The inhibitory effect was dose-dependent at concentrations of 50 to 1000 microg/mL. Ingestion of 200 mg of USE was associated with a significant decrease in susceptibility of RBC to hemolysis in rats. Furthermore, caffeic acid, an antioxidative hydroxycinnamic acid, was identified in rat plasma after administration of URE.  相似文献   

13.
Using electron spin resonance (ESR) spin labeling technique,we have studied the conformation of sulfhydryl groups(-SH) binding sites in membrane proteins and mem brane fluidity of red blood cells(RBCs) from two groups of patients with anemia of chronic renal failure(ACRF).One of the groups is composed of patients who were untreated with recombinant human erythropoietin(r-HuEPO),and the other is composed of patients who were treated with r-HuEPO.The results indicated:1)the conformation of SH group binding site in RBC membrane proteins from former group was different from those of healty people.2)the fluidity in the region near the surface of RBC membrane from former group was lower than those of healthy people.3)However,the above biophysical properties of RBC membrane from later group were normal.We concluded that RBC membrane in patients with ACRF was abnormal,and the treatment of r-HuEPO may promote the production of normal RBCs,thus ameliorate the biophysical properties of RBCs from the patients with ACRF.  相似文献   

14.
The antioxidant properties of curcumin have been studied by evaluating its ability to protect RBCs from AAPH (2,2'-azobis (2-amidinopropane) hydrochloride) induced oxidative damage. RBCs are susceptible to oxidative damage, resulting in peroxidation of the membrane lipids, release of hemoglobin (hemolysis), release of intracellular K(+) ions and depletion of glutathione (GSH). In this paper, lipid peroxidation, hemolysis and K(+) ion loss in RBCs were assessed respectively by formation of thiobarbituric acid reactive substances (TBARS), absorbance of hemoglobin at 532nm and flame photometry. The treatment of RBCs with curcumin showed concentration dependant decrease in level of TBARS and hemolysis. The IC(50) values for inhibition of lipid peroxidation and hemolysis were estimated to be 23.2+/-2.5 and 43+/-5microM respectively. However in contrast to the above mentioned effects, curcumin in similar concentration range, did not prevent release of intracellular K(+) ions during the process of hemolysis, rather curcumin induced its release even in the absence of hemolysis. The ability of curcumin to prevent oxidation of intracellular GSH due to hemolysis showed mixed results. At low concentrations of curcumin (<10microM) it prevented GSH depletion and at higher concentrations, the GSH levels decreased gradually. Curcumin scavenges the peroxyl radical generated from AAPH. Based on these results, it is concluded that curcumin exhibits both antioxidant/pro-oxidant activity, in a concentration dependent manner.  相似文献   

15.
The purpose of the study was to investigate the effects of L-carnitine (CA) on the susceptibility of erythrocyte (RBC) to peroxide-induced lipid oxidation, RBC membrane composition, ATPases activity and oxidative stress in fructose-fed hyperinsulinemic rats. The rats were subjected to experimental hyperinsulinemia and hyperglycemia by feeding a high fructose diet (60 g/100 g) for 6 weeks. The rats showed significant alterations in the RBC membrane composition. The protein content was lower than control animals, while cholesterol, phospholipids and free fatty acids were higher in fructose-fed animals. Significant differences in the total carbohydrate and relative proportions of hexose, hexosamine, sialic acid and fucose of membranes were observed. In these rats, membrane-bound ATPases (total ATPase, Na+, K+ ATPase, Mg2+ and Ca2+ ATPases) were significantly lower while thiobarbituric acid reactive substances (TBARS) and lipid hydroperoxides (LHP) in RBC membrane were significantly higher than those of control rats. The red cells were more susceptible to peroxide-induced oxidative stress that correlated with reduced levels of vitamin E found RBC membrane. When fructose-diet fed rats were treated simultaneously with CA (300 mg/kg b.w/day, i.p.), such alterations in membrane composition and enzyme activities did not occur. Effects of fructose loading on lipid peroxidation was also alleviated by CA. These findings suggest that high levels of dietary fructose is detrimental to RBC membrane integrity and that CA may have membrane stabilizing effects in this diet-induced model of type 2-diabetes.  相似文献   

16.
The antioxidant effects of dipyridamol (DIP), a coronary vasodilator, and its derivative RA-25 were compared in intact red blood cells (RBC) and in isolated ghost membranes. Both compounds are quite effective antioxidants in cumene hydroperoxide-induced lipid peroxidation of RBC, showing a much smaller effect for hydrogen peroxide oxidation. The antioxidant effect of DIP was considerably higher than that of RA25. For isolated ghost membranes, the apparent IC50 (the drug concentration that produces 50% inhibition of lipid peroxidation) in cumene hydroperoxide-induced peroxidation was 25 microM, while the maximum protective effect of RA-25 was around 30% in the drug concentration range of 50-100 microM. The drugs can protect the oxidative hemolysis induced by cumene hydroperoxide with a lower effect when the hemolysis is induced by H2O2. The significant antioxidant effect against damages induced by cumene hydroperoxide suggests that DIP, due to its lipophilic character, can interact with RBC membranes, and the protective effect is associated with the binding of the drug to the membrane. On the other hand, RA-25 is more hydrophilic than DIP, binds to the membrane to a smaller extent, and, for this reason, has a lower antioxidant effect.  相似文献   

17.
In view of a possible relationship between fish oil, lipid peroxidation, and atherosclerosis, the in vitro lipid peroxidation susceptibility of red blood cells (RBCs) from rabbits on conventional (-FO) and fish oil-enriched diets (+FO) was investigated. The diet caused substantial increases in the RBC concentrations of n-3 polyunsaturated fatty acids (PUFAs), in combination with decreases in the concentration of oleic acid (18:1) and linoleic acid (18:2). Cumene hydroperoxide-induced oxidative stress led to increased overall fatty acid peroxidation in +FO RBCs compared with with -FO RBCs, as quantitated by GLC fatty acid analysis. However, the increased overall susceptibility to lipid peroxidation of +FO RBCs was not reflected in increased peroxidation of every individual fatty acid. This was observed for endogenous arachidonic acid (20:4) as well as, in separate experiments, for exogenously added parinaric acid (PnA). The increased cumene hydroperoxide-induced PUFA oxidation in +FO RBCs was accompanied by a lesser extent of hemolysis. To account for these observations, it is proposed that the increased n-3 PUFA content of +FO RBCs serves as an oxidizable buffer. The present data suggest that oxidation of fatty acids can occur until a critically low level of intact phospholipid in the RBC membrane is reached, after which the membrane destabilizes and hemolysis occurs. At the same time, the PUFA buffer in +FO RBCs could also prevent oxidative damage to specific membrane proteins, which could also help prevent cell lysis.  相似文献   

18.
The pre-hemolytic mechanism induced by free radicals initiated from water-soluble 2,2'-azobis (2-amidinopropane) hydrochloride (AAPH) and its reversal by genistein was investigated in human erythrocytes. The time course of K+ efflux compared to the occurrence of hemolysis suggests that AAPH-induced hemolysis occurs indirectly via pore formation and band 3 oxidation as expected. However, genistein inhibited hemolysis, LDH release and membrane protein oxidation but not K+ efflux. This indicated that erythrocyte protein oxidation possibly in the hydrophobic core plays a significant role in the membrane pre-hemolytic damage. Chemiluminescence (CL) analysis carried out in non-lysed erythrocytes treated with AAPH showed a dramatic increase in CL indicating both reduced levels of antioxidants and increased membrane lipid peroxide. The V0 value was also increased up to 6 times, denoting a high degree of membrane peroxidation very early in erythrocyte membrane damage. The whole process was inhibited by genistein in a dose-dependent manner. These results indicate that the genistein inhibited both hemolysis and pre-hemolytic damage and also hindered membrane lipid peroxide formation and protein oxidation. In addition, it is suggested that pre-hemolytic damage is mediated mainly by the oxidation of both phospholipid and protein located in the deeper hydrophobic region of the membrane.  相似文献   

19.
Erythrocytes (RBC) from untrained male Wistar rats and rat glomerular endothelial cells (EC) were used to investigate the effects of acute exercise (speed: 20 m/min, slope: 0, duration: 1 hour) on RBC membrane protein oxidation and adhesion to cultured EC. Experimental animals were divided into juvenile (age 10 weeks) and adult (age 30 weeks) groups for these studies. Immediately following exercise, juvenile rat RBC membrane protein oxidation was significantly enhanced. Adult rat RBC showed significantly higher basal protein oxidation than juvenile RBC; but the level of adult rat RBC membrane protein oxidation was unaffected by exercise. Prior to exercise, adult rat RBC showed significantly higher adhesion to EC than RBC of juvenile rat. There was no difference in plasma fibronectin or fibrinogen levels following exercise. Only juvenile rat RBC showed a significant decrease in sialic acid residue content following exercise. These experiments show that there are changes in RBC-EC interactions following exercise that are influenced by animal age.  相似文献   

20.
为探讨绿豆芽提取物(MBSE)对十二烷基硫酸钠SDS致红细胞膜和DNA损伤的保护研究,分别采用红细胞(RBC)溶血试验和彗星试验检测细胞膜和DNA的损伤程度。实验分为三组:阳性对照组;MBSE自溶对照组;MBSE+SDS组。通过测定血红细胞溶血率和致损细胞拖尾率及尾长分别表征细胞膜及DNA的损伤程度。结果显示与阳性对照相比,各剂量MBSE具有抑制SDS致细胞膜损伤的功能,对RBC细胞膜具有较好的保护作用,且呈量效关系;MBSE+SDS各剂量组DNA损伤明显减弱,拖尾率下降,尾长减小。提示MBSE对SDS致红细胞膜和DNA损伤具有保护作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号