首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DEAD/DEAH box RNA helicases play essential roles in numerous RNA metabolic processes, such as mRNA translation, pre-mRNA splicing, ribosome biogenesis, and double-stranded RNA sensing. Herein we show that a recently characterized DEAD/DEAH box RNA helicase, DHX33, promotes mRNA translation initiation. We isolated intact DHX33 protein/RNA complexes in cells and identified several ribosomal proteins, translation factors, and mRNAs. Reduction of DHX33 protein levels markedly reduced polyribosome formation and caused the global inhibition of mRNA translation that was rescued with wild-type DHX33 but not helicase-defective DHX33. Moreover, we observed an accumulation of mRNA complexes with the 80S ribosome in the absence of functional DHX33, consistent with a stalling in initiation, and DHX33 more preferentially promoted structured mRNA translation. We conclude that DHX33 functions to promote elongation-competent 80S ribosome assembly at the late stage of mRNA translation initiation. Our results reveal a newly recognized function of DHX33 in mRNA translation initiation, further solidifying its central role in promoting cell growth and proliferation.  相似文献   

2.
Viral RNA represents a pattern molecule that can be recognized by RNA sensors in innate immunity. Humans and mice possess cytoplasmic DNA/RNA sensors for detecting viral replication. There are a number of DEAD (Asp‐Glu‐Ala‐Asp; DExD/H) box‐type helicases in mammals, among which retinoic acid‐inducible gene 1 (RIG‐I) and melanoma differentiation‐associated protein 5 (MDA50) are indispensable for RNA sensing; however, they are functionally supported by a number of sensors that directly bind viral RNA or replicative RNA intermediates to convey signals to RIG‐I and MDA5. Some DEAD box helicase members recognize DNA irrespective of the origin. These sensors transmit IFN‐inducing signals through adaptors, including mitochondrial antiviral signaling. Viral double‐stranded RNAs are reportedly sensed by the helicases DDX1, DDX21, DHX36, DHX9, DDX3, DDX41, LGP2 and DDX60, in addition to RIG‐I and MDA5, and induce type I IFNs, thereby blocking viral replication. Humans and mice have all nucleic acid sensors listed here. In the RNA sensing system in chicken, it was found in the present study that most DEAD box helicases are conserved; however, DHX9 is genetically deficient in addition to reported RIG‐I. Based on the current genome databases, similar DHX9 deficiency was observed in ducks and several other bird species. Because chicken, but not duck, was found to be deficient in RIG‐I, the RNA‐sensing system of chicken lacks RIG‐I and DHX9 and is thus more fragile than that of duck or mammal. DHX9 may generally compensate for the function of RIG‐I and deficiency of DHX9 possibly participates in exacerbations of viral infection such as influenza in chickens.  相似文献   

3.
4.
Tuteja R  Ansari A  Anita  Suthar MK  Saxena JK 《Gene》2012,499(1):202-208
The availability of Brugia malayi genome sequence has paved ways for the search of homologues for a variety of genes. Helicases are ubiquitous enzymes involved in all the nucleic acid metabolic pathways and are essential for the development and growth. The genome wide analysis of B. malayi for different helicases showed the presence of a number of DEAD box helicases, 7 DEAH box helicases, RecQ helicases, repair helicases, super killer helicases, MCM2-7 complex, Rad54 and two subunits of Ku helicase. The comparison of protein sequence of each helicase with its human counterpart indicated characteristic differences in filarial helicases. There are noticeable differences in some of the filarial helicases such as DHX35, RecQL1 and Ku. Further characterization of these helicases will help in understanding physiological significance of these helicases in filarial parasites, which in future can be utilized for chemotherapy of parasitic infection.  相似文献   

5.
The human La (SS-B) autoantigen is an abundantly expressed putative RNA chaperone, functioning in various intracellular processes involving RNA. To further explore the molecular mechanisms by which La functions in these processes, we performed large-scale immunoprecipitations of La from HeLa S100 extracts using the anti-La monoclonal antibody SW5. La-associated proteins were subsequently identified by sequence analysis. This approach allowed the identification of DDX15 as a protein interacting with La. DDX15, the human ortholog of yeast Prp43, is a member of the superfamily of DEAH-box RNA helicases that appeared to interact with La both in vivo and in vitro. The region needed for the interaction with La partly overlaps the DEAH-box domain of DDX15. Immunofluorescence data indicated that endogenous DDX15 accumulates in U snRNP containing nuclear speckles in HEp-2 cells. Surprisingly DDX15 also accumulates in the nucleoli of HEp-2 cells. Moreover, DDX15 and La seem to colocalize in the nucleoli. Regions of DDX15 involved in nuclear, nuclear speckle, and nucleolar localization are located within the N- and C-terminal regions flanking the DEAH-box. RNA coprecipitation experiments indicated that DDX15 is associated with spliceosomal U small nuclear RNAs in HeLa cell extracts. The possible functional implications of the interaction between La and DDX15 are discussed.  相似文献   

6.
人DDX36和小鼠Ddx36基因在成年睾丸组织中的表达研究   总被引:1,自引:1,他引:0  
果蝇是结构基因组学和功能基因组学研究的最为理想的一种模式生物,采用同源克隆的策略,应用生物信息学分析和实验技术相结合的方法分别从人和小鼠中克隆了同源于果蝇MLE蛋白的新基因DDX36和Ddx36。为进一步研究DDX36和Ddx36基因与精子发生的关系,再应用Northrn blotting,RT-PCR和组织原位杂交技术探讨了DDX36和Ddx36基因的表达情况,结果发现人DDX36和小鼠Ddx36基因在成年睾丸组织中高表达。初步证明DDX36和Ddx36基因在精子发生中亦可能发挥重要作用。  相似文献   

7.
RNA helicases of the DExD/H-box superfamily are critically involved in all RNA-related processes. No crystal structures of human DExH-box domains had been determined previously, and their structures were difficult to predict owing to the low level of homology among DExH-motif-containing proteins from diverse species. Here we present the crystal structures of the conserved domain 1 of the DEIH-motif-containing helicase DHX9 and of the DEAD-box helicase DDX20. Both contain a RecA-like core, but DHX9 differs from DEAD-box proteins in the arrangement of secondary structural elements and is more similar to viral helicases such as NS3. The N-terminus of the DHX9 core contains two long α-helices that reside on the surface of the core without contributing to nucleotide binding. The RNA-polymerase-II-interacting minimal transactivation domain sequence forms an extended loop structure that resides in a hydrophobic groove on the surface of the DEIH domain. DHX9 lacks base-selective contacts and forms an unspecific but important stacking interaction with the base of the bound nucleotide, and our biochemical analysis confirms that the protein can hydrolyze ATP, guanosine 5′-triphosphate, cytidine 5′-triphosphate, and uridine 5′-triphosphate. Together, these findings allow the localization of functional motifs within the three-dimensional structure of a human DEIH helicase and show how these enzymes can bind nucleotide with high affinity in the absence of a Q-motif.  相似文献   

8.
9.
Prp2p, Prp16p, Prp22p, and Prp43p are members of the DEAH-box family of ATP-dependent putative RNA helicases required for pre-mRNA splicing in Saccharomyces cerevisiae. Recently, mammalian homologues of Prp43p and Prp22p have been described, supporting the idea that splicing in yeast and man is phylogenetically conserved. In this study, we show that a murine cell line resistant to the novel immunoregulatory drug Leflunomide (Arava) overexpresses a 135-kDa protein that is a putative DEAH-box RNA helicase. We have cloned the human counterpart of this protein and show that it shares pronounced sequence homology with Prp16p. Apart from its N-terminal domain, which is rich in RS, RD, and RE dipeptides, this human homologue of Prp16p (designated hPrp16p) is 41% identical to Prp16p. Significantly, homology is not only observed within the phylogenetically conserved helicase domain, but also in Prp16p-specific sequences. Immunofluorescence microscopy studies demonstrated that hPrp16p co-localizes with snRNPs in subnuclear structures referred to as speckles. Antibodies specific for hPrp16p inhibited pre-mRNA splicing in vitro prior to the second step. Thus, like its yeast counterpart, hPrp16p also appears to be required for the second catalytic step of splicing. Taken together, our data indicate that the human 135-kDa protein identified here is the structural and functional homologue of the yeast putative RNA helicase, Prp16p.  相似文献   

10.
MOV10 protein, a putative RNA helicase and component of the RNA–induced silencing complex (RISC), inhibits retrovirus replication. We show that MOV10 also severely restricts human LINE1 (L1), Alu, and SVA retrotransposons. MOV10 associates with the L1 ribonucleoprotein particle, along with other RNA helicases including DDX5, DHX9, DDX17, DDX21, and DDX39A. However, unlike MOV10, these other helicases do not strongly inhibit retrotransposition, an activity dependent upon intact helicase domains. MOV10 association with retrotransposons is further supported by its colocalization with L1 ORF1 protein in stress granules, by cytoplasmic structures associated with RNA silencing, and by the ability of MOV10 to reduce endogenous and ectopic L1 expression. The majority of the human genome is repetitive DNA, most of which is the detritus of millions of years of accumulated retrotransposition. Retrotransposons remain active mutagens, and their insertion can disrupt gene function. Therefore, the host has evolved defense mechanisms to protect against retrotransposition, an arsenal we are only beginning to understand. With homologs in other vertebrates, insects, and plants, MOV10 may represent an ancient and innate form of immunity against both infective viruses and endogenous retroelements.  相似文献   

11.
12.
13.
14.
Recently, we cloned two highly related human genes, hChlR1 (DDX11) and hChlR2 (DDX12), which appear to be homologs of the Saccharomyces cerevisiae CHL1 gene. Nucleotide sequence analysis suggests that these genes encode new members of the DEAH family of DNA helicases. While the enzymatic activity of CHL1 has not been characterized, the protein is required for the maintenance of high fidelity chromosome segregation in yeast. Here we report that the hChlR1 protein is a novel human DNA helicase. We have expressed and purified hChlR1 using a baculovirus system and analyzed its enzymatic activity. The recombinant hChlR1 protein possesses both ATPase and DNA helicase activities that are strictly dependent on DNA, divalent cations and ATP. These activities are abolished by a single amino acid substitution in the ATP-binding domain. The hChlR1 protein can unwind both DNA/DNA and RNA/DNA substrates. It has a preference for movement in the 5′→3′ direction on short single-stranded DNA templates. However, unlike other DNA helicases, the hChlR1 DNA helicase can translocate along single-stranded DNA in both directions when substrates have a very long single-stranded DNA region. The enzymatic activities of hChlR1 suggest that DNA helicases are required for maintaining the fidelity of chromosome segregation.  相似文献   

15.
16.
Pre-mRNA splicing requires the activities of several ATPases from the DEAH-box, DEAD-box and Ski2-like helicase families to control conformational rearrangements within the spliceosome. Recent findings indicate that several spliceosomal helicases can act at multiple stages of the splicing reaction, and information on how those multiple actions are controlled are emerging. The recently solved crystal structure of the DEAH-box helicase Prp43 provides novel insights into the similarities and differences between the three helicase families. Here we discuss the potential family-specific mechanisms of spliceosomal RNA helicases and their regulation.  相似文献   

17.
Most cellular processes requiring RNA structure rearrangement necessitate the action of Asp-Glu-Ala-Asp (DEAD) proteins. Members of the family, named originally for the conserved DEAD amino acid sequence, are thought to disrupt RNA structure and facilitate its rearrangement by unwinding short stretches of duplex RNA. BstDEAD is a novel 436 amino acid representative of the DEAD protein family from Bacillus stearothermophilus that contains all eight conserved motifs found in DEAD proteins and is homologous with other members of the family. Here, we describe the 1.85 A resolution structure of the N-terminal domain (residues 1-211) of BstDEAD (BstDEAD-NT). Similar to the corresponding domains of related helicases, BstDEAD-NT adopts a parallel alpha/beta structure with RecA-like topology. In general, the conserved motifs superimpose on closely related DEAD proteins and on more distantly related helicases such as RecA. This affirms the current belief that the core helicase domains, responsible for mechanistic activity, are structurally similar in DEAD proteins. In contrast, however, the so-called Walker A P-loop, which binds the beta- and gamma-phosphates of ATP, adopts a rarely seen "closed" conformation that would sterically block ATP binding. The closed conformation may be indicative of a general regulatory feature among DEAD proteins (and RNA helicases) that differs from that used by DNA helicases. BstDEAD also contains a unique extension of approximately 60 residues at the C terminus that is highly basic, suggesting that it might bind nucleic acids and, in so doing, confer specificity to the helicase activity of the core region.  相似文献   

18.
DEAD box RNA解旋酶参与RNA多方面的代谢,在植物生长发育和逆境反应中起重要作用。本研究从蕨类植物问荆(Equisetum arvense)中克隆到一条DEAD box RNA解旋酶cDNA全长序列,命名为EaRH1,并在GenBank注册登记(KJ734026)。序列分析显示:该cDNA全长3230bp,包含一个从487bp到2799bp编码770个氨基酸的开放读码框,其对应的蛋白序列包含9个保守模块结构。EaRH1与其它物种DEAD box RNA 解旋酶蛋白序列比对结果显示:模块Ⅰa、Ⅱ和Ⅲ序列几乎完全相同,模块Q、Ⅰ和 Ⅳ序列存在一些差异。EaRH1与江南卷柏(Selaginella moellendorffii)基因组一条假定序列相似度高达69%,其中相似度最高的区域集中在包含9个保守模块的结构域。系统进化树分析显示:EaRH1与拟南芥(Arabidopsis thaliana)DEAD box RNA解旋酶At3g22320在氨基酸序列上有相对较高的同源性。序列结构比较和进化分析可推测出EaRH1可能参与植物体生长发育、miRNA生物合成、与RNA结合蛋白的相互作用和非生物胁迫应答。本文的研究为探索问荆DEAD box RNA解旋酶的进一步功能提供参考。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号