首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Release of preloaded [3H]D-aspartate in response to depolarization induced by N-methyl-D-aspartate (NMDA) or the endogenous agonist glutamate was characterized using cultured glutamatergic cerebellar granule neurons. Release from the vesicular and the cytoplasmic glutamate pools, respectively, was distinguished employing the competitive, non-transportable glutamate transport inhibitor DL-threo-beta-benzyloxyaspartate (DL-TBOA). NMDA (300 microM)-induced release was enhanced (50%) by a simultaneous elevation of the extracellular potassium concentration to 15 mM, which lifts the voltage-dependent magnesium block of the NMDA receptors. This NMDA/K(+)-induced release was not sensitive to DL-TBOA (100 microM) but was inhibited by 75% in the presence of the unspecific calcium channel antagonist La(3+) (100 microM). Glutamate (100 microM) induced a large fractional release of the preloaded [3H]D-aspartate and in the presence of DL-TBOA the release was reduced by approximately 50%. In contrast, release evoked by 25 microM glutamate was not inhibited by DL-TBOA. These results indicate that the release elicited by 100 microM glutamate is comprised of a significant glutamate transporter-mediated component in addition to the vesicular release while the NMDA/K(+)-induced release is vesicular in nature. It is likely that the high glutamate concentration (100 microM) may facilitate heteroexchange of the preloaded [3H]D-aspartate.  相似文献   

2.
Somatodendritic voltage-dependent K+ currents (Kv4.2) channels mediate transient A-type K+ currents and play critical roles in controlling neuronal excitability. Accumulating evidence has indicated that Kv4.2 channels are key regulatory components of the signaling pathways that lead to synaptic plasticity. In contrast to the extensive studies of glutamate-induced AMPA [(±) α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid hydrate] receptors redistribution, less is known about the regulation of Kv4.2 by glutamate. In this study, we report that brief treatment with glutamate rapidly reduced total Kv4.2 levels in cultured hippocampal neurons. The glutamate effect was mimicked by NMDA, but not by AMPA. The effect of glutamate on Kv4.2 was dramatically attenuated by pre-treatment of NMDA receptors antagonist MK-801 [(5 S ,10 R )-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate] or removal of extracellular Ca2+. Immunocytochemical analysis showed a loss of Kv4.2 clusters on the neuronal soma and dendrites following glutamate treatment, which was also dependent on the activation of NMDA receptors and the influx of Ca2+. Furthermore, whole-cell patch-clamp recordings revealed that glutamate caused a hyperpolarized shift in the inactivation curve of A-type K+ currents, while the activation curve remained unchanged. These results demonstrate a glutamate-induced alteration of Kv4.2 channels in cultured hippocampal neurons, which might be involved in activity-dependent changes of neuronal excitability and synaptic plasticity.  相似文献   

3.
The glutamate transporter inhibitor, L-trans-pyrrolidine-2,4-dicarboxylic acid (PDC) reversibly enhanced hippocampal neuronal activity in the rat and mouse dentate gyrus. The PDC action was still found in mice lacking the glial glutamate transporter GLT-1. PDC did not influence the rate of spontaneous miniature excitatory postsynaptic currents and spontaneous inhibitory postsynaptic currents, ionotropic glutamate receptor currents, or GABA-evoked currents in cultured rat hippocampal neurons. PDC increased glutamate released from cultured hippocampal astrocytes from normal rats, normal mice, and GLT-1 knock-out mice, that is not inhibited by deleting extracellular Na(+), while the drug had no effect on the release from cultured rat hippocampal neurons. The results of the present study thus suggest that PDC stimulates glial glutamate release by a mechanism independent of inhibiting glutamate transporters, which perhaps causes an increase in synaptic glutamate concentrations, in part responsible for the enhancement in hippocampal neuronal activity.  相似文献   

4.
The neural cell adhesion molecule (NCAM) and its associated glycan polysialic acid play important roles in the development of the nervous system and N-methyl-D-aspartate(NMDA)receptor-dependent synaptic plasticity in the adult. Here, we investigated the influence of polysialic acid on NMDA receptor activity. We found that glutamate-elicited NMDA receptor currents in cultured hippocampal neurons were reduced by approximately 30% with the application of polysialic acid or polysialylated NCAM but not by the sialic acid monomer, chondroitin sulfate, or non-polysialylated NCAM. Polysialic acid inhibited NMDA receptor currents elicited by 3 microm glutamate but not by 30 microm glutamate, suggesting that polysialic acid acts as a competitive antagonist, possibly at the glutamate binding site. The polysialic acid induced effects were mimicked and fully occluded by the NR2B subunit specific antagonist, ifenprodil. Recordings from single synaptosomal NMDA receptors reconstituted in lipid bilayers revealed that polysialic acid reduced open probability but not the conductance of NR2B-containing NMDA receptors in a polysialic acid and glutamate concentration-dependent manner. The activity of single NR2B-lacking synaptosomal NMDA receptors was not affected by polysialic acid. Application of polysialic acid to hippocampal cultures reduced excitotoxic cell death induced by low micromolar concentration of glutamate via activation of NR2B-containing NMDA receptors, whereas enzymatic removal of polysialic acid resulted in increased cell death that occluded glutamate-induced excitotoxicity. These observations indicate that the cell adhesion molecule-associated glycan polysialic acid is able to prevent excitotoxicity via inhibition of NR2B subunit-containing NMDA receptors.  相似文献   

5.
Exposure of isolated retinas to 30 microM D-aspartate, which is a substrate for all high affinity glutamate transporters, for 30 min, resulted in the accumulation of such D-aspartate into Müller glial cells but not glutamatergic neurons as evinced by immunocytochemistry for D-aspartate. Further incubation of such loaded retinas in physiological media, in the absence of D-aspartate, resulted in the slow release of accumulated D-aspartate from the Müller cells and its accumulation into populations of photoreceptors and bipolar cells. This result indicates that after initial transport into Müller cells, reversal of direction of transport of D-aspartate, and thus by inference glutamate, by GLAST, readily occurs. D-aspartate released by Müller cells was strongly accumulated into cone photoreceptors which are known to express GLT-1, and into rod photoreceptors which we demonstrate here to express the retina specific glutamate transporter EAAT5 (excitatory amino transporter 5). Populations of glutamatergic bipolar cells, which express GLT-1 also exhibited avid uptake of D-aspartate. We conclude that the Müller cell glutamate transporter GLAST is responsible for most of the initial glutamate clearance in the retina after its release from neurones. However, some glutamate is also returned from Müller cells, to neurons expressing GLT-1 and EAAT5, albeit at a slow rate. These data suggest that the role of neuronal glutamate transporters in the retina may be to facilitate a slow process of recycling glutamate back from Müller cells to neurons after its initial clearance from perisynaptic regions by GLAST.  相似文献   

6.
In this study we characterized the pharmacological selectivity and physiological actions of a new arylaspartate glutamate transporter blocker, L-threo-ß-benzylaspartate (L-TBA). At concentrations up to 100 µM, L-TBA did not act as an AMPA receptor (AMPAR) or NMDA receptor (NMDAR) agonist or antagonist when applied to outside-out patches from mouse hippocampal CA1 pyramidal neurons. L-TBA had no effect on the amplitude of field excitatory postsynaptic potentials (fEPSPs) recorded at the Schaffer collateral-CA1 pyramidal cell synapse. Excitatory postsynaptic currents (EPSCs) in CA1 pyramidal neurons were unaffected by L-TBA in the presence of physiological extracellular Mg2+ concentrations, but in Mg2+-free solution, EPSCs were significantly prolonged as a consequence of increased NMDAR activity. Although L-TBA exhibited approximately four-fold selectivity for neuronal EAAT3 over glial EAAT1/EAAT2 transporter subtypes expressed in Xenopus oocytes, the L-TBA concentration-dependence of the EPSC charge transfer increase in the absence of Mg2+ was the same in hippocampal slices from EAAT3 +/+ and EAAT3 −/− mice, suggesting that TBA effects were primarily due to block of glial transporters. Consistent with this, L-TBA blocked synaptically evoked transporter currents in CA1 astrocytes with a potency in accord with its block of heterologously expressed glial transporters. Extracellular recording in the presence of physiological Mg2+ revealed that L-TBA prolonged fEPSPs in a frequency-dependent manner by selectively increasing the NMDAR-mediated component of the fEPSP during short bursts of activity. The data indicate that glial glutamate transporters play a dominant role in limiting extrasynaptic transmitter diffusion and binding to NMDARs. Furthermore, NMDAR signaling is primarily limited by voltage-dependent Mg2+ block during low-frequency activity, while the relative contribution of transport increases during short bursts of higher frequency signaling.  相似文献   

7.
Hippocampal noradrenergic and cerebellar glutamatergic granule cell axon terminals possess GABA(A) receptors mediating enhancement of noradrenaline and glutamate release, respectively. The hippocampal receptor is benzodiazepine-sensitive, whereas the cerebellar one is not affected by benzodiazepine agonists, indicating the presence of an alpha6 subunit. We tested here the effects of Zn2+ on these two native GABA(A) receptor subtypes using superfused rat hippocampal and cerebellar synaptosomes. In the cerebellum, zinc ions strongly inhibited (IC50 approximately 1 microM) the potentiation of the K(+)-evoked [3H]D-aspartate release induced by GABA. In contrast, the GABA-evoked release of [3H]noradrenaline from hippocampal synaptosomes was much less sensitive to Zn2+ (IC50 > 30 microM). The effects of Zn2+ were then studied in two rat lines selected for high (ANT) and low (AT) alcohol sensitivity because granule cell GABA(A) receptors in ANT, but not AT, rats respond to benzodiazepine agonists due to a critical mutation in the alpha6 subunit. GABA increased the K(+)-evoked release of [3H]DCNS REGIONS-aspartate from cerebellar synaptosomes of AT and ANT rats, an effect prevented by the GABAA selective antagonist bicuculline. In AT rat cerebellum, the effect of GABA was strongly inhibited by Zn2+ (IC50 < or = 1 microM), whereas in ANT rats, the divalent cation was about 100-fold less potent. Thus, native benzodiazepine-sensitive GABAA receptors appear largely insensitive to functional inhibition by Zn2+ and vice versa. Changes in sensitivity to Zn2+ inhibition consequent to mutations in cerebellar granule cell GABA(A) receptor subunits may lead to changes in glutamate release from parallel fibers onto Purkinje cells and may play important roles in cerebellar dysfunctions.  相似文献   

8.
Fast excitatory neurotransmission is mediated by activation of synaptic ionotropic glutamate receptors. In hippocampal slices, we report that stimulation of Schaffer collaterals evokes in CA1 neurons delayed inward currents with slow kinetics, in addition to fast excitatory postsynaptic currents. Similar slow events also occur spontaneously, can still be observed when neuronal activity and synaptic glutamate release are blocked, and are found to be mediated by glutamate released from astrocytes acting preferentially on extrasynaptic NMDA receptors. The slow currents can be triggered by stimuli that evoke Ca2+ oscillations in astrocytes, including photolysis of caged Ca2+ in single astrocytes. As revealed by paired recording and Ca2+ imaging, a striking feature of this NMDA receptor response is that it occurs synchronously in multiple CA1 neurons. Our results reveal a distinct mechanism for neuronal excitation and synchrony and highlight a functional link between astrocytic glutamate and extrasynaptic NMDA receptors.  相似文献   

9.
Glutamate neurotoxicity is thought to play a role in the pathogenesis of several neurodegenerative diseases. While prolonged activation of either NMDA or non-NMDA receptors causes neuronal damage, NMDA receptors appear to mediate most of the glutamate toxicity. The reasons why NMDA toxicity predominates are uncertain but may relate to more effective neuroprotective mechanisms acting at non-NMDA receptors. To determine whether desensitization is one such mechanism, we studied the effects of the lectin wheat germ agglutinin (WGA) on quisqualate currents and toxicity in cultured postnatal rat hippocampal neurons. After WGA treatment, quisqualate currents exhibit little desensitization and a 4- to 8-fold increase in steady-state amplitude. WGA also markedly augments the degree of acute, quisqualate-induced neuronal degeneration. These results suggest that non-NMDA desensitization serves a neuroprotective function in hippocampal neurons.  相似文献   

10.
The effect of thrombin on the rat hippocampal neurons death in model of neurotoxicity induced by hemoglobin or glutamate, was studied. Thrombin (10 nM) was shown to inhibit 100-mkM glutamate--or 10-mkM hemoglobin-induced apoptosis of the rat hippocampal neurons. With the aid of PAR1 (protease-activated receptor1) agonist peptide and PAR1 antagonist, the PAR1 was found to be necessary for protective action of thrombin in hippocampal neurons in models of neurotoxicity induced by hemoglobin or glutamate. Because the prolonged elevation [Ca2+] ib neurons is a critical part of neurodestructive processes in CNS, the effect of thrombin on Ca2+-homeostatis of neurons after its injury by the inducer of neuronal apoptosis: a synthetic agonist of the NMDA receptors N-methyl-D-aspartate (NMDA), was studied. We hypothesized that thrombin via receptors PAR may prove to be neuroprotective for the hippocampus. Thrombin was shown to stimulate via PAR1 a transient increase in [Ca2+] in neurons in a concentration-dependent manner. Thrombin (1 nM) decreased the [Ca2+] signal induced by activation of the NMDA-subtype of glutamate receptors. This thrombin effect may be one of the reasons of the protective action of thrombin in hippocampal neurons.  相似文献   

11.
Supplisson S  Roux MJ 《FEBS letters》2002,529(1):93-101
In the brain, neurons and glial cells compete for the uptake of the fast neurotransmitters, glutamate, GABA and glycine, through specific transporters. The relative contributions of glia and neurons to the neurotransmitter uptake depend on the kinetic properties, thermodynamic coupling and density of transporters but also on the intracellular metabolization or sequestration of the neurotransmitter. In the case of glycine, which is both an inhibitory transmitter and a neuromodulator of the excitatory glutamatergic transmission as a co-agonist of N-methyl D-aspartate receptors, the glial (GlyT1b) and neuronal (GlyT2a) transporters differ at least in three aspects: (i) stoichiometries, (ii) reverse uptake capabilities and (iii) pre-steady-state kinetics. A 3 Na(+)/1 Cl(-)/gly stoichiometry was established for GlyT2a on the basis of a 2 charges/glycine flux ratio and changes in the reversal potential of the transporter current as a function of the extracellular glycine, Na(+) and Cl(-) concentrations. Therefore, the driving force available for glycine uphill transport in neurons is about two orders of magnitude larger than for glial cells. In addition, GlyT2a shows a severe limitation for reverse uptake, which suggests an essential role of GlyT2a in maintaining a high intracellular glycine pool, thus facilitating the refilling of synaptic vesicles by the low affinity, low specificity vesicular transporter VGAT/VIAAT. In contrast, the 2 Na(+)/1 Cl(-)/gly stoichiometry and bi-directional transport properties of GlyT1b are appropriate for the control of the extracellular glycine concentration in a submicromolar range that can modulate N-methyl D-aspartate receptors effectively. Finally, analysis of the pre-steady-state kinetics of GlyT1b and GlyT2a revealed that at the resting potential neuronal transporters are preferentially oriented outward, ready to bind glycine, which suggests a kinetic advantage in the uptake contest.  相似文献   

12.
Here we report the synthesis and photochemical and biological characterization of a new photolabile precursor of D-aspartic acid, alpha-carboxynitrobenzyl-caged D-aspartate (alpha-CNB-caged D-aspartate), and its application for studying the molecular mechanism of the neuronal excitatory amino acid carrier 1 (EAAC1). Investigation of the photochemical properties of alpha-CNB-caged D-aspartate by transient absorption spectroscopy of the aci-nitro intermediate revealed that it photolyzes with a quantum yield of 0. 19 at pH 7.0. The major component of the aci-nitro intermediate (77% of the total absorbance) decays with a time constant of 26 s. This decay is slowed by only a factor of 2 when increasing the pH to 10. A minor component (21%) decays with a time constant of 410 s and is pH insensitive. The compound was tested with respect to its biological activity with the glutamate transporter EAAC1 expressed in HEK293 cells. Whole-cell current recordings from these cells in the presence and absence of alpha-CNB-caged D-aspartate demonstrated that the compound neither activates nor inhibits EAAC1. Upon photolysis, D-aspartate-mediated whole-cell currents were generated. In contrast to laser-pulse photolysis experiments with alpha-CNB-caged L-glutamate, only a minor and much slower transient current component was observed. These results indicate that the substrate translocation step, which is not rate-limiting for the overall turnover of the transporter with L-glutamate, becomes rate-limiting when D-aspartate is translocated. The results demonstrate that the new caged D-aspartate derivative is a useful tool for the investigation of the molecular mechanism of glutamate transporters and probably other aspartate translocating systems using rapid chemical kinetic techniques.  相似文献   

13.
Hypoxia and ischemia occur in the spinal cord when blood vessels of the spinal cord are compressed under pathological conditions such as spinal stenosis, tumors, and traumatic spinal injury. Here by using spinal cord slice preparations and patch-clamp recordings we investigated the influence of an ischemia-simulating medium on dorsal horn neurons in deep lamina, a region that plays a significant role in sensory hypersensitivity and pathological pain. We found that the ischemia-simulating medium induced large inward currents in dorsal horn neurons recorded. The onset of the ischemia-induced inward currents was age-dependent, being onset earlier in older animals. Increases of sensory input by the stimulation of afferent fibers with electrical impulses or by capsaicin significantly speeded up the onset of the ischemia-induced inward currents. The ischemia-induced inward currents were abolished by the glutamate receptor antagonists CNQX (20 μM) and APV (50 μM). The ischemia-induced inward currents were also substantially inhibited by the glutamate transporter inhibitor TBOA (100 μM). Our results suggest that ischemia caused reversal operation of glutamate transporters, leading to the release of glutamate via glutamate transporters and the subsequent activation of glutamate receptors in the spinal dorsal horn neurons.  相似文献   

14.
15.
Slices of hippocampal area CA1 were employed to test the hypothesis that the release of glutamate and aspartate is regulated by the activation of excitatory amino acid autoreceptors. In the absence of added Mg2+, N-methyl-D-aspartate (NMDA)-receptor antagonists depressed the release of glutamate, aspartate, and gamma-aminobutyrate evoked by 50 mM K+. Conversely, the agonist NMDA selectively enhanced the release of aspartate. The latter action was observed, however, only when the K+ stimulus was reduced to 30 mM. Actions of the competitive antagonists 3-[(+/- )-2-carboxypiperazin-4-yl]-propyl-l-phosphonic acid (CPP) and D-2-amino-5-phosphonovalerate (D-AP5) differed, in that the addition of either 1.2 mM Mg2+ or 0.1 microM tetrodotoxin to the superfusion medium abolished the depressant effect of CPP without diminishing the effect of D-AP5. These results suggest that the activation of NMDA receptors by endogenous glutamate and aspartate enhances the subsequent release of these amino acids. The cellular mechanism may involve Ca2+ influx through presynaptic NMDA receptor channels or liberation of a diffusible neuromodulator linked to the activation of postsynaptic NMDA receptors. (RS)-alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, a selective quisqualate receptor agonist, and kainate, an agonist active at both kainate and quisqualate receptors, selectively depressed the K(+)-evoked release of aspartate. Conversely, 6-cyano-7-nitro-quinoxaline-2,3-dione, an antagonist active at both quisqualate and kainate receptors, selectively enhanced aspartate release. These results suggest that glutamate can negatively modulate the release of aspartate by activating autoreceptors of the quisqualate, and possibly also of the kainate, type. Thus, the activation of excitatory amino acid receptors has both presynaptic and postsynaptic effects.  相似文献   

16.
The N-methyl-D-aspartate (NMDA) receptor, able to detect the coincidence of pre- and postsynaptic events, is considered to be the molecular analogue of associative learning. Associative learning is well known in leeches, particularly for reflexive shortening. The neuronal circuits underlying shortening have been documented and include neurons that release glutamate. Is this type of learning in leeches also mediated by NMDA receptors? The synapse between the P sensory neuron and the motoneuron-like AP cell was examined and: (1) NMDA failed to elicit a response in the AP cell, (2) the NMDA receptor antagonist 2-amino-5-phosphopentanoic acid affected synaptic transmission only at high, non-specific levels, and (3) the antagonist for the glycine-binding site 7-chloro-kynurenic acid at 20 μM did not inhibit transmission. Therefore, there are evidently no NMDA receptors at the P to AP synapse, suggesting other mechanisms of associative learning in leeches. Electronic Publication  相似文献   

17.
The activity of high-affinity glutamate transporters is essential for the normal function of the mammalian central nervous system. Using a combined pharmacological, confocal immunocytochemical, enzyme-based microsensor and fluorescence imaging approach, we examined glutamate uptake and transporter protein localization in single astrocytes of neuron-containing and neuron-free microislands prior to pre-synaptic transmitter secretion and during functional neuronal activity. Here, we report that the presence or absence of neurons strikingly affects the uptake capacity of the astroglial glutamate transporters GLT1 and GLAST1. Induction of transporter function is activated by neurons and this effect is mimicked by pre-incubation of astrocytes with micromolar concentrations of glutamate. Moreover, increased glutamate transporter activation is reproduced by endogenous release of glutamate via activation of neuronal nicotinic receptors. The increase in transport activity is dependent on neuronal release of glutamate, is associated with the local redistribution (clustering) of GLT1 and GLAST1 but is independent of transporter synthesis and of glutamate receptor activation. Together, these results suggest an activity-dependent neuronal feedback system for rapid astroglial glutamate transporter regulation where neuron-derived glutamate is the physiological signal that triggers transporter function.  相似文献   

18.
The hypothesis was tested that oxidative metabolism, mainly fueled by glutamate itself, provides the energy for active, Na(+),K(+)-ATPase-catalyzed Na(+) extrusion following glutamate uptake in conjunction with Na(+). This hypothesis was supported by the following observations: (i) glutamate had either no effect or caused a slight reduction in glycolytic rate, measured as deoxyglucose phosphorylation; (ii) D-aspartate, which is accumulated by the L-glutamate carrier, but cannot be metabolized by the cells, caused an increase in glycolytic rate; (iii) monensin which, like D-aspartate, stimulates the intracellular, Na(+)-activated site of the Na, K-ATPase and thus energy metabolism, but provides no metabolic substrate, stimulated both glycolysis and glucose oxidation; and (iv) oxidation of glucose was potently inhibited by glutamate, although glutamate is known to stimulate oxygen consumption in primary cultures of astrocytes, a combination showing that oxidation of a non-glucose substrate is increased in the presence of glutamate. These findings should be considered in attempts to understand metabolic interactions between neurons and astrocytes and regulation of energy metabolism in brain.  相似文献   

19.
Excitatory amino acid transporter 2 (EAAT2) is a high affinity glutamate transporter predominantly expressed in astroglia. Human EAAT2 encompasses eight transmembrane domains and a 74-amino acid C-terminal domain that resides in the cytoplasm. We examined the role of this region by studying various C-terminal truncations and mutations using heterologous expression in mammalian cells, whole-cell patch clamp recording and confocal imaging. Removal of the complete C terminus (K498X EAAT2) results in loss of function because of intracellular retention of truncated proteins in the cytoplasm. However, a short stretch of amino acids (E500X EAAT2) within the C terminus results in correctly processed transporters. E500X reduced glutamate transport currents by 90%. Moreover, the voltage and substrate dependence of E500X EAAT2 anion currents was significantly altered. WT and mutant EAAT2 anion channels are modified by external Na(+) in the presence as well as in the absence of L-glutamate. Whereas Na(+) stimulates EAAT2 anion currents in the presence of L-glutamate, increased [Na(+)] reduces such currents without glutamate. In cells internally dialyzed with Na(+), WT, and truncated EAAT2 display comparable Na(+) dependence. With K(+) as main internal cation, E500X drastically increased the apparent dissociation constant for external Na(+). The effects of E500X can be represented by a kinetic model that allows translocation of the empty transporter from the outward- to the inward-facing conformation and stabilization of the inward-facing conformation by internal K(+). Our results demonstrate that the C terminus modifies the glutamate uptake cycle, possibly affecting the movements of the translocation domain of EAAT2 glutamate transporter.  相似文献   

20.
Human midbrain‐derived neural progenitor cells (NPCs) may serve as a continuous source of dopaminergic neurons for the development of novel regenerative therapies in Parkinson’s disease. However, the molecular and functional characteristics of glutamate receptors in human NPCs are largely unknown. Here, we show that differentiated human mesencepahlic NPCs display a distinct pattern of glutamate receptors. In whole‐cell patch‐clamp recordings, l ‐glutamate and NMDA elicited currents in 93% of NPCs after 3 weeks of differentiation in vitro. The concentration‐response plots of differentiated NPCs yielded an EC50 of 2.2 μM for glutamate and an EC50 of 36 μM for NMDA. Glutamate‐induced currents were markedly inhibited by memantine in contrast to 6‐cyano‐7‐nitroquinoxaline‐2,3‐dione (CNQX) suggesting a higher density of functional NMDA than alpha‐amino‐3‐hydroxy‐5‐methylisoxazole‐4‐propionate (AMPA)/kainate receptors. NMDA‐evoked currents and calcium signals were blocked by the NR2B‐subunit specific antagonist ifenprodil indicating functional expression of NMDA receptors containing subunits NR1 and NR2B. In calcium imaging experiments, the blockade of voltage‐gated calcium channels by verapamil abolished AMPA‐induced calcium responses but only partially reduced NMDA‐evoked transients suggesting the expression of calcium‐impermeable, GluR2‐containing AMPA receptors. Quantitative real‐time PCR showed a predominant expression of subunits NR2A and NR2B (NMDA), GluR2 (AMPA), GluR7 (kainate), and mGluR3 (metabotropic glutamate receptor). Treatment of NPCs with 100 μM NMDA in vitro during proliferation (2 weeks) and differentiation (1 week) increased the amount of tyrosine hydroxylase‐immunopositive cells significantly, which was reversed by addition of memantine. These data suggest that NMDA receptors in differentiating human mesencephalic NPCs are important regulators of dopaminergic neurogenesis in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号