首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A necessary condition for a snowshoe hare population to cycle is reduced reproduction after the population declines. But the cause of a cyclic snowshoe hare population's reduced reproduction during the low phase of the cycle, when predator density collapses, is not completely understood. We propose that moderate‐severe browsing by snowshoe hares upon preferred winter‐foods could increase the toxicity of some of the hare's best winter‐foods during the following hare low, with the result being a decline in hare nutrition that could reduce hare reproduction. We used a combination of modeling and experiments to explore this hypothesis. Using the shrub birch Betula glandulosa as the plant of interest, the model predicted that browsing by hares during a hare cycle peak, by increasing the toxicity B. glandulosa twigs during the following hare low, could cause a hare population to cycle. The model's assumptions were verified with assays of dammarane triterpenes in segments of B. glandulosa twigs and captive hare feeding experiments conducted in Alaska during February and March 1986. The model's predictions were tested with estimates of hare density and measurements of B. glandulosa twig growth made at Kluane, Yukon from 1988–2008. The empirical tests supported the model's predictions. Thus, we have concluded that a browsing‐caused increase in twig toxicity that occurs during the hare cycle's low phase could reduce hare reproduction during the low phase of the hare cycle.  相似文献   

2.
Allelic richness (number of alleles) is a measure of genetic diversity indicative of a population''s long-term potential for adaptability and persistence. It is used less commonly than heterozygosity as a genetic diversity measure, partially because it is more mathematically difficult to take into account the stochastic process of genetic drift for allelic richness. This paper presents a stochastic model for the allelic richness of a newly founded population experiencing genetic drift and gene flow. The model follows the dynamics of alleles lost during the founder event and simulates the effect of gene flow on maintenance and recovery of allelic richness. The probability of an allele''s presence in the population was identified as the relevant statistical property for a meaningful interpretation of allelic richness. A method is discussed that combines the probability of allele presence with a population''s allele frequency spectrum to provide predictions for allele recovery. The model''s analysis provides insights into the dynamics of allelic richness following a founder event, taking into account gene flow and the allele frequency spectrum. Furthermore, the model indicates that the “One Migrant per Generation” rule, a commonly used conservation guideline related to heterozygosity, may be inadequate for addressing preservation of diversity at the allelic level. This highlights the importance of distinguishing between heterozygosity and allelic richness as measures of genetic diversity, since focusing merely on the preservation of heterozygosity might not be enough to adequately preserve allelic richness, which is crucial for species persistence and evolution.  相似文献   

3.
The potential of metabolomics for toxicity analysis with synchronized algal populations during growth was explored in a proof of principle study. Low molecular weight compounds from hydrophilic and lipophilic extracts of algal populations of the unicellular green alga Scenedesmus vacuolatus were analyzed using gas chromatography-mass spectrometry (GC-MS) and subsequent multivariate analysis to identify time-related patterns. Algal metabolite responses were studied under control and exposure conditions for the photosystem II-inhibiting herbicide prometryn. To define the typical metabolic profile of control S. vacuolatus cultures seven time points over a growth period of 14 h were evaluated. The results show a clear time-related trend in metabolite levels and a distinct separation of exposed and reference algal populations. The results suggest an impairment of the energy metabolism associated with an activation of catabolic processes and a retardation of carbohydrate biosynthesis in treated algae. Metabolite results were compared to observation parameters, currently used in phytotoxicity assessment, showing that metabolites respond faster to exposure than algal growth. The potential of metabolomics for toxicity evaluation, especially to identify physiological markers and to detect effects at an early state of exposure, are discussed. Therefore, we suggest a metabolomics approach utilizing synchronous algal cultures to be a suitable future tool in ecotoxicology.  相似文献   

4.
The effect of sodium dodecyl sulfate (SDS) and the household synthetic detergents (HSDs) Kristall and Tix (0.1, 1, and 10 mg/l) on cell motility, cell number dynamics, and the growth rate of the alga Plagioselmis prolonga (Cryptophyta) is studied. Algal cell motility proved to be the most sensitive indicator of detergent toxicity. SDS was the least toxic: 1 mg SDS/l caused a short-term loss of motility in 10% of the algal cells. The HSD Tix was the most toxic: only 70% of the cells recovered motility after a 24 h exposure to 1 mg/l. The substances tested in a concentration of 10 mg/l caused mortality of the P. prolonga population. According to their toxic effect on P. prolonga, the investigated toxicants can be arranged as follows: SDS < Kristall < Tix.  相似文献   

5.
Pesticide use leads to complex exposure and response patterns in non-target aquatic species, so that the analysis of data from standard toxicity tests may result in unrealistic risk forecasts. Developing models that are able to capture such complexity from toxicity test data is thus a crucial issue for pesticide risk assessment. In this study, freshwater snails from two genetically differentiated populations of Lymnaea stagnalis were exposed to repeated acute applications of environmentally realistic concentrations of the herbicide diquat, from the embryo to the adult stage. Hatching rate, embryonic development duration, juvenile mortality, feeding rate and age at first spawning were investigated during both exposure and recovery periods. Effects of diquat on mortality were analysed using a threshold hazard model accounting for time-varying herbicide concentrations. All endpoints were significantly impaired at diquat environmental concentrations in both populations. Snail evolutionary history had no significant impact on their sensitivity and responsiveness to diquat, whereas food acted as a modulating factor of toxicant-induced mortality. The time course of effects was adequately described by the model, which thus appears suitable to analyse long-term effects of complex exposure patterns based upon full life cycle experiment data. Obtained model outputs (e.g. no-effect concentrations) could be directly used for chemical risk assessment.  相似文献   

6.
Epidemiologists usually study the interaction between a host population and one parasitic infection. However, different parasite species effectively compete, in an ecological sense, for the same finite group of susceptible hosts, so there may be an indirect effect on the population dynamics of one disease due to epidemics of another. In human populations, recovery from any serious infection is normally preceded by a period of convalescence, during which infected individuals stay at home and are effectively shielded from exposure to other infectious diseases. We present a model for the dynamics of two infectious diseases, incorporating a temporary removal of susceptibles. We use this model to explore population-level consequences of a temporary insusceptibility in childhood diseases, the dynamics of which are partly driven by differences in contact rates in and out of school terms. Significant population dynamic interference is predicted and cannot be dismissed in the limited case-study data available for measles and whooping cough in England before the vaccination era.  相似文献   

7.
There is a phenomenon of multiregimism found in the elementary mathematical model of population dynamics, meaning the possibility for different dynamic regimes to exist under the same conditions, with transition to these regimes dependent on the initial numerical values. The effect in question comes into existence in the model which has several different limiting regimes (attractors): equilibrium, regular fluctuations, and chaotic attractor. The revealed phenomenon of multiregimism lets us explain the initiation of fluctuations as well as disappearance of fluctuations. Adequacy of the model's dynamic regimes is depicted by their correlation with the actual dynamics of population size of bank vole (Myodes glareolus). It is shown that the impact of climatic factors on a reproductive process of a population noticeably extends the range of possible dynamic regimes and, in fact, leads to random migration over attraction basins of these regimes.  相似文献   

8.
The majority of taxa grow significantly during life history, which often leads to individuals of the same species having different ecological roles, depending on their size or life stage. One aspect of life history that changes during ontogeny is mortality. When individual growth and development are resource dependent, changes in mortality can affect the outcome of size-dependent intraspecific resource competition, in turn affecting both life history and population dynamics. We study the outcome of varying size-dependent mortality on two life-history types, one that feeds on the same resource throughout life history and another that can alternatively cannibalize smaller conspecifics. Compensatory responses in the life history dampen the effect of certain types of size-dependent mortality, while other types of mortality lead to dramatic changes in life history and population dynamics, including population (de-)stabilization, and the growth of cannibalistic giants. These responses differ strongly among the two life-history types. Our analysis provides a mechanistic understanding of the population-level effects that come about through the interaction between individual growth and size-dependent mortality, mediated by resource dependence in individual vital rates.  相似文献   

9.
A model simulating the movement and oviposition of monarch butterflies over a female's life time is presented. The model's predictions compare favourably with observed data and suggest that females who lay eggs in an optimal fashion should have low directionalities in areas with high host plant density (patches and single plants) and high directionalities in areas with low host plant density. The model also provides one means of combining individual animal processes and spatial heterogeneity into population dynamics.  相似文献   

10.
To Malthus, rapid human population growth—so evident in 18th Century Europe—was obviously unsustainable. In his Essay on the Principle of Population, Malthus cogently argued that environmental and socioeconomic constraints on population rise were inevitable. Yet, he penned his essay on the eve of the global census size reaching one billion, as nearly two centuries of super-exponential increase were taking off. Introducing a novel extension of J. E. Cohen''s hallmark coupled difference equation model of human population dynamics and carrying capacity, this article examines just how elastic population growth limits may be in response to demographic change. The revised model involves a simple formalization of how consumption costs influence carrying capacity elasticity over time. Recognizing that complex social resource-extraction networks support ongoing consumption-based investment in family formation and intergenerational resource transfers, it is important to consider how consumption has impacted the human environment and demography—especially as global population has become very large. Sensitivity analysis of the consumption-cost model''s fit to historical population estimates, modern census data, and 21st Century demographic projections supports a critical conclusion. The recent population explosion was systemically determined by long-term, distinctly pre-industrial cultural evolution. It is suggested that modern globalizing transitions in technology, susceptibility to infectious disease, information flows and accumulation, and economic complexity were endogenous products of much earlier biocultural evolution of family formation''s embeddedness in larger, hierarchically self-organizing cultural systems, which could potentially support high population elasticity of carrying capacity. Modern super-exponential population growth cannot be considered separately from long-term change in the multi-scalar political economy that connects family formation and intergenerational resource transfers to wider institutions and social networks.  相似文献   

11.
Harmful algal blooms that disrupt and degrade ecosystems (ecosystem disruptive algal blooms, EDABs) are occurring with greater frequency and severity with eutrophication and other adverse anthropogenic alterations of coastal systems. EDAB events have been hypothesized to be caused by positive feedback interactions involving differential growth of competing algal species, low grazing mortality rates on EDAB species, and resulting decreases in nutrient inputs from grazer-mediated nutrient cycling as the EDAB event progresses. Here we develop a stoichiometric nutrient–phytoplankton–zooplankton (NPZ) model to test a conceptual positive feedback mechanism linked to increased cell toxicity and resultant decreases in grazing mortality rates in EDAB species under nutrient limitation of growth rate. As our model EDAB alga, we chose the slow-growing, toxic dinoflagellate Karenia brevis, whose toxin levels have been shown to increase with nutrient (nitrogen) limitation of specific growth rate. This species was competed with two high-nutrient adapted, faster-growing diatoms (Thalassiosira pseudonana and Thalassiosira weissflogii) using recently published data for relationships among nutrient (ammonium) concentration, carbon normalized ammonium uptake rates, cellular nitrogen:carbon (N:C) ratios, and specific growth rate. The model results support the proposed positive feedback mechanism for EDAB formation and toxicity. In all cases the toxic bloom was preceded by one or more pre-blooms of fast-growing diatoms, which drew dissolved nutrients to low growth rate-limiting levels, and stimulated the population growth of zooplankton grazers. Low specific grazing rates on the toxic, nutrient-limited EDAB species then promoted the population growth of this species, which further decreased grazing rates, grazing-linked nutrient recycling, nutrient concentrations, and algal specific growth rates. The nutrient limitation of growth rate further increased toxin concentrations in the EDAB algae, which further decreased grazing-linked nutrient recycling rates and nutrient concentrations, and caused an even greater nutrient limitation of growth rate and even higher toxin levels in the EDAB algae. This chain of interactions represented a positive feedback that resulted in the formation of a high-biomass toxic bloom, with low, nutrient-limited specific growth rates and associated high cellular C:N and toxin:C ratios. Together the elevated C:N and toxin:C ratios in the EDAB algae resulted in very high bloom toxicity. The positive feedbacks and resulting bloom formation and toxicity were increased by long water residence times, which increased the relative importance of grazing-linked nutrient recycling to the overall supply of limiting nutrient (N).  相似文献   

12.
13.
Bonelli's eagle, Hieraaetus fasciatus, has recently suffered a severe population decline and is currently endangered. Spain supports about 70% of the European population. We used stepwise logistic regression on a set of environmental, spatial and human variables to model Bonelli's eagle distribution in the 5167 UTM 10 × 10 km quadrats of peninsular Spain. We obtained a model based on 16 variables, which allowed us to identify favourable and unfavourable areas for this species in Spain, as well as intermediate favourability areas. We assessed the stepwise progression of the model by comparing the model's predictions in each step with those of the final model, and selected a parsimonious explanatory model based on three variables — slope, July temperature and precipitation — comprising 76% of the predictive capacity of the final model. The reported presences in favourable and unfavourable areas suggest a source–sink dynamics in Bonelli's eagle populations. The fragmented spatial structure of the favourable areas suggests the existence of a superimposed metapopulation dynamics. Previous LIFE (The Financial Instrument of the European Union for the Environment and Nature) projects for the conservation of this species have focused mainly on the northern limit of its range, where the sharpest population decline has been recorded. In these areas, favourability is low and Bonelli's eagle populations are probably maintained by the immigration of juveniles produced in more favourable zones. However, southern populations, although stable, show signs of reduction in productivity, which could menace the population sizes in the whole study area. We suggest that conservation efforts should focus also on known favourable areas, which might favour population persistence in unfavourable areas through dispersal.  相似文献   

14.
Chagas disease is a vector-borne parasitic disease that infects mammals, including humans, through much of Latin America. This work presents a mathematical model for the dynamics of domestic transmission in the form of four coupled nonlinear differential equations. The four equations model the number of domiciliary vectors, the number of infected domiciliary vectors, the number of infected humans, and the number of infected domestic animals. The main interest of this work lies in its study of the effects of insecticide spraying and of the recovery of vector populations with cessation of spraying. A novel aspect in the model is that yearly spraying, which is currently used to prevent transmission, is taken into account. The model's predictions for a representative village are discussed. In particular, the model predicts that if pesticide use is discontinued, the vector population and the disease can return to their pre-spraying levels in approximately 5–8 years.  相似文献   

15.
To make predictions about the possible effects of nanomaterials across environments and taxa, toxicity testing must incorporate not only a variety of organisms and endpoints, but also an understanding of the mechanisms that underlie nanoparticle toxicity. Here, we report the results of a laboratory experiment in which we examined how titanium dioxide nanoparticles impact the population dynamics and production of biomass across a range of freshwater algae. We exposed 10 of the most common species of North American freshwater pelagic algae (phytoplankton) to five increasing concentrations of n-TiO2 (ranging from controls to 300 mg n-TiO2 L−1). We then examined the effects of n-TiO2 on the population growth rates and biomass production of each algal species over a period of 25 days. On average, increasing concentrations of n-TiO2 had no significant effects on algal growth rates (p = 0.376), even though there was considerable species-specific variation in responses. In contrast, exposure to n-TiO2 tended to increase maximum biomass achieved by species in culture (p = 0.06). Results suggest that titanium dioxide nanoparticles could influence certain aspects of population growth of freshwater phytoplankton, though effects are unlikely at environmentally relevant concentrations.  相似文献   

16.
Host heterogeneity in pathogen transmission is widespread and presents a major hurdle to predicting and minimizing disease outbreaks. Using Drosophila melanogaster infected with Drosophila C virus as a model system, we integrated experimental measurements of social aggregation, virus shedding, and disease-induced mortality from different genetic lines and sexes into a disease modelling framework. The experimentally measured host heterogeneity produced substantial differences in simulated disease outbreaks, providing evidence for genetic and sex-specific effects on disease dynamics at a population level. While this was true for homogeneous populations of single sex/genetic line, the genetic background or sex of the index case did not alter outbreak dynamics in simulated, heterogeneous populations. Finally, to explore the relative effects of social aggregation, viral shedding and mortality, we compared simulations where we allowed these traits to vary, as measured experimentally, to simulations where we constrained variation in these traits to the population mean. In this context, variation in infectiousness, followed by social aggregation, was the most influential component of transmission. Overall, we show that host heterogeneity in three host traits dramatically affects population-level transmission, but the relative impact of this variation depends on both the susceptible population diversity and the distribution of population-level variation.  相似文献   

17.
We tested a bioenergetics model integrated within a mortality model that estimates numbers of European starlings (Sturnus vulgaris) poisoned with the avicide, Compound DRC-1339 Concentrate. The bioenergetics model predicted daily metabolic rate. Accuracy and reliability of this variable is critical because other algorithms (e.g., toxicity regressions, feeding behavior) in the mortality model depend on metabolic rate to calculate the amount of DRC-1339 ingested per bird. We tested the bioenergetics model by comparing its estimates of metabolic rate with those generated from measuring feeding rates of caged starlings during a feeding trial conducted outdoors during January 2008. Over the 12-day feeding trial, daily feeding rates of caged starlings indicated that metabolic rates ranged from 157 kJ/bird per day to 305 kJ/bird per day. The bioenergetics model predicted metabolic rates ranging from 208 kJ/bird per day to 274 kJ/bird per day. There was no difference between these 2 independently derived estimates of daily metabolic rate (paired t-test: t(11) = 1.4, P = 0.18). Using 95% confidence intervals calculated from variation of feeding rates among cages (n = 4, 6 birds/cage), the bioenergetics model's estimates were within 95% confidence intervals on 9 of 12 days and greater than the upper 95% confidence interval on 3 days. Daily estimates of metabolic rate were directly correlated between the bioenergetics model and the feeding-rate model (r12 = 0.57, P = 0.05). A broad range of temperatures (−17°C to 14°C), wind speeds (0–40 km/hr), and percent cloud cover (0–100%) were encountered during the feeding trial. The bioenergetics model's predictions appeared robust to varying meteorological conditions typical of winters in middle latitudes of the interior United States. Compound DRC-1339 Concentrate is used by USDA Wildlife Services to manage chronic infestations of starlings at livestock facilities, which occur mainly during fall and winter. Compared to other methods used for estimating DRC-1339 mortality (e.g., counting birds pre- and posttreatment), bioenergetics modeling should improve the mortality model's overall accuracy and precision. © The Wildlife Society, 2011  相似文献   

18.
Thornley JH 《Annals of botany》2011,108(7):1365-1380

Background and Aims

Plant growth and respiration still has unresolved issues, examined here using a model. The aims of this work are to compare the model''s predictions with McCree''s observation-based respiration equation which led to the ‘growth respiration/maintenance respiration paradigm’ (GMRP) – this is required to give the model credibility; to clarify the nature of maintenance respiration (MR) using a model which does not represent MR explicitly; and to examine algebraic and numerical predictions for the respiration:photosynthesis ratio.

Methods

A two-state variable growth model is constructed, with structure and substrate, applicable on plant to ecosystem scales. Four processes are represented: photosynthesis, growth with growth respiration (GR), senescence giving a flux towards litter, and a recycling of some of this flux. There are four significant parameters: growth efficiency, rate constants for substrate utilization and structure senescence, and fraction of structure returned to the substrate pool.

Key Results

The model can simulate McCree''s data on respiration, providing an alternative interpretation to the GMRP. The model''s parameters are related to parameters used in this paradigm. MR is defined and calculated in terms of the model''s parameters in two ways: first during exponential growth at zero growth rate; and secondly at equilibrium. The approaches concur. The equilibrium respiration:photosynthesis ratio has the value of 0·4, depending only on growth efficiency and recycling fraction.

Conclusions

McCree''s equation is an approximation that the model can describe; it is mistaken to interpret his second coefficient as a maintenance requirement. An MR rate is defined and extracted algebraically from the model. MR as a specific process is not required and may be replaced with an approach from which an MR rate emerges. The model suggests that the respiration:photosynthesis ratio is conservative because it depends on two parameters only whose values are likely to be similar across ecosystems.  相似文献   

19.
Restoring habitat degraded by invasive species is often a primary focus of conservation strategies, yet few studies investigate the effects of invasive species control on multiple at‐risk taxa. Selective herbicides are increasingly used because they can selectively reduce aggressive invasive plant species with the aim of minimizing effects on other taxa within the habitat. We conducted a four‐year experiment to test how annual application of grass‐specific herbicide affected the demography on Fender's blue butterfly (Icaricia icarioides fenderi) and Kincaid's lupine (Lupinus oreganus), two federally protected species which persist in highly degraded prairie remnants in western Oregon, USA. Effects of herbicide application were transitory for the butterfly; reduction of invasive grasses increased fecundity and led to higher annual population growth (λ) at one of two conservation areas in the first season. There were no detectable differences in λ in subsequent seasons—suggesting that treatments caused neither extensive harm nor extensive benefit to the butterfly population. For the lupine, there were no detectable differences in leaf and flower abundance between control and herbicide treatments. However, greater seed production in herbicide plots in the first and third seasons suggests that lupines in herbicide‐treated plots have greater potential reproductive success. While treatments do not have a long‐term benefit to annual population growth for the butterfly, increasing reproductive success of the threatened plant may justify integrating this strategy into restoration plans. Considering the impact of restoration practices on the demography of multiple at‐risk taxa within a community is critical to effective recovery strategies.  相似文献   

20.
Couture  P.  Thellen  C.  Thompson  P. A. 《Hydrobiologia》1989,188(1):269-276
Both structural and functional relationships were investigated in experiments using S. capricornutum populations and an indigenous microbial community. Our aims were to diagnose cellular stress and to predict recovery during exposures to a chlor-alkali effluent.Laboratory experiments demonstrated that the effluent was toxic at concentrations greater or equal to 4%, v/v. It appears that during the exposure period, the functional parameters, particularly the intracellular adenylates ratios were reliable in predicting algal population recovery.On the other hand, the river gradient experiments failed to demonstrate a toxic effect on community structure over the time scale studied. Functional parameters revealed a significant effect on photosynthetic activity while adenylate energy charge was an insensitive indicator.Finally, our results tend to demonstrate that functional responses, particularly intracellular adenylates ratios (ATP/cell; ATP/AMP) are appropriate to predict recovery responses to a toxicant at the population and community levels. This would prove useful in enhancing the ecological significance of toxicity tests in hazard assessment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号