首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A completely randomized design study with a 3 × 2 factorial arrangement was conducted to evaluate the effects of three different fat sources (soybean oil, tallow, and poultry fat) with or without emulsifier supplementation on performance, coefficient of total tract apparent digestibility (CTTAD) of fatty acids, and apparent metabolizable energy (AME) content in broiler chickens. Two hundred and fifty-two one-day-old male Arbor Acres broiler chickens were randomly divided into 6 different treatments: (T1) basal diet containing soybean oil without lysophosphatidylcholine (LPC) supplementation, (T2) basal diet containing soybean oil with LPC supplementation, (T3) basal diet containing tallow without LPC supplementation, (T4) basal diet containing tallow with LPC supplementation, (T5) basal diet containing poultry fat without LPC supplementation, and (T6) basal diet containing poultry fat with LPC supplementation. Body weight gains from broiler chicks fed diets containing tallow were lower (P<0.05) than the body weight gains from chicks that were fed diets containing soybean oil or poultry fat in both the starter and grower periods. Birds fed diets containing tallow had the highest FCR (P<0.05), followed by the birds that were fed diets containing poultry fat, and soybean oil. The CTTAD of C16:0, C18:2, and C18:3n3 was greater (P<0.05) for broilers fed diets containing soybean oil than for those fed diets containing tallow or poultry fat in the starter period. The addition of LPC increased (P<0.05) body weight gain of broiler chickens in the starter period and the AME of the diets in the grower period, and tended to reduce FCR (P=0.072) in the starter period. LPC supplementation increased (P<0.05) the CTTAD of C16:0, C18:1n7 and C18:1n9 in the starter period, and of C18:2, and C18:3n3 in the grower period (P<0.05). There were no significant interactions between fat sources and the addition of LPC. These data indicated that LPC supplementation can improve body weight gain of broiler chickens in the starter period. This effect may be associated with an increase of CTTAD of FA due to LPC activity.  相似文献   

2.
The study was conducted to evaluate the effects of dietary butyrate loaded clinoptilolite (CLI-B) on growth performance, pancreatic digestive enzymes, intestinal development and histomorphology, as well as antioxidant capacity of serum and intestinal mucosal in chickens. Two hundred forty 1-day-old commercial Arbor Acres broilers were randomly assigned to 4 groups: CON group (fed basal diets), SB group (fed basal diet with 0.05% sodium butyrate), CLI group (fed basal diet with 1% clinoptilolite), and CLI-B group (fed basal diet with 1% CLI-B). The results showed that supplementation of CLI-B significantly decreased (P < 0.05) feed conservation ratio at both 21 and 42 days of age, improved the pancreatic digestive enzymes activities (P < 0.05), increased the villus length and villus/crypt ratio (P < 0.05), and decreased the crypt depth of intestine (P < 0.05) as compared to the other experimental groups. Furthermore, the CLI-B environment improved the antioxidant capacity by increasing the antioxidant enzyme activities (P < 0.05) in intestine mucosal, and decreasing the NO content and iNOS activity (P < 0.05) in serum. In addition, CLI-B supplementation had improved the development of intestine and antioxidant capacity of broilers than supplementation with either clinoptilolite or butyrate sodium alone. In conclusion, 1% CLI-B supplementation improved the health status, intestine development and antioxidant capacity in broiler chickens, thus appearing as an important feed additive for the poultry industry.  相似文献   

3.
A study was carried out to investigate the effects of dietary sodium butyrate (SB) on the intestine and growth performance in chickens. Three hundred and thirty six day-old AA broiler chicks were allocated at random into four groups with six replicates each. Four groups were fed with basal diet (control) or diets supplemented with SB at the level of 500, 1000, 2000 mg/kg. Body weight gain increased linearly during the period from 0 to 21 days as the dietary supplementation of SB increased (P<0.05). Dietary supplementation of SB influenced feed conversion ratio (FCR) in a positive quadratic fashion during the period from 0 to 42 days (P<0.05). Dietary SB did not influence the absorptive function of jejunum (P>0.05). The concentrations of DNA, RNA, and protein in duodenal mucosa showed negative quadratic responses to the increase of dietary SB supplementation level (P<0.05). The ratio of villus height to crypt depth increased linearly with the increase of dietary SB supplementation (P<0.01). The Lactobacillus count decreased linearly with the increase of dietary SB supplementation (P<0.01).  相似文献   

4.
The effects of two sources of dietary lipids and supplementation of Clostridium butyricum on performance and intestinal metabolism of broilers were investigated. In a 2 x 2 factorial arrangement, 168 one-day-old broiler chicks were divided into four treatment groups, and fed four diets with two lipid sources (soya bean oil or fish oil, at 25 g/kg and 30 g/kg in starter and grower diets respectively), and without or with supplementation of C. butyricum (1 x 10(9) colony forming units per kg diet). C. butyricum had no effect on broiler performance. At 20 and 40 d of age, the pH of caecal digesta and the relative length of caecum were decreased after supplementation of C. butyricum (p < 0.05). After this treatment, the activity of alkaline phosphatase was increased in jejunal mucosa at 40 d of age (p < 0.01). Furthermore, there were increases in populations of lactic acid bacteria and the concentrations of acetic acid, n-butyric acid, n-valeric acid and total short chain fatty acids in caecal digesta of birds fed C. butyricum (p < 0.05). A significant interaction between lipid source and C. butyricum was found in the pH of caecal digesta at 20 d of age (p < 0.01). The results of the present study indicated that dietary supplementation of C. butyricum maybe a benefit for gut health of broiler chickens.  相似文献   

5.
An experiment was conducted to examine the effects of supplementing broiler feed with hesperidin or naringin, on growth performance, carcass characteristics, breast meat quality and the oxidative stability of breast and thigh meat. Two hundred and forty 1-day-old Ross 308 broiler chickens were randomly assigned to 6 groups. One of the groups served as a control (C) and was given commercial basal diets, whereas the other five groups were given the same diets further supplemented with naringin at 0.75 g/kg (N1), naringin at 1.5 g/kg (N2), hesperidin at 0.75 g/kg (E1), hesperidin at 1.5 g/kg (E2) and a-tocopheryl acetate at 0.2 g/kg (E). At 42 days of age, 10 chickens per treatment group were slaughtered for meat quality and oxidative stability assessment. No significant differences were observed among groups in final body weight, carcass weight and internal organs weights (P>0.05) apart from liver that decreased linearly with increased levels of naringin (P-linear<0.05). Regarding the breast meat quality parameters, only redness (a*) value was higher in E1 and N1 group compared to VE group (P<0.05), while all the others i.e. shear values (N/mm2), pH24, cooking loss (%) and L* and b* color parameters were not significantly different among groups (P>0.05). Measurement of lipid oxidation values showed that after hesperidin and naringin dietary supplementation, malondialdehyde values decreased in tissue samples in a dose depended manner (P-linear<0.05). In conclusion, hesperidin and naringin, positively influence meat antioxidative properties without negative implications on growth performance and meat quality characteristics in poultry, thus appearing as important additives for both the consumer and the industry.  相似文献   

6.
Boswellia serrata resin (BSR), exhibiting a variety of therapeutic properties, is applied in Asian traditional medicine. These properties can be used in poultry production as well. Application of the resin as a phytobiotic in broiler chicken rearing can increase the productivity and improve meat quality. However, the optimum and maximum levels of BSR in broiler diets need to be assessed. The study determined the effect of different levels of supplementation of BSR (directly derived, unprocessed) in diets for broiler chickens on the production traits, selected slaughter analysis parameters, nutrient digestibility and selected hematological, biochemical and immunological parameters. In total, 200 1-day-old broiler chickens were assigned randomly to four treatments with five replicate cages of 10 broiler chickens/cage (five females and five males). The experiment lasted 6 weeks, and the broiler chickens were fed diets containing 0% (control), 3% (BSR3), 4% (BSR4) or 5% (BSR5). In the broiler chickens receiving diets with addition of resin BSR3 and BSR4, there was an increase in (P<0.05) BW gain, ether extract, ADF, organic matter and energy digestibility of the diets. Moreover, the best carcass quality with a high proportion of muscles and low abdominal fat content (P<0.05) was noted in these groups. The content of uric acid (P<0.01) and the activity of aspartate aminotransferase (P<0.001) and alkaline phosphatase (P<0.05) in blood plasma decreased upon the BSR supplementation. Globulin content increased in blood plasma (P<0.05) along the increasing level of BSR. The blood immunoglobulin A concentration was only affected by the BSR treatments (P<0.05). It may be concluded that BSR can be regarded as a safe and effective dietary additive for broiler chicken.  相似文献   

7.
A trial was conducted to study the influence of cooking–flaking (C-F) of maize and enzyme supplementation (ES) of the diet on mucosa morphometry, digestive organ weight, dietary component digestibility and growth performance of broilers from 1 to 21 days of age. There were 4 treatments arranged factorially with 2 heat processings of maize (raw and C-F) and 2 levels (0 and 500 mg/kg) of an enzyme complex with xylanase, protease and α-amylase activity. Dietary treatment did not affect any productive trait from 1 to 21 days of age. However, from 1 to 4 days of age, body weight gain (P<0.01) and feed conversion ratio (P<0.001) were improved by ES of the diet. Intestinal viscosity increased with C-F of maize and decreased with ES of the diet (P<0.001). The effects of ES on intestinal viscosity were more pronounced with C-F than with raw maize (P<0.001) and at younger than older ages (P<0.05). Cooking–flaking of maize increased total tract apparent digestibility of dry matter and organic matter (P<0.05) and of neutral detergent fibre and starch (P<0.001) and tended to improve ether extract (EE) digestibility (P<0.10). In addition, ES improved nitrogen retention (P<0.01) and EE digestibility (P<0.001). Digestibility of neutral detergent fibre and starch increased linearly (P<0.001) with age whereas nitrogen retention and organic matter, EE and gross energy digestibility decreased from 4 to 8 days of age and increased thereafter (P<0.001). The relative weight (g/kg body weight) of the pancreas decreased (P<0.01) and that of the liver increased (P<0.001) with C-F of maize. The relative weight of the proventriculus, gizzard and liver reached a maximum before 6 days of age and that of the small intestine and pancreas at approximately 7.8 days of age (P<0.001). Enzymes increased villus height (P<0.05) but did not affect villus width or villus surface area. It is concluded that C-F of maize improved dietary component digestibility but had no effect on broiler performance at 21 days of age. In addition, ES improved nitrogen retention, EE digestibility and productive performance of broilers but only from 1 to 4 days of age.  相似文献   

8.
Sixty individually housed male pigs (Large White X Landrace, average weight 19.7±0.56 kg) were used in a completely randomised block design having five wheat-based dietary treatments (n=12 pigs per treatment) to study the interactive effects between added xylanase (XYL) and phytase (PHY), either alone or in combination, and days on trial on coefficient of total-tract digestibility (CTTAD) and performance. The diets used were: (i) positive control (PC); (ii) negative control with reduced energy and mineral content (NC); (iii) NC with added XYL (NCX); (iv) NC with added PHY (NCP); and (v) NC with added XYL plus PHY (NCXP). The performance response and CTTAD of dietary components were measured 3 and 7 weeks after commencement of feeding, with the experiment finishing when pigs reached approximately 65 kg live weight.Pigs fed the NC diet decreased average daily gain (ADG) by 13% (P<0.01) and increased feed conversion ratio (FCR) by 11% (P<0.01) compared to pigs fed the PC diet. Addition of PHY in the NC diet increased ADG by 9% (P<0.05) and decreased FCR by 5% (P=0.065), whilst addition of XYL in the NC diet had no effect on the performance indices. Combined addition of XYL and PHY in the NC diet did not improve performance of pigs for the first 21 days but improved FCR by 8% (P=0.008) during the days 22–49. Digestibility measurements showed that combined use of XYL and PHY in the NC diet improved CTTAD of dry matter (DM, P<0.05), gross energy (GE, P<0.05) and crude protein (CP, P<0.01) only during the days 22–49. Independent supplementation of PHY in the NC diet tended to improve CTTAD of GE (P=0.09) only during the days 22–49. In contrast, supplementation of PHY immediately improved CTTAD of P and maintained it to similar levels at 49 days. Results suggested that supplementation of PHY plus XYL in combination in the NC diet improved FCR and CTTAD of DM, GE, CP and P but the beneficial effects other than CTTAD of P were derived mainly during days 22–49.  相似文献   

9.
The effects of different sources of dietary fibre on gastrointestinal tract (GIT) development and digesta pH were studied in 25-day-old broilers. There were four diets: a control diet low in fibre content (37.3 g neutral detergent fibre and 16.0 g acid detergent fibre/kg) and three additional diets in which 30 g/kg of cellulose (CEL), sugar beet pulp (SBP) or oat hulls (OH) were included at the expenses of sepiolite (a complex magnesium silicate clay). The relative weight (RW, %BW) of the GIT was greater with the SBP – than with the CEL – and the control diets. Also, gizzard RW was higher with the diet containing OH than with the diet containing CEL or the control diets, with the SBP diet being intermediate (P≤0.001). Fibre inclusion modified the pH of the GIT (P≤0.05) but the effects depended on the type of fibre. Crop pH was higher and proventriculus pH lower with SBP than with the other diets. However, gizzard pH was reduced with SBP and OH but not with CEL (P≤0.05). The pH of the digesta of the duodenum was similar for all diets but that of the jejunum, Meckel's diverticulum and ileum increased with SBP and decreased with CEL inclusion (P≤0.05). We concluded that dietary fibre affects the development and pH value of the different segments of GIT and that the effects differ according to the physico-chemical characteristics of the source of fibre used.  相似文献   

10.
The influence of enzyme supplementation on performance and intestinal viscosity of male broiler chickens fed with diets containing high amount of wheat was examined in three experiments. In the first experiment, addition with an enzyme preparation including different cell wall degrading enzymes to diets containing 63 g kg−1 and 72 g kg−1 of wheat improved (P<0.05) feed conversion efficiency in the 72 g kg−1 wheat diet. In addition, intestinal viscosity of chickens fed with the 72 g kg−1 wheat diet was reduced (P<0.05). Weight gain and feed intake were not influenced by enzyme addition. In Experiments 2 and 3, the inclusion level of wheat in the diets was more than 80 g kg−1 and four different enzyme preparations were used (two xylanase preparations, two mixed preparations). Overall, a significant effect on performance and intestinal viscosity of chickens was obtained as a result of enzyme supplementation in both experiments. In the first 21 days, improvements (P<0.05) in weight gain and feed conversion efficiency were found to be on average 5% and 6% in Experiment 2 and 7% and 8% in Experiment 3, respectively. When weight gain and feed conversion efficiency were examined on a weekly basis it was shown that the significant response of enzyme addition was confined to the first 4 weeks. However, the effect of enzyme supplementation was still significant in the whole period from 21–42 days. Feed intake was not influenced by enzyme addition. The viscosity of intestinal content in both the jejunum and ileum was in general reduced (P<0.05) with enzyme supplementation, the xylanase preparations proving to be the most efficient. It was concluded that enzyme supplementation of wheat-based diets resulted in improved performance of broiler chickens, which was related to a concomitant reduction in intestinal viscosity. However, the response of enzyme supplementation was most pronounced in diets with a wheat content higher than 80 g kg−1.  相似文献   

11.
Two experiments were conducted to determine the effect of enzyme supplementation on the nitrogen-corrected apparent metabolisable energy (AMEn) and apparent nutrient digestibilities in ileum and excreta from male broiler chickens fed diets containing high amounts of wheat (>80%). Four different enzyme preparations were added to the wheat-based diets in varying levels and combinations. The difference between Experiments 1 and 2 consisted in the addition of different enzymes and enzyme levels. Excreta and ileal content were collected from broiler chickens at 3 and 6 weeks of age. At 3 weeks of age enzyme supplementation increased (P<0.0001) the AMEn from an average value of 13.86 MJ kg−1 dry matter (DM) to an average of 14.60 MJ kg−1 DM in the two experiments. The apparent digestibility of protein (APD) and fat (AFD) were improved significantly as a result of enzyme addition in both experiments. At 3 weeks of age, improvements (P<0.05) in the ileal AFD and APD were on average 13% and 6%, respectively. The effect of enzyme supplementation on AFD measured in excreta from broiler chickens showed the same pattern. The positive effect of enzyme addition on the overall nutrient digestibility and AMEn was reflected in weight gain and feed conversion efficiency (FCE). Significant improvements in AMEn, APD, and AFD were still present in most of the groups fed with enzyme-supplemented diets at 6 weeks of age. The effect of enzyme addition, however, was less pronounced, especially in Experiment 1 where the ileal APD of broiler chickens did not differ significantly from the control group. Apparent starch digestibility (ASD), measured in Experiment 2, was very high in all groups, including the control; however, enzyme supplementation increased ASD (P<0.001) in ileum and excreta at both 3 and 6 weeks of age. The digestibility of total non-starch polysaccharides (NSP) in excreta was improved significantly (P<0.01) as a result of enzyme supplementation (Experiment 2). In addition, pH of caeca content decreased (P<0.02) in broiler chickens fed with enzyme-supplemented diets when compared with the control group. Decreased pH could indicate microbial fermentation of unabsorbed NSP residues and nitrogenous compounds. Overall, the results demonstrated that the nutritive value of wheat-based diets to broiler chickens improve enzyme supplementation. The apparent digestibility of total NSP and of arabinose and xylose residues improved (P<0.02) in the enzyme-supplemented diets indicating that the enzymes were able to break down the cell wall NSP to a certain extent.  相似文献   

12.
The aim of the present experiment was to examine the effect of different levels of rapeseed meal (RSM) and sunflower meal (SFM) and enzyme combination (endoxylanase and β-glucanase) on the production performance, carcass quality, gizzard development and digesta viscosity of broiler chickens. The experimental design was a 3×2 factorial arrangement of treatments evaluating three diet types containing different levels of RSM and SFM (low (L), medium (M) and high (H)) and two levels of enzyme inclusion (0 or 100 g/tonne diet to provide 1220 U xylanase and 152 U β-glucanase per kg diet). Broiler starter and grower/finisher diets were formulated, based on wheat and soya bean meal and containing 50, 50 and 80 g/kg RSM and 0, 50 and 60 g/kg SFM for L, M and H treatments, respectively, during starter period and 80, 80 and 120 g/kg RSM and 0, 80 and 100 g/kg SFM for L, M and H, respectively, during grower/finisher period, and each diet was fed ad libitum to eight pens of 20 male broilers each. During the starter period (1 to 21 days), birds fed the H treatment had lower (P<0.05) BW gain (BWG) compared with those fed the L and M treatments. Diet type also influenced (P<0.05) feed intake (FI). Feeding the H treatment reduced (P<0.05) FI compared with the M treatment. Diet type and enzyme supplementation had no effect (P>0.05) on feed conversion ratio (FCR). During the grower/finisher phase (22 to 42 day) and over the entire period (1 to 42 day) birds fed the H treatment had lower (P<0.05) BWG and higher (P<0.05) FCR compared with those fed the L and M diets. Enzyme supplementation improved (P<0.05) FCR compared with the unsupplemented diets. No interactions (P>0.05) between RSM and SFM inclusion level and enzyme supplementation were observed for any of the measured parameters at any period. Diet type and enzyme supplementation had no effect (P>0.05) on carcass traits, abdominal fat pad, breast meat yield and jejunal digesta viscosity. Diet type influenced (P=0.05) relative empty gizzard weight, where the H treatment had higher relative empty gizzard weight compared with the L treatment. Enzyme supplementation tended (P=0.10) to increase relative empty gizzard weight. The present data suggest that high inclusion of SFM and RSM negatively influenced broiler performance. Enzyme supplementation improved FCR at all levels of RSM and SFM included in this study, but did not recover the reduction in weight gain caused by high inclusion of RSM and SFM.  相似文献   

13.
The study was conducted to investigate the effects of different levels of eucalyptus powder (EP), virginiamycin and probiotic on performance, immunity, blood components and carcass traits of broiler chickens. A total of 250, 1-day-old male broiler chickens (Ross 308) were randomly allocated to five treatments with five replicates and 10 chicks each, as a completely randomized design. The dietary treatments consisted of: basal diet (BD), BD+0.25% EP, BD+0.5% EP, BD+0.01% of diet probiotic (Protexin), BD+0.02% of diet antibiotic (virginiamycin). Dietary supplementation did not affect feed intake, BW gain (BWG) and feed conversion ratio (FCR) during starter and grower phases, but BWG and FCR were affected during the finisher and whole periods (P<0.05).The highest BWG and lowest FCR were obtained in birds fed with virginiamycin and 0.5% EP. Dietary supplementation significantly increased the relative weight of carcass and breast (P<0.05). Treatments had no effect on relative weights of internal organs and small intestine except for bursa that increased by treatments. Relative length of jejunum also increased by treatments (P<0.05). Antibody production against sheep red blood cells did not changed in primary titer (day 35), but it significantly increased in secondary titer (day 42) by 0.5% EP. White blood cell counts were increased and cholesterol decreased by dietary supplementation (P<0.05). In conclusion, the results of this study showed that 0.5% EP served as a useful replacement for antibiotic and would improve performance and immune response of broiler chickens.  相似文献   

14.
An experiment was conducted to investigate the effect of phytase transgenic corn (PTC) on intestinal microflora, and the fate of transgenic DNA and protein in the digesta and tissues of broilers. A total of 160 1-day-old Arbor Acres commercial male broilers were randomly assigned to 20 cages (8 chicks per cage) with 10 cages (replicates) for each treatment. Birds were fed with a diet containing either PTC (54.0% during 1–21 days and 61.0% during 22–42 days) or non-transgenic isogenic control corn (CC) for a duration of 42 days. There were no significant differences (P>0.05) between birds fed with the PTC diets and those fed with the CC diets in the quantities of aerobic bacteria, anaerobic bacteria, colibacillus and lactobacilli, or microbial diversities in the contents of ileum and cecum. Transgenic phyA2 DNA was not detected, but phyA2 protein was detected in the digesta of duodenum and jejunum of broilers fed with the PTC diets. Both transgenic phyA2 DNA and protein fragments were not found in the digesta of the ileum and rectum, heart, liver, kidney, and breast or thigh muscles of broilers fed with the PTC diets. It was concluded that PTC had no adverse effect on the quantity and diversity of gut microorganisms; Transgenic phyA2 DNA or protein was rapidly degraded in the intestinal tract and was not transferred to the tissues of broilers.  相似文献   

15.
An experiment was conducted to investigate the effects of dietary energy level on the performance and immune function of stressed broiler chickens (Gallus gallus domesticus). A total of 96 three-day-old male broiler chickens (Ross × Ross) were divided into two groups. One group received a high energy (HE) diet and the other group received a low energy (LE) diet for 7 days. At 5 days of age, the chickens from each group were further divided into two sub-groups and received one of the following two treatments for 3 days: (1) subcutaneous injection of corticosterone, twice per day (CORT group; 2 mg of CORT/kg BW in corn oil) and (2) subcutaneous injection of corn oil, twice per day (Control/Sham treatment group). At 10 days of age, samples of blood, duodenum, jejunum, and ileum were obtained. Compared with the other three groups, the LE group treated with CORT had the lowest average daily gain (ADG) and the poorest feed conversion ratio (FCR, P < 0.05). Furthermore, CORT treatment decreased the relative weight (RW) of the bursa independent of the dietary energy level, but it decreased the RW of the thymus only in the chickens fed the LE diet. By contrast, CORT administration decreased the RW of the spleen only in the chickens fed the HE diet (P < 0.05). The plasma total protein, albumin, tumor necrosis factor alpha, interleukin 2 and immunoglobulin G (IgG) levels were affected by the CORT treatment (P < 0.05); however, these factors were not significantly affected by the dietary energy level. Toll-like receptor-5 mRNA level was down-regulated by CORT injection in the duodenum and ileum (P < 0.05) and showed a trend of down-regulation in the jejunum (P=0.0846). The present study showed that CORT treatment induced immunosuppressive effects on the innate immune system of broiler chickens, which were ameliorated by consumption of higher dietary energy.  相似文献   

16.
This trial studied the effect of including mannanoligosaccharides (MOS, Bio-Mos®, Alltech Inc., USA) in the diet on the caecal volatile fatty acids (VFA) and pH of rabbits from 34 to 90 days of age. Three experimental diets were compared: control diet, zinc bacitracin (ZnBac) diet (control diet with 0.1 g ZnBac/kg feed) and MOS diet (control diet with 2.0 g MOS/kg feed). Rabbits were slaughtered at 34, 48, 69 and 90 days of age and caecal contents were collected and analyzed for dry matter, pH and VFA concentration. The empty caecum and caecal contents weights relative to live weight were also determined.Age affected (P<0.0001) VFA concentration and pH values in the caecum. The pH decreased with age whereas VFA concentration increased. Rabbits fed MOS had higher (P<0.05) VFA and tended (P=0.098) to had lower pH in the caecum than rabbits fed ZnBac and control diets. Acetic, propionic and butyric acids concentrations in the caecum increased with MOS but its molar proportions were similar among diets. Diet had no effect on empty caecum weight and caecal contents weight and dry matter concentration. There was no interaction effect between diet and age. From 34 to 90 days of age, VFA production was higher (P<0.05) in the caecum of rabbits fed MOS than in those fed ZnBac diet and control diet.The addition of MOS to the diet increased the VFA concentration in the caecum of growing rabbits from 34 to 90 days of age.  相似文献   

17.
The effect of dietary sodium butyrate (SB) or salinomycin (SAL) or both additives on performance, small intestinal morphology and microbial ecology of broiler chickens was studied. A growth trial was conducted with 96 Ross 308 female broilers from 1 to 30 days of age. Four treatment groups were fed with a non-supplemented control diet or three experimental diets supplemented with i) 300 mg SB (Adimix 30 coated) per kg, ii) 60 mg SAL (Sacox) per kg or iii) both additives in combination. Feed intake and body-weight gain decreased and gain-to-feed ratio increased due to SAL supplementation, while addition of SB did not affect performance in comparison with the control diet but positively affected feed intake and body-weight gain in comparison with birds fed the SAL-supplemented diet. Villus height in jejunum decreased, while crypt depth increased due to SAL supplementation. Addition of SB increased crypt depth in jejunum. No significant effect of either additive was observed in ileum morphology. Total short-chain organic acids concentration in ileal digesta decreased with SAL supplementation, mainly due to lower lactic acid concentration, but no effects were observed in the caeca. The SAL supplementation was accompanied by a pH increase in ileum and a pH decrease in caecum. No significant effect of SB addition was observed for these parameters. Total bacterial numbers and Lactobacillus [lactic acid bacteria (LAB)] counts in ileal and caecal contents were lower in birds fed with SAL-supplemented diet in comparison with birds fed with control or SB diet. DNA fingerprints revealed SAL supplementation to affect the microbial population by suppressing dominating LAB, potentially L. aviarius. The presented results show that dietary SAL, supplemented alone or in combination with SB, suppressed the microbial activity and altered the microbial community structure mainly in ileum. SAL alone negatively affected feed intake and body-weight gain; however, the effect was ameliorated by SB supplementation.  相似文献   

18.
Grape seed extracts (GSE) contain several beneficial bioactive constituents; therefore, can be utilized as a potential feed additive in broiler chickens. An experiment was conducted to investigate the effect of supplementation of broiler chicken diets with GSE as a natural antioxidant at levels of 125, 250, 500, 1000 and 2000 ppm on the growth performance, serum lipid profile, liver glutathione-reduced, thigh muscle malondialdehyde and humoral immune response against Newcastle disease virus vaccines. This experiment was performed during the life-span of chickens from 0 to 42 days of age. The results of broilers fed on diet supplemented by GSE were compared with those fed on the basal diet (control) or the basal diet supplemented by butylated hydroxytoluene as a synthetic antioxidant (BHT, 125 ppm). No significant differences were observed in the growth performance, percent livability, total lipid, high and very low-density lipoprotein cholesterols when the use of GSE or BHT were compared with the control. Total cholesterol and low-density lipoprotein cholesterol were significantly decreased after intake of GSE compared with BHT in the feed diet. The glutathione-reduced level in liver tissues was significantly increased by inclusion of GSE, but not by BHT. Inclusion of GSE or BHT decreased significantly the malondialdehyde level found in meat tissue. The antibody titer against Newcastle disease virus vaccines was significantly elevated in 28 and 35-day-old broiler chickens fed with a diet supplemented with GSE or BHT, the former providing a higher response. It can be concluded that GSE can be used as an effective natural antioxidant and immunostimulant agent in broiler chicken diets, and that 125 to 250 ppm can be considered as the optimum dosage.  相似文献   

19.
Due to antimicrobial resistance and the public health hazard of antibiotic growth promoters, there is a grave need to find potential alternatives for sustainable poultry production. Piper betle (PB) and Persicaria odorata (PO) are herbs, which have been reported for antimicrobial, antioxidant, and anti-inflammatory properties. The present study aimed to estimate the influence of different dose supplementation of Piper betle leaf meal (PBLM) and Persicaria odorata leaf meal (POLM) on growth performance, ileal digestibility and gut morphology of broilers chickens. A total of 210 one day-old broiler chicks were randomly grouped into 7 treatments, and each treatment group has 3 replicates (n = 10) with a total number of 30 chicks. The treatments included T1 control (basal diet (BD) with no supplementation), T2 (BD + 2 g/kg PBLM); T3 (BD + 4 g/kg PBLM), T4 (BD + 8 g/kg PBLM), T5 (BD + 2 g/kg POLM), T6 (BD + 4 g/kg POLM), T7 (BD + 8 g/kg POLM). Growth performance, gut morphology and ileal digestibility were measured. Except for T4 (8 g/kg PBLM), graded dose inclusion of PBLM and POLM increased (P < 0.05) the body weight gain (BWG), positively modulated the gut architecture and enhanced nutrient digestibility in both stater and finisher growth phases of broiler chickens. Birds fed on PBLM 4 g/kg (T3), and POLM 8 g/kg (T7) had significantly higher (P < 0.05) BWG with superior (P < 0.05) feed efficiency in the overall growth period. Chickens fed on diets T3 and T7 had longer (P < 0.05) villi for duodenum as well as for jejunum. Furthermore, the birds fed on supplementations T3 and T7 showed improved (P < 0.05) digestibility of ether extract (EE), and dry matter (DM) compared to the control group. However, least (P < 0.05) crude protein (CP) digestibility was recorded for T4. In conclusion, dietary supplementations of PBLM 4 g/kg and POLM 8 g/kg were positively modulated the intestinal microarchitecture with enhanced nutrient digestibility, resulted in maximum body weight gain, thus improved the growth performance of broiler chickens.  相似文献   

20.
We explored whether bifidobacteria and lactobacilli numbers and other selected bacteria in the upper intestine and the caecum of growing pigs were affected by diet and intake of inulin. Starting at two weeks after weaning (28 d) 72 pigs were fed two types of diets (wheat/barley (WB) or maize/gluten (MG)), without or with 3% inulin (WB + I, MG + I) for three and six weeks. Intestinal bacteria were quantified by fluorescence-in-situ-hybridization (n = 8/group). Duration of feeding had no effect on the variables tested, so data for both periods were pooled. Gastric total bacteria amounted to log(10) 7.4/g digesta. Bifidobacteria were detected in stomach and duodenum two weeks after weaning and disappeared thereafter. In jejunum and caecum bifidobacteria were present at a level of log(10) 7.0/g digesta. Inulin did not alter numbers of lactobacilli, bifidobacteria, enterococci, enterobacteria and bacteria of the Clostridium coccoides/Eubacterium rectale-group. Inulin disappearance in stomach plus jejunum was higher with the MG diet (73.7 vs. 60.7%, p = 0.013). Caecal acetate was lower in inulin-supplemented diets (p < 0.05) whereas propionate and butyrate were higher in pigs fed the WB diets (p < 0.05). With the WB diet total caecal short chain fatty acids concentration was higher which resulted in a lower pH value (p < 0.05).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号