首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The celC gene, which codes for a new endoglucanase of Clostridium thermocellum, termed endoglucanase C, was found to be expressed when cloned in Escherichia coli. The enzyme was purified to electrophoretic homogeneneity from E. coli and its biochemical properties were studied. It differs from the previously studied endoglucanases A and B. In particular, endoglucanase C displays features common to endo- and exoglucanases, since it had a high activity on carboxymethylcellulose and on p-nitrophenyl-beta-D-cellobioside where only the agluconic bond was split. In addition, the enzyme was able to release cellobiose units from G3, G4 and G5 cellodextrins. Endoglucanase C was characterized by Western blot in a culture supernatant from C. thermocellum grown on cellulose, using an antiserum raised against the enzyme produced by E. coli.  相似文献   

2.
3.
iTRAQ-based quantitative secretome analysis of Phanerochaete chrysosporium   总被引:1,自引:0,他引:1  
The basidiomycete fungi such as Phanerochaete chrysosporium secrete large amount of hydrolytic and oxidative enzymes and degrade lignocellulosic biomass. The lignin depolymerizing proteins were extensively studied, but cellulose, hemicellulose and pectin hydrolyzing enzymes were poorly explored. In this study P. chrysosporium was grown in cellulose, lignin and mixture of cellulose and lignin, and secretory proteins were quantified by isobaric tag for relative and absolute quantitation (iTRAQ)-based quantitative proteomics using liquid chromatography tandem mass spectrometry (LC-MS/MS). An iTRAQ quantified 117 enzymes comprising cellulose hydrolyzing endoglucanases, exoglucanases, beta-glucosidases; hemicelluloses hydrolyzing xylanases, acetylxylan esterases, mannosidases, mannanases; pectin-degrading enzymes polygalacturonase, rhamnogalacturonase, arabinose and lignin degrading protein belonging to oxidoreductase family. Under cellulose and cellulose with lignin culture conditions, enzymes such as endoglucanases, exoglucanases, β-glucosidases and cellobiose dehydrogenase were significantly upregulated and iTRAQ data suggested hydrolytic and oxidative cellulose degradation. When lignin was used as a major carbon source, enzymes such as copper radical oxidase, isoamyl oxidase, glutathione S-transferase, thioredoxin peroxidase, quinone oxidoreductase, aryl alcohol oxidase, pyranose 2-oxidase, aldehyde dehydrogenase, and alcohol dehydrogenase were expressed and significantly regulated. This study explored cellulose, hemicellulose, pectin and lignin degrading enzymes of P. chrysosporium that are valuable for lignocellulosic bioenergy.  相似文献   

4.
Endoglucanases II, III and IV (EC 3.2.1.4) from Trichoderma viride are highly active in degrading CM-cellulose or phosphoric acid swollen cellulose, and only slightly active on Avicel. The specific activities of the endoglucanases increase with the length of the cellooligosaccharide substrates. By rate and product analyses using high pressure liquid chromatography the mode of action of Endoglucanase III was differentiated from that of Endoglucanases II and IV. Endoglucanase III has a low affinity for cellobiose, reacts rapidly with cellotriose, and gradually increases in reactivity with cellooligosaccharides as degree of polymerization increases from four to six. In addition to cleaving internal glycosidic bonds of polymeric substrates, it preferentially cleaves cellobiosyl units from the non-reducing end of oligosaccharides. The cellobiosyl units are often, under initial reaction conditions, transferred to the substrate-acceptor. Endoglucanases II and IV show a preference for internal glycosidic bonds of cellooligosaccharides. The soluble products from the initial action of Endoglucanases II and IV on swollen cellulose are glucose, cellobiose, and cellotriose, which are slowly converted to glucose and some cellobiose.  相似文献   

5.
6.
Six endoglucanases (Endo I; II; III; IV; V; VI), three exoglucanases (Exo I; II; III) and a beta-glucosidase (beta-gluc I) were isolated from a commercial cellulase preparation derived from Trichoderma viride, using gel filtration on Bio-Gel, anion exchange on DEAE-Bio-Gel A, cation exchange on SE-Sephadex and affinity chromatography on crystalline cellulose. Molecular masses were determined by polyacrylamide gel electrophoresis. One group of endoglucanases (Endo I, Endo II and Endo IV) with Mr of 50 000, 45 000 and 23 500 were more random in their attack on carboxymethylcellulose than another group (Endo III, Endo V and Endo VI) showing Mr of 58 000, 57 000 and 53 000 respectively. Endo III was identified as a new type of endoglucanase with relatively high activity on crystalline cellulose and moderate activity on carboxymethylcellulose. Exo II and Exo III with Mr of 60 500 and 62 000 respectively showed distinct adsorption affinities on a column of crystalline cellulose and could be eluted by a pH gradient to alkaline regions. These enzymes were cellobiohydrolases as judged by high-pressure liquid chromatography of the products obtained from incubation with H3PO4-swollen cellulose. It was concluded that these exoglucanases are primarily active on newly generated chain ends. Exo I was essentially another type of exoglucanase which in the first instance was able to split off a cellobiose molecule from a chain end and then hydrolyse this molecule in a second step to two glucose units beta-Gluc I was a new type of aryl-beta-D-glucosidase which had no activity on cellobiose. The enzyme had a Mr of 76 000 and was moderately active on CM-cellulose, crystalline cellulose and xylan and highly active on p-nitrophenyl-beta-D-glucose and p-nitrophenyl-beta-D-xylose.  相似文献   

7.
The cellulases that strains of Streptomyces albogriseolus, S. nitrosporeus, and Micromonospora melanosporea produce when grown on untreated ballmilled bagasse were investigated. Optimum conditions for extracellular cellulase production and activity were determined to be growth at pH 6.7-7.4 and 25-35 degrees C for 4-5 days and assay at pH 5.0-6.0 and 45-55 degrees C, respectively. The endoglucanases were thermally stable at 50 degrees C, but the Avicelases had a half-life of approximately 24 h at this temperature. Nearly half of the endoglucanases and almost all of the Avicelases were absorbed on ballmilled bagasse after 15 min incubation at 50 degrees C. The beta-glucosidases were found to be mainly intracellular or cell wall bound. These mesophilic actinomycetes concomitantly produced xylanases and beta-xylosidases with cellulases that, apart from cellobiose and glucose, also release xylose from bagasse. This feature may be advantageous in the commerical application of the enzymes of mesophilic actinomycetes for the saccharification of natural cellulosic substrates.  相似文献   

8.
The formation and location of endo-1,4-beta-glucanases and beta-glucosidases were studied in cultures of Cellulomonas uda grown on microcrystalline cellulose, carboxymethyl cellulose, printed newspaper, and some mono- or disaccharides. Endo-1,4-Glucanases were found to be extracellular, but a very small amount of cell-bound endo-1,4-beta-glucanase was considered to be the basal endoglucanase level of the cells. The formation of extracellular endo-1,4-beta-glucanases was induced by cellobiose and repressed by glucose. Extracellular endoglucanase activity was inhibited by cellobiose but not by glucose. beta-Glucosidases, on the other hand, were formed constitutively and found to be cell bound. beta-Glucosidase activity was inhibited noncompetitively by glucose. Some characteristics such as the optimal pH for and the thermostability of the endoglucanases and beta-glucosidases and the end products of cellulose degradation were determined.  相似文献   

9.
Hill AD  Reilly PJ 《Biopolymers》2008,89(11):1021-1031
Glycoside hydrolase family 1 consists of beta-glucosidases, beta-galactosidases, 6-phospho-beta-galactosidases, myrosinases, and other enzymes having similar primary and tertiary structures but diverse specificities. Among these enzymes, beta-glucosidases hydrolyze cellobiose to glucose, and therefore they are key players in any cellulose to glucose process. All family members attack beta-glycosidic bonds between a pyranosyl glycon and an aglycon, but most have little specificity for the aglycon or for the bond configuration. Furthermore, glycon specificity is not absolute. Sixteen family members (six beta-glucosidases, two cyanogenic beta-glucosidases, one 6-phospho-beta-galactosidase, two myrosinases, and five beta-glycosidases) have known tertiary structures. We have used automated docking to computationally bind disaccharides with allopyranosyl, galactopyranosyl, glucopyranosyl, mannopyranosyl, 6-phosphogalactopyranosyl, and 6-phosphoglucopyranosyl glycons, all linked by beta-(1,2), beta-(1,3), beta-(1,4), and beta-(1,6)-glycosidic bonds to beta-glucopyranoside aglycons, along with beta-(1,1-thio)-allopyranosyl, -galactopyranosyl, -glucopyranosyl, and -mannopyranosyl) beta-glucopyranosides, into all of these structures to investigate the structural determinants of their enzyme specificities. The following are the eight active-site residues: Glu191, Thr194, Phe205, Asn285, Arg336, Asn376, Trp378, and Trp465 (Zea mays beta-glucosidase numbering), that control a significant amount of glycon specificity. (c) 2008 Wiley Periodicals, Inc. Biopolymers 89: 1021-1031, 2008.This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com.  相似文献   

10.
Five endoglucanases (1,4-beta-D-glucan-glucanohydrolase, EC 3.2.1.4) were isolated from Fusarium lini. Endo I and II were purified by preparative gel electrophoresis and Endo III, IV, and V were purified in a single-step procedure involving preparative flat-bed isoelectric focusing. All the endoglucanases were homogenous on disk gel electrophoresis and analytical isoelectric focusing in polyacrylamide gel. The pi values were between 6 and 6.6 for Endo III, IV, and V; for Endo I, the pi value was 8. The molecular weights of the enzymes were between 4 x 10(4) and 6.5 x 10(4). The K(m) values for endoglucanases using carboxymethyl cellulose (CM-cellulose) as the substrate were 2-12 mg/mL. The specificity of the enzymes was restricted to beta-1, 4-linkages. All the enzymes showed activity towards D-xylan. The endoglucanases had high viscosity reducing activity with CM-cellulose. Striking synergism was observed for the hydrolysis of CM-cellulose by endoglucanases. Endo II, IV, and V attacked cellopentaose and cellotetraose more readily than cellotriose. Endo II and V hydrolyzed cellotriose, cellotetraose, and cellopentaose, yielding a mixture of cellobiose with a trace amount of glucose; endo IV produced only cellobiose.  相似文献   

11.
The CelA beta-glucosidase of Azospirillum irakense, belonging to glycosyl hydrolase family 3 (GHF3), preferentially hydrolyzes cellobiose and releases glucose units from the C(3), C(4), and C(5) oligosaccharides. The growth of a DeltacelA mutant on these cellobiosides was affected. In A. irakense, the GHF3 beta-glucosidases appear to be functional alternatives for the GHF1 beta-glucosidases in the assimilation of beta-glucosides by other bacteria.  相似文献   

12.
Zhang  Cong  Wang  Xifeng  Zhang  Weican  Zhao  Yue  Lu  Xuemei 《Applied microbiology and biotechnology》2017,101(5):1919-1926

Cytophaga hutchinsonii is a gram-negative bacterium that can efficiently degrade crystalline cellulose by a novel strategy without cell-free cellulases or cellulosomes. Genomic analysis implied that C. hutchinsonii had endoglucanases and β-glucosidases but no exoglucanases which could processively digest cellulose and produce cellobiose. In this study, BglA was functionally expressed in Escherichia coli and found to be a β-glucosidase with wide substrate specificity. It can hydrolyze pNPG, pNPC, cellobiose, and cellodextrins. Moreover, unlike most β-glucosidases whose activity greatly decreases with increasing length of the substrate chains, BglA has similar activity on cellobiose and larger cellodextrins. The K m values of BglA on cellobiose, cellotriose, and cellotetraose were calculated to be 4.8 × 10−2, 5.6 × 10−2, and 5.3 × 10−2 mol/l, respectively. These properties give BglA a great advantage to cooperate with endoglucanases in C. hutchinsonii in cellulose degradation. We proposed that C. hutchinsonii could utilize a simple cellulase system which consists of endoglucanases and β-glucosidases to completely digest amorphous cellulose into glucose. Moreover, BglA was also found to be highly tolerant to glucose as it retained 40 % activity when the concentration of glucose was 100 times higher than that of the substrate, showing potential application in the bioenergy industry.

  相似文献   

13.
Trichoderma reesei produces five known endoglucanases. The most studied are Cel7B (EG I) and Cel5A (EG II) which are the most abundant of the endoglucanases. We have performed a characterisation of the enzymatic properties of the less well-studied endoglucanases Cel12A (EG III), Cel45A (EG V) and the catalytic core of Cel45A. For comparison, Cel5A and Cel7B were included in the study. Adsorption studies on microcrystalline cellulose (Avicel) and phosphoric acid swollen cellulose (PASC) showed that Cel5A, Cel7B, Cel45A and Cel45Acore adsorbed to these substrates. In contrast, Cel12A adsorbed weakly to both Avicel and PASC. The products formed on Avicel, PASC and carboxymethylcellulose (CMC) were analysed. Cel7B produced glucose and cellobiose from all substrates. Cel5A and Cel12A also produced cellotriose, in addition to glucose and cellobiose, on the substrates. Cel45A showed a clearly different product pattern by having cellotetraose as the main product, with practically no glucose and cellobiose formation. The kinetic constants were determined on cellotriose, cellotetraose and cellopentaose for the enzymes. Cel12A did not hydrolyse cellotriose. The k(Cat) values for Cel12A on cellotetraose and cellopentaose were significantly lower compared with Cel5A and Cel7B. Cel7B was the only endoglucanase which rapidly hydrolysed cellotriose. Cel45Acore did not show activity on any of the three studied cello-oligosaccharides. The four endoglucanases' capacity to hydrolyse beta-glucan and glucomannan were studied. Cel12A hydrolysed beta-glucan and glucomannan slightly less compared with Cel5A and Cel7B. Cel45A was able to hydrolyse glucomannan significantly more compared with beta-glucan. The capability of Cel45A to hydrolyse glucomannan was higher than that observed for Cel12A, Cel5A and Cel7B. The results indicate that Cel45A is a glucomannanase rather than a strict endoglucanase.  相似文献   

14.
Trp-262 of the Aspergillus niger family 3 beta-glucosidase is shown in this report to be a key residue for determining the ratio of this enzyme's hydrolytic and transglucosidic activities. TLC showed that when cellobiose was both the substrate and the acceptor, beta-glucosidases with substitutions (Phe, Ala, Leu, and Cys) for Trp-262 formed very high amounts of transglucosidic adducts. When pNPGlc was the substrate and the acceptor of the substituted beta-glucosidases, only transglucosidic adducts and pNP were produced. Little or no Glc could be detected, indicating that the reactions occurring were mainly transglucosidic. GLC studies with cellobiose quantitatively showed that one Glc was transferred for each free Glc produced. Since this is the maximum level of transglucosidation possible, this again showed that the reaction is predominantly transglucosidic. Analyses of the K(m) and K(i) values of cello-oligosaccharides of increasing length, of the K(i) values of Glc and of the transglucosidic activity at low acceptor concentration, showed that substitution for Trp-262 causes poor binding at the binding site for the non-reducing Glc of the substrate while the affinity for other Glc units is only minimally affected. The acceptor sites become saturated with substrate (acceptor) at the concentrations needed for glucosidic bond cleavage and thus only transglucosidic reactions occur. In addition, the data indicate that substitution for Trp-262 causes the rate of the hydrolysis step (k(3)) to be small.  相似文献   

15.
Erwinia chrysanthemi produces a battery of hydrolases and lyases which are very effective in the maceration of plant cell walls. Although two endoglucanases (CelZ and CelY; formerly EGZ and EGY) are produced, CelZ represents approximately 95% of the total carboxymethyl cellulase activity. In this study, we have examined the effectiveness of CelY and CelZ alone and of combinations of both enzymes using carboxymethyl cellulose (CMC) and amorphous cellulose (acid-swollen cellulose) as substrates. Synergy was observed with both substrates. Maximal synergy (1.8-fold) was observed for combinations containing primarily CelZ; the ratio of enzyme activities produced was similar to those produced by cultures of E. chrysanthemi. CelY and CelZ were quite different in substrate preference. CelY was unable to hydrolyze soluble cellooligosaccharides (cellotetraose and cellopentaose) but hydrolyzed CMC to fragments averaging 10.7 glucosyl units. In contrast, CelZ readily hydrolyzed cellotetraose, cellopentaose, and amorphous cellulose to produce cellobiose and cellotriose as dominant products. CelZ hydrolyzed CMC to fragments averaging 3.6 glucosyl units. In combination, CelZ and CelY hydrolyzed CMC to products averaging 2.3 glucosyl units. Synergy did not require the simultaneous presence of both enzymes. Enzymatic modification of the substrate by CelY increased the rate and extent of hydrolysis by CelZ. Full synergy was retained by the sequential hydrolysis of CMC, provided CelY was used as the first enzyme. A general mechanism is proposed to explain the synergy between these two enzymes based primarily on differences in substrate preference.  相似文献   

16.
Two endoglucanases of Trichoderma viride, endoI and endoIV, were assayed for their activity toward alkali-extracted apple xyloglucans. EndoIV was shown to have a 60-fold higher activity toward xyloglucan than endoI, whereas carboxymethyl cellulose and crystalline cellulose were better substrates for the latter. The enzymic degradation of cellulose embedded in the complex cell-wall matrix of apple fruit tissue has been studied using cellobiohydrolase (CBH) and these two different endoglucanases. A high-performance liquid chromatographic method (Aminex HPX-22H) was used to monitor the release of cellobiose and oligomeric xyloglucan fragments. Synergistic action between CBH and endoglucanases on cell-wall-embedded cellulose was, with respect to their optimal ratio, slightly different from that reported for crystalline cellulose. The combination of endoIV and CBH solubilized twice as much cellobiose compared to a combination of endoI and CBH. Apparently, the concomitant removal of the xyloglucan coating from cellulose microfibrils by endoIV is essential for an efficient degradation of cellulose in a complex matrix. Cellulose degradation slightly enhanced the solubilization of xyloglucans. These results indicate optimal degradation of cell-wall-embedded cellulose by a three-enzyme system consisting of an endoglucanase with high affinity toward cellulose (endoI), a xyloglucanase (endoIV), and CBH.  相似文献   

17.
The induction of beta-glucosidases (EC 3.2.1.21) was studied in Neurospora crassa. Cellobiase was induced by cellobiose, but other inducers had little effect on this enzyme. Cellobiase activity was very low in all stages of the vegetative life cycle in the absence of di-beta-glucoside inducer. Aryl-beta-glucosidase was semiconstitutive at late stages of culture growth prior to conidiation. At early stages, aryl-beta-glucosidase was induced by cellobiose, laminaribiose, and gentiobiose, and weakly induced by galactose, amino sugars, and aryl-beta-glucosides. The induction properties of the beta-glucosidases are compared with those of the other disaccharidases of Neurospora. The induction of beta-glucosidases was inhibited by glucose, 2-deoxy-d-glucose, and sodium acetate. Sodium phosphate concentrations between 0.01 and 0.1 M stimulated induction of both enzymes, while concentrations above 0.1 M were inhibitory. The optimal condition for induction of both beta-glucosidases was pH 6.0. Cellobiase induction was relatively more inhibited than aryl-beta-glucosidase in the range of pH 6.0 to 8.0.  相似文献   

18.
Cellobiose may exert different effects on the activities of various endoglucanases. The endoglucanases of T. reesei and Rapidase are noticeably suppressed by cellobiose at concentrations above 3 mM. On the other hand, a low molecular weight endoglucanase from T. koningii is activated by cellobiose, whereas high molecular weight endoglucanases from the same source are inhibited by cellobiose. A detailed kinetic analysis of the effects showed that the low molecular weight endoglucanase is activated by a transglycosylation mechanism, in which cellobiose acts as an additional nucleophile. At saturating concentrations of cellobiose (Ks = 15 mM) the enzyme activity is increased 6-fold. Such a specific mechanism of activation manifests itself in an acceleration of random cleavage of CM-cellulose by the low molecular weight endoglucanase, which can be recorded by a viscosimetric technique. However, its action does not accelerate the production of soluble reducing sugars.  相似文献   

19.
In studies on cellulase production by the cell-1 mutant of Neurospora crassa, eight enzymes (three exoglucanases, four endoglucanases, and one beta-glucosidase) were identified and characterized by gel filtration, ion exchange chromatography, and chromatofocusing. After purification, each of the proteins ran as a single band in polyacrylamide gel electrophoresis, using both native and denaturing gels. The molecular weights of the proteins were found to be between 70,000 and 22,000 daltons, and all were glycosylated, with carbohydrate contents ranging between 5.6% and 36%.  相似文献   

20.
The endoglucanase activity of cells and extracellular culture fluid of Fibrobacter succinogenes S85 grown on glucose, cellobiose, soluble polysaccharides (beta-glucan, lichenan) and intact plant polysaccharides, was compared. The specific activity of cells grown on cellulose or forages was 6- to 20-fold higher than that of cells grown on soluble substrates, suggesting an induction of endoglucanases by the insoluble substrates. The ratios of cells to extracellular culture fluid endoglucanase activities measured in cultures grown on sugars or insoluble polysaccharides suggested that the endoglucanases induced by the insoluble polysaccharides remained attached to the cells. The mRNA of all the F. succinogenes glycoside hydrolase genes sequenced so far were then quantified in cells grown on glucose, cellobiose or cellulose. The results show that all these genes were transcribed in growing cells, and that they are all overexpressed in cultures grown on cellulose. Endoglucanase-encoding endB and endA(FS) genes, and xylanase-encoding xynC gene appeared the most expressed genes in growing cells. EGB and ENDA are thus likely to play a major role in cellulose degradation in F. succinogenes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号