首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The conditions required for mammalian-type complex N-linked glycosylation of human proteins produced in insect cells with the baculovirus expression vector system were investigated. Marked alterations to N-linked glycosylation of human placental secreted alkaline phosphatase (SEAP) were observed with different baculovirus species, insect cell lines, and cell culture media. When a recombinant Autographa californica nucleopolyhedrovirus (AcMNPV) was used to produce SEAP in Trichoplusia ni (Tn-4h) cells cultured in serum-free medium, structural analyses indicated <1% hybrid and no complex oligosaccharides attached to SEAP, a typical result with the baculovirus expression vector system. However, when fetal bovine serum was added to the culture medium, 48 +/- 4% of the oligosaccharides were hybrid or complex (but asialylated) glycans. When a recombinant T. ni nucleopolyhedrovirus (TnSNPV) was similarly used to express SEAP in Tn-4h cells cultured in serum-containing medium, only 24 +/- 3% of the glycans contained terminal N-acetylglucosamine and/or galactose residues. In contrast, SEAP produced in Sf9 cells grown in serum-containing medium with AcMNPV contained <1% hybrid oligosaccharides and no complex oligosaccharides. The results illustrate that baculovirus type, host cell type, and the growth medium all have a strong influence on the glycosylation pathway in insect cells, resulting in significant alterations in structures and relative abundance of N-linked glycoforms. Although the addition of sialic acid residues to the SEAP glycans was not detected, possible approaches to obtain sialylated glycans are discussed.  相似文献   

2.
Summary The glycosylation and subsequent processing of native and recombinant glycoproteins expressed in established insect cell lines and insect larvae were compared. TheSpodoptera frugiperda (Sf21) andTrichoplusia ni (TN-368 and BTI-Tn-5B1-4) cell lines possessed several intrinsic glycoproteins that are modified with both N- and O-linked oligosaccharides. The N-linked oligosaccharides were identified as both the simple (high mannose) and complex (containing sialic acid) types. Similarly, theT. ni larvae also possessed intrinsic glycoproteins that were modified with O-linked and simple and complex N-linked oligosaccharides. Additionally, human placental, secreted alkaline phosphatase (SEAP) produced during replication of a recombinant baculovirus inT. ni larvae was modified with complex oligosaccharide having sialic acid linked α(2–6) to galactose.  相似文献   

3.
Summary The processing of the N-linked oligosaccharide modifying a secreted alkaline phosphatase glycoprotein (SEAP) expressed with a recombinantAutographa californica nuclear polyhedrosis virus was evaluated in insect cell lines established fromSpodoptera frugiperda, Trichoplusia ni, andMamestra brassicae. Studies with Endoglycosidase H (Endo H), which removes high-mannose oligosaccharides, revealed that 79% of the intracellular SEAP produced in theM. brassicae-derived MB0503 cell line was Endo H resistant. The commonly usedS. frugiperda Sf21 and Sf9 cell lines produced 44 and 21% Endo H-resistant intracellular SEAP, respectively. Detection of oligosaccharide moieties with lectins, which selectively recognize terminal sugars, identified only mannose residues on SEAP expressed in the six insect cell lines. However, the oligosaccharide moiety of SEAP expressed in a Chinese hamster ovary cell line contained sialic acid. Therefore, when expressed in mammalian cells, the oligosaccharide present on SEAP is processed into complex oligosaccharide, but in insect cells it is of the high-mannose type. Studies with inhibitors of the initial oligosaccharide processing steps demonstrated that all six cell lines possessed glycosidase I/II and mannosidase I activity and that glycosylation was required for secretion.  相似文献   

4.
Glycosylation is both cell line and protein dependent. Culture conditions can also influence the profile of glycoforms produced. To examine this possibility in the insect cell/baculovirus system, structures of N-linked oligosaccharides attached to SEAP (human secreted alkaline phosphatase), expressed under various culture conditions in BTI Tn5B1-4 cells, were characterized using FACE (fluorescence-assisted carbohydrate electrophoresis). Parameters varied were time of harvest, ammonia added during infection, dissolved oxygen, and temperature. It was found that glycosylation in the insect cell/baculovirus expression system is a robust, stable system that is less perturbed by variations in culture conditions than the level of protein expression. Addition of ammonia and low oxygen conditions affected SEAP expression, but not the oligosaccharide profile of SEAP. Time of SEAP harvest increased the amount of alpha-mannosidase resistant structures from 4.1% at 34 hours postinfection (h pi), to 5.0% at 100 h pi, and to 7.5% at 120 h pi. These structures were primarily sensitive to N-acetylhexosaminidase digest, although a small amount was insensitive to both mannosidase and N-acetyl-hexosaminidase digests. Lowering the temperature from 28 degrees C to 24 degrees C or even 20 degrees C, resulted in a twofold increase in oligosaccharides containing terminal alpha(1,3)-mannose residues. This condition did not affect the amount of mannosidase-resistant structures. However, this could result in more complete glycosylation of recombinant proteins in the BTI Tn5B1-4 cell line, because more structures with the potential for further processing would be produced.  相似文献   

5.
Eight lepidopteran cell lines were established recently and their susceptibility to different insect viruses was studied. Two Spodoptera litura cell lines from the larval and pupal ovaries, were found highly susceptible to S. litura nuclear polyhedrosis virus (SLNPV, 5-6 x 10(6) NPV/ml). The Helicoverpa armigera cell line from the embryonic tissue was highly susceptible to H. armigera NPV (HaNPV, 6.3 x 10(6) NPV/ml). These in vitro grown SLNPV and HaNPV caused 100% mortality to respective 2nd instar larvae. The susceptibility of the cryo-preserved cell lines to respective baculoviruses (SLNPV/HaNPV) was studied and no significant difference in their susceptibility status was observed. The cultures could grow as suspension culture on shakers and may find application for in vitro production of wild type/recombinant baculoviruses as bio-insecticides. S. litura and Bombyx mori cell lines from larval ovaries, were highly susceptible to Autographa californica NPV (5.5 x 10(6) NPV/ml) and Bombyx mori NPV (BmNPV, 6.1 x 10(6) NPV/ml) respectively. These cell lines may find application in baculovirus expression vector studies for the production of recombinant proteins, useful in the development of diagnostic kits or as vaccines.  相似文献   

6.
A Bombyx mori nucleopolyhedrovirus (BmNPV) bacmid expressing heavy and light chains of human 29IJ6 IgG was constructed and used to secrete recombinant antibody into silkworm larval hemolymph. Fifth instar silkworm larvae were reared and injected into the dorsum of the larvae with recombinant cysteine protease- and chitinase-deficient BmNPV (BmNPV-CP(-)-Chi(-)) bacmid/29IJ6 IgG and harvested after approximately 6 days. The total yield of recombinant 29IJ6 IgG was 36 microg/larvae, which is equivalent to 8 mg/kg of larvae. The recombinant antibody was purified to homogeneity using a HiTrap rProtein A FF column with a purification yield of 83.1%. The purified protein was identified by Western blot and ELISA experiments. The N-linked glycan structure of the purified protein was determined by the HPLC mapping method. The N-glycans of the 29IJ6 IgG glycoprotein produced in, and secreted by the silkworm larvae were composed exclusively of two kinds of paucimannose-type oligosaccharides, Manalpha1-6Manbeta1-4GlcNAcbeta1-4(Fucalpha1-6)GlcNAc and Manalpha1-6(Manalpha1-3)Manbeta1-4GlcNAcbeta1-4(Fucalpha1-6)GlcNAc.  相似文献   

7.
A recombinant N-linked glycoprotein, secreted human placental alkaline phosphatase (SEAP), was produced in two Trichoplusia ni insect cell lines using the baculovirus expression vector. Silkworm hemolymph (SH) was added to TNMFH + 10% fetal bovine serum (FBS) medium to a concentration of 2.5% or 5%, and SEAP production and glycosylation in the presence of SH were compared with controls devoid of hemolymph. Growing Tn-4s cells in 5% SH-supplemented medium required progressive adaptation of the cells to SH, and adapted cells had a SEAP specific yield decreased by 2.5-fold compared with control cells not exposed to SH. Although SEAP produced in the control possessed little complex glycosylation (<1%), SEAP produced by SH-adapted cells in the presence of 5% SH possessed 8.7% sialylated structures, as well as unusual, asialylated, agalactosylated structures with a high degree of polymerization (DP). On the basis of enzymatic and mass-spectrometric analyses, we propose that these structures are glucosylated, high-mannose oligosaccharides. SEAP was also produced by Tn-4s cells without adaptation to SH when SH was added just prior to baculovirus infection, but SEAP specific yield was adversely affected (approximately fourfold reduction compared with control devoid of hemolymph), and glycosylation of SEAP produced under these conditions was characterized by large amounts of high-mannose and high-DP structures and an absence of complex structures. Similarly, Tn5B1-4 cells that were not adapted to SH had a SEAP specific yield reduced by approximately fivefold in SH-containing medium; however, these cells were able to produce 13.5% sialylated SEAP in the presence of 2.5% SH, whereas complex structures were not produced in the absence of SH. We propose that SH improves glycosylation either directly or indirectly by decreasing SEAP specific yield.  相似文献   

8.
The N-glycans of human serum transferrin produced in Trichopulsia ni cells were analyzed to examine N-linked oligosaccharide processing in insect cells. Metabolic radiolabeling of the intra- and extracellular protein fractions revealed the presence of multiple transferrin glycoforms with molecular weights lower than that observed for native human transferrin. Consequently, the N-glycan structures of transferrin in the culture medium were determined using three-dimensional high performance liquid chromatography. The attached oligosaccharides included high mannose, paucimannosidic, and hybrid structures with over 50% of these structures containing one fucose, alpha(1,6)-, or two fucoses, alpha(1,6)- and alpha(1,3)-, linked to the Asn-linked N-acetylglucosamine. Neither sialic acid nor galactose was detected on any of the N-glycans. However, when transferrin was coexpressed with beta(1,4)-galactosyltransferase three additional galactose-containing hybrid oligosaccharides were obtained. The galactose attachments were exclusive to the alpha(1, 3)-mannose branch and the structures varied by the presence of zero, one, or two attached fucose residues. Furthermore, the presence of the galactosyltransferase appeared to reduce the number of paucimannosidic structures, which suggests that galactose attachment inhibits the ability of hexosaminidase activity to remove the terminal N-acetylglucosamine. The ability to promote galactosylation and reduce paucimannosidic N-glycans suggests that the oligosaccharide processing pathway in insect cells may be manipulated to mimic more closely that of mammalian cells.  相似文献   

9.
The effect of dissolved oxygen concentration on human secreted alkaline phosphatase (SEAP) glycosylation by the insect cell-baculovirus expression system was investigated in a well-controlled bioreactor. Oligomannose-type N-linked glycans (i.e., Man2 to Man6 and Man3F) were present in SEAP produced by Spodoptera frusiperda Sf-9 (Sf-9) and Trichoplusia ni BTI-Tn-5B1-4 (Tn-5B1-4) insect cell lines. The relative amounts of the most highly processed glycans (i.e., Man3F and Man2 in the SEAP from Sf-9 and Tn-5B1-4 cells, respectively) were significantly higher at 50% of air saturation than at either 10% or 190% of air saturation. That is, glycan processing was inhibited at both low and high dissolved oxygen concentrations.  相似文献   

10.
Under High Aspect Ratio Vessel (HARV) bioreactor culture conditions designed to simulate the microgravity of orbital space flight, insect tissue culture cells infected with a baculovirus expression vector produced a human glycoprotein with tri- and tetra-antennary complex N-linked oligosaccharides containing terminal sialic acid residues. The oligosaccharide structures were similar to those produced in human placental cells. Insect cells cultured in T-flasks only performed incomplete oligosaccharide processing. The mechanism of HARV-mediated changes in the eukaryotic N-linked glycosylation pathway was investigated and could be mimicked under T-flask growth conditions with the addition of N-acetylmannosamine to the culture medium. The significance of these investigations is discussed with respect to the production of recombinant therapeutic glycoproteins, insect physiology, and orbital space flight.  相似文献   

11.
The larvae of the fly Lucilia cuprina cause a cutaneous myiasis in mammalian hosts, particularly sheep. The glycoprotein, peritrophin-95, isolated from Lucilia cuprina larval peritrophic matrix, is a candidate vaccine antigen. This protein induced an immune response in vaccinated sheep that inhibited larval growth. Recombinant forms of peritrophin-95 were produced in bacteria and baculovirus-infected insect cells. The bacterial protein was not glycosylated and incorrectly folded whereas the insect cell-expressed protein was glycosylated and probably correctly folded. Sheep immunised with purified native peritrophin-95 generated strong larval growth inhibitory activity in their sera, whereas sheep immunised with either recombinant form of peritrophin-95 generated only relatively weak inhibitory activity. Ingested ovine antibodies to native peritrophin-95 mediated the anti-larval growth activity and this was independent of the presence of ovine complement. The activity was associated with IgG(1) and IgG(2) but not IgM. There were strong antibody responses to both the correctly folded native peritrophin-95 polypeptide and the oligosaccharides present on this glycoprotein. Immuno-affinity isolation of antibody to the peritrophin-95 polypeptide and antibody to peritrophin-95 oligosaccharides demonstrated that the larval growth inhibitory activity resided with both antibodies. Lectin blots and ELISA data showed substantial differences between the oligosaccharides attached to native peritrophin-95 and insect cell-expressed recombinant peritrophin-95. It was concluded that the oligosaccharides attached to native peritrophin-95 and its unique polypeptide structure are essential for the induction of larval growth inhibitory activity in the sera of sheep vaccinated with this antigen.  相似文献   

12.
The full-length bovine interferon-gamma (bIFN-gamma) cDNA, including the secretion signal peptide coding region was recloned into baculovirus transfer vectors pAcYM1 and pBm050. These vectors were co-transfected with Autographa californica nuclear polyhedrosis virus (AcNPV) or Bombyx mori nuclear polyhedrosis virus (BmNPV) DNA into Spodoptera frugiperda cells (SF21AE) and Bombyx mori cells (BmN), respectively. The recombinant viruses, named AcBIFN-gamma and BmBIFN-gamma, were then recovered. Recombinant bIFN-gamma (rbIFN-gamma) was accumulated in the culture fluid of AcBIFN-gamma-infected Trichoplusia ni cells and BmBIFN-gamma-infected silkworm larvae. These rbIFN-gamma forms were shown to be glycosylated 20 and 22 kDa proteins as confirmed by SDS-PAGE and tunicamycin treatment. These products were sensitive to cystein proteinase. Both rbIFN-gamma proteins, showed high-level biological activities by plaque reduction assay using vesicular stomatitis virus, and MHC class II antigen induction on bovine macrophage cells.  相似文献   

13.
A hybrid of Autographa californica nuclear polyhedrosis virus and Bombyx mori nuclear polyhedrosis virus, which is infectious to both Spodoptera frugiperda and Bombyx mori, was prepared in our previous study. Two recombinant hybrid baculoviruses, carrying cDNAs of human acidic and basic fibroblast growth factors, respectively, were successfully constructed in this study, for the large-scale production of human aFGF and bFGF using silkworm as host. These recombinant viruses were used to inoculate silkworm larvae. After the infection, the recombinant proteins were not found in the hemolymph. Such nonsecretion from cells has also been observed in the established insect cell lines, Sf21 and Tn-5. Tissue distribution analysis indicated that the expressed products were mainly located in fat body and the production of the recombinant aFGF and bFGF was maximal at around 80 h postinfection. Therefore, silkworm larvae infected with recombinant viruses were dissected and fat bodies were collected for the purification of recombinant aFGF and bFGF. The expression levels in both cases were estimated to be as high as approximately 600-700 microg per larva. Furthermore, the recombinant proteins were characterized and their biological activities were evaluated by in vitro bioassay using cell culture.  相似文献   

14.
The present study elaborates a cost-effective and transfectant-free method for generating recombinant Bombyx mori (silkworm) nucleopolyhedrovirus in silkworm larvae and pupae by injecting invasive Escherichia coli carrying BmBacmid [BmNPV (B. mori nucleopolyhedrovirus)-Bacmid] into larval haemocoel. Up to 109 PFU (plaque-forming units)/ml of infective recombinant baculovirus was generated in the silkworm by intrahaemocoelic injection with 106 DAP (diaminopimelic acid) auxotrophic and BmBacmid containing E. coli cells expressing both invasin and listeriolysin. Thus 1?ml of overnight culture of E. coli is sufficient to inject more than 2000 larvae, while DAP costing up to $1 is enough to inject about 4000 larvae. Recombinant proteins can be controlled to be expressed mainly in pupae by adjusting the injection dose, too. In this new method, many original manipulations have been eliminated, including BmBacmid preparation and the subsequent complex transfection procedures. Hence it is a time- and cost-saving means for large-scale injection of B. mori for recombinant baculovirus production in comparison with the traditional transfection methods, which may play an important role in the industrial development of the BmNPV-silkworm bioreactor.  相似文献   

15.
Lepidopteran cell lines constitute the backbone for studying baculoviral biology in culturo and for baculovirus vector based recombinant protein expression systems. In the present study, we report establishment of a new continuous cell line designated as DZNU-Bm-1 from larval ovaries of the silkworm, Bombyx mori. The cells were grown in MGM-448 insect cell culture medium supplemented with 10% fetal bovine serum (FBS) and 3% heat inactivated B. mori haemolymph at 25+/-1 degrees C. A large number of attached epithelial-like and round refractive cells migrated from the explants and multiplied in the primary cultures. Both type of cells were subcultured initially for a few passages but after 10 passages the round refractive cells dominated the population, which could be subcultured continuously using MGM-448 medium with 10% FBS. The population doubling time of cell line was about 42h at 25+/-1 degrees C. The cell populations were largely diploids and triploids, while a few tetraploids and hexaploids were also observed. DNA profiles using Inter Simple Sequence Repeat (ISSR)-PCR and Simple Sequence Repeat (SSR) loci established the differences between DZNU-Bm-1 cell line and most widely used BmN cell line and the B. mori W-chromosome specific sequences confirmed the origin of DZNU-Bm-1 cell line to be from female silkworm. When cells were infected with free nonoccluded B. mori nucleopolyhedrovirus (BmNPV), the cell line was found to be highly susceptible with 92-94% of the cells harbouring BmNPV and having an average of 20-23 OBs/infected cell. We suggest the usefulness of this cell line in BmNPV based baculoviral expression system and also for studying in culturo virus replication.  相似文献   

16.
17.
Summary The capacity of two Trichoplusia ni (TN-368 and BTI-Tn-5bl-4) and a Spodoptera frugiperda (IPLB-SF-21A) cell lines to glycosylate recombinant, baculovirus-encoded, secreted, placental alkaline phosphatase was compared. The alkaline phosphatase from serum-containing, cell culture medium was purified by phosphate affinity column chromatography. The N-linked oligosaccharides were released from the purified protein with PNGase F and analyzed by fluorophore-assisted carbohydrate electrophoresis. The majority of oligosaccharide structures produced by the three cell lines contained two or three mannose residues, with and without core fucosylation, but there were structures containing up to seven mannose residues. The oligosaccharides that were qualitatively or quantitatively different between the cell lines were sequenced with glycosidase digestions. The S. frugiperda cells produced more fucosylated oligosaccharides than either of the T. ni cell lines. The smallest oligosaccharide produced by S. frugiperda cells was branched trimannose. In contrast, both T. ni cell lines produced predominantly dimannose and linear trimannose structures devoid of α 1–3-linked mannose.  相似文献   

18.
The fucosyltransferase activities of three insect cell lines, MB-0503 (from Mamestra brassicae), BM-N (from Bombyx mori) and Sf-9 (from Spodoptera frugiperda), were investigated and compared with that of honeybee venom glands. Cell extracts and venom gland extracts were incubated with GDP-[14C]fucose and glycopeptides isolated from human IgG and from bovine fibrin. The labeled oligosaccharide products were released by peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase A, fluorescence marked with 2-aminopyridine and analyzed both by reversed-phase and size-fractionation HPLC. They were identified by their elution positions before and after exoglycosidase treatment in comparison with standard oligosaccharides. These experiments revealed distinct fucosylation potentials in the three cell lines tested. While MB-0503 cells, like honeybee venom glands, are able to transfer fucose into alpha 1-3 and alpha 1-6 linkage to the innermost N-acetylglucosamine, only alpha 1-6-fucosyl linkages were detected with BM-N and Sf-9 cells.  相似文献   

19.
Comparative recombinant protein production of eight insect cell lines   总被引:4,自引:0,他引:4  
Summary A recombinantAutographa californica baculovirus expressing secreted alkaline phosphatase (SEAP) gene was used to evaluate the expression of a secreted glycoprotein in eight insect cell lines derived fromSpodoptera frugiperda, Trichoplusia ni, Mamestra brassicae andEstigmene acrea. Because cell density was found to influence protein production, SEAP production was evaluated at optimal cell densities for each cell line on both a per cell and per milliliter basis. On a per cell basis, theT. ni-derived BTI-TN-5B1-4 cells produced a minimum of 20-fold more SEAP than theS. frugiperda-derived Sf9 or Sf21 cell lines and a minimum of 9-fold more than any of the other cell lines growing in serum-containing medium. On a per milliliter basis, BTI-TN-5B1-4 cells produced a minimum of fivefold more SEAP than any of the other cell lines tested. Using cell lines that were adapted to serum-free medium, SEAP yields were the same or better than their counterparts in serum-containing medium. At 3 days postinoculation, extracellular SEAP activity ranged from 59 to 85% of total SEAP activity with cell lines grown in serum-free and serum-containing media.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号